Skip to main content
Log in

The low temperature performance of CsI(Na) crystals for WIMPs direct searches

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Introduction

   Previous studies showed that CsI(Na) crystals have significantly different waveforms between \(\alpha \) and \(\gamma \) scintillations.

Experimental

   In this work, the light yield and pulse shape discrimination capability of CsI(Na) scintillators as a function of the temperature down to 80 K have been studied.

Results

   As temperature drops, the fast component increases and the slow component decreases. By cooling the CsI(Na) crystals, the light yield of high-ionization events is enhanced significantly, while the light yield of background \(\gamma \) events is suppressed. At 110 K, CsI(Na) crystal achieves the optimal balance between low threshold and good background rejection performance.

Discussion

   The different responses of CsI(Na) to \(\gamma \) and \(\alpha \) at different temperatures are explained with self-trapped and activator luminescence centers.

Conclusions

   PSD capability of CsI(Na) reaches the peak at 110 K, which can be the optimum operating temperature for future CsI(Na)-based dark matter detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Komatsu, K. Smith, J. Dunkley, C. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Nolta, L. Page et al., Astrophys. J. Suppl. Ser. 192(2), 18 (2011)

    Article  ADS  Google Scholar 

  2. S. Xi-Lei, L. Jun-Guang, H. Tao, Z. Li, C. Jun, W. Yi-Fang, Z. Liang, Y. Bo-Xiang, C. Xiao, F. Jian et al., Chin. Phys. C 35(12), 1130 (2011)

    Article  ADS  Google Scholar 

  3. M. Moszyński, W. Czarnacki, W. Klamra, M. Szawlowski, P. Schotanus, M. Kapusta, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 504(1), 307 (2003)

    Article  ADS  Google Scholar 

  4. S.S. Gridin, A.N. Belsky, N.V. Shiran, A.V. Gektin, IEEE Trans. Nucl. Sci. 61(1), 246 (2014)

    Article  ADS  Google Scholar 

  5. D. Akerib, X. Bai, E. Bernard, A. Bernstein, A. Bradley, D. Byram, S. Cahn, M. Carmona-Benitez, D. Carr, J. Chapman et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 703, 1 (2013)

    Article  ADS  Google Scholar 

  6. X. Sun, J. Lu, T. Hu, L. Zhou, J. Cao, Y. Wang, L. Zhan, B. Yu, X. Cai, J. Fang et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 642(1), 52 (2011)

    Article  ADS  Google Scholar 

  7. S.A. Payne, N.J. Cherepy, G. Hull, J.D. Valentine, W.W. Moses, W.S. Choong, IEEE Trans. Nucl. Sci. 56(4), 2506 (2009)

    Article  ADS  Google Scholar 

  8. S. Gridin, A. Vasil’ev, A. Belsky, N. Shiran, A. Gektin, Phys. Status Solidi (B) 251(5), 942 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Sun, X., Lu, J. et al. The low temperature performance of CsI(Na) crystals for WIMPs direct searches. Radiat Detect Technol Methods 2, 15 (2018). https://doi.org/10.1007/s41605-018-0039-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0039-1

Keywords

Navigation