Skip to main content
Log in

Investigation of modified zinc borate glasses doped with BaO as a nuclear radiation-shielding material

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

Radiation protection and detection have been a main interest for researchers. The prepared glass samples were subjected to experimental investigations to evaluate their mechanical and attenuation properties. As a consequence, the values of the mass attenuation coefficient, total electronic cross section, the effective atomic number and an effective electron number were determined and utilized to assess the shielding effectiveness of the investigated glass samples. The mass attenuation coefficients of these samples were calculated theoretically using WinXcom program.

Purpose

Preparation of glass of borate with zinc and barium can withstand shock, heat and corrosion to be used as a radiation shield.

Methods

Glass samples were prepared by melt quenching technique. Density and molar volume measurements were obtained by applying the Archimedes principle. The hardness was measured by using a microhardness tester (Leco AMH 100, USA) for sample indentation. The thermal behavior of the glass samples was investigated by differential scanning calorimetry (DSC). Also, by using a scintillator detector (1.5″ × 1.5″ NaI (Tl)) exposed to 232Th, 137Cs and 60Co gamma ray sources with accuracy range 0.12%.

Results

The investigated glasses have relatively good gamma ray attenuation properties, water resistance ability and thermal stability with increasing barium oxide. So, they can be used in containers for keeping radioactive waste and radioactive sources.

Conclusion

The changes in the molar volume and density show approximately opposite linear trends. Also, μm is dependent on the chemical compositions of glass samples and energy of gamma rays. Good agreement between the experimentally obtained mass attenuation coefficient values and the corresponding theoretical predictions based on the known WinXcom program was observed. Additionally, the effect of gamma irradiation on this glass is minor because its impact on the hardness values and dissolution rate is extremely small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Kaur, K.J. Singh, Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2(5), 2278–3075 (2013)

    Google Scholar 

  2. S. Gupta, S.G. Singh, Int. J. Sci. Res. Publ. 1(2), 59–70 (2012)

    Google Scholar 

  3. S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Nucl. Instrum. Methods Phys. B 266(1), 140–146 (2008)

    Article  ADS  Google Scholar 

  4. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Radiat. Phys. Chem. 137, 72–77 (2017)

    Article  ADS  Google Scholar 

  5. S.U. El-Kameesy, H.A. Saudi, G. Mahmoud, R. Saeed, J. Adv. Phys. 11, 4 (2015)

    Google Scholar 

  6. J. Mauro, Report from: Glass Laboratory, college of Ceramics (Alfred University. Private communication through the internet, Alfred, 2000)

    Google Scholar 

  7. T. Özdemir, İ.K. Akbay, H. Uzun, İ.A. Reyhancan, Prog. Nucl. Energy 89, 102–109 (2016)

    Article  Google Scholar 

  8. J.H. Gong, W.J. Si, Z.D. Guan, Effect of load-dependence of hardness on indentation toughness determination for soda-lime glass. J. Non-Cryst. Solids 282, 325–328 (2001)

    Article  ADS  Google Scholar 

  9. A. Tawansi, E. Ahmed, D. Holland, I.A. GohAar, N.A. El-Shishtawi, J. Non-Cryst. Solids 105(1–2), 78–90 (1988)

    Article  ADS  Google Scholar 

  10. H.A. Saudi, A.G. Mostafa, N. Sheta, S.U. ElKameesy, H.A. Sallam, Phys. B Phys. Condens. Matter 406, 4001–4006 (2011)

    Article  ADS  Google Scholar 

  11. J. Wood, Computational methods in reactor shielding (Pergamon, New York, 1982)

    Google Scholar 

  12. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, Radiat. Phys. Chem. 60, 23–24 (2001)

    Article  ADS  Google Scholar 

  13. Sukhpal Singh, Ashok Kumar, Devinder Singh, K. Singh, T. Mudahar, S. Gurmel, Nucl. Instrum. Methods Phys. Res. Sect. B 266(1), 140–146 (2008)

    Article  ADS  Google Scholar 

  14. H.A. Sallam, H.A. Saudy, World J. Condens. Matter Phys. 3, 62–66 (2013)

    Article  ADS  Google Scholar 

  15. A.S. Makarious, I.I. Bashter, Abdo AEl. Sayad, A.M. Sameer Abdul, W.A. Kansouh, Ann. Nucl. Energy. 23, 195 (1996)

    Article  Google Scholar 

  16. H.A. Saudi, Appl. Math. Phys. 1(4), 143–146 (2013)

    Google Scholar 

  17. H.A. Saudy, S. El Mosallamy, S.U. El Kameesy, N. Sheta, A.G. Mostafa, H.A. Sallam, World J. Condens. Matter Phys. 3, 9–13 (2013)

    Article  ADS  Google Scholar 

  18. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Phys. Chem. 98, 14–21 (2014)

    ADS  Google Scholar 

  19. J.H. Hubbell, J. Phys. Med. Biol. 44, 1 (1999)

    Article  Google Scholar 

  20. H.A. Saudi, SOP Trans. Appl. Phys. Phys. Chem. 1(1), 29–32 (2014)

    Google Scholar 

  21. H.A. Saudi, Am. J. Phys. Appl. 4(6), 140–144 (2016)

    Google Scholar 

  22. M.A. Marzouk et al., J. Non-Cryst. Solids 387, 155–160 (2014)

    Article  ADS  Google Scholar 

  23. E. J. Friebele, Radiation effects, in Optical Properties of Glass, ed. by D. R. Uhlmann, N. J. Kreidl (American Ceramic Society, Westerville, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Saudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saudi, H.A., El-Kameesy, S.U. Investigation of modified zinc borate glasses doped with BaO as a nuclear radiation-shielding material. Radiat Detect Technol Methods 2, 44 (2018). https://doi.org/10.1007/s41605-018-0075-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0075-x

Keywords

Navigation