Skip to main content

Advertisement

Log in

Antibacterial effect of Er:YAG laser in the treatment of peri-implantitis and their effect on implant surfaces: a literature review

  • Review Article
  • Published:
Lasers in Dental Science Aims and scope Submit manuscript

Abstract

The aim

The present study aims to conduct a descriptive analysis by reviewing in vivo and in vitro studies concerned with the antibacterial effect of Er:YAG laser (2940 nm) and their effects on implant surfaces at different parameters for peri-implantitis treatment.

Materials and methods

The PubMed and Google Scholar had been used to search for articles focused on the antibacterial effect of Er:YAG laser (2940 nm) in the treatment of peri-implantitis and their effects on implant surfaces. This literature search was limited to 10 years (January 2007–March 2017).

Results

The safe settings of Er:YAG laser (2940 nm) which may be used as an antibacterial effect without surface alteration or increase of temperature in the treatment of peri-implantitis are 100 mJ/pulse, 1 W, 10 Hz, and 12.74 J/cm2 for 60 s.

Conclusion

A consideration should be taken when Er:YAG laser 2940 nm wavelength is used to avoid a negative thermal and characteristic effect on the implant surfaces, where the favorable settings which can be used in the treatment of peri-implantitis are 100 mJ/pulse, 1 W, 10 Hz, and 12.74 J/cm2 for 60 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ERL:

Er;YAG laser

TPS:

Titanium plasma sprayed

PW:

Pulse wave

MR:

Mucosal recession

HA:

Hydroxyapatite

s:

Second

PD:

Pocket depth

SLA:

Sand blasted, large grit, acid-etched

μs:

Microsecond

PI:

Plaque index

Y-TZP:

Yittrium-stabilized tetragonal zirconia polycrystal

ms:

Millisecond

BOP:

Bleeding on probing

CPS:

Cotton pellets + plastic curets + sterile saline

μm:

Micrometer

LS-LPS:

Low-power setting

HS-HPS:

High power setting

CAL:

Clinical attachment level

TiO2:

Fluoride modified

SAE:

Sandblasted and acid-etched

AO:

Anodic oxidized

N info:

No information

M:

Machined

Ra:

Roughness

References

  1. Misch CE (2007) Contemporary implant dentistry, 3rd edn. Mosby, St. Louis, pp 3–25

    Google Scholar 

  2. Greenstein G, Cavallaro J, Romanos G, Tarnow D (2008) Clinical recommendation for avoiding and managing surgical complications associated with implant dentistry. A review. J Periodontol 79:1317–1329. https://doi.org/10.1902/jop.2008.070067

    Article  PubMed  Google Scholar 

  3. Porter JA, von Fraunhofer JA (2005) Success or failure of dental implants? A literature review with treatment considerations. Gen Dent 53(6):423–432

    PubMed  Google Scholar 

  4. Malet J, Mora F, Bouchard P (2012) Implant dentistry at a glance, 1st edn. Wiley-Blackwell, Chichester, pp 24, 25, 102, 103, 106–108

  5. Rosen P, Cochran D, Froum S, McAllister B, Renvert S, Wang H-L (2013) Peri-implant mucositis and peri-implantitis: a current understanding of their diagnosis and clinical implications. J Periodontol 84:436–443. https://doi.org/10.1902/jop.2013.134001

    Article  Google Scholar 

  6. Figuero E, Graziani F, Sanz I, Herrera D, Sanz M (2014) Management of peri-implant mucositis and peri-implantitis. Periodontol 66:255–273

    Article  Google Scholar 

  7. Romanos GE, Gupta B, Yunker M, Romanos EB, Malmstrom H (2013) Laser use in dental implantology. Implant Dent 22:282–288. https://doi.org/10.1097/ID.0b013e3182885fcc

    Article  PubMed  Google Scholar 

  8. Scott Froum DDS (2011) Review of the treatment protocols for peri-implantitis. online article available at website http://www.dentistryiq.com/articles/2011/10/review of the treatment protocols for peri-implantitis.html.

  9. Alshehri FA (2016) The role of lasers in the treatment of peri-implant diseases: a review. Saudi Dent J 28:103–108

    Article  PubMed  Google Scholar 

  10. Javed F, Romanos GE (2009) Impact of diabetes mellitus and glycemic control on the osseointegration of dental implants: a systematic literature review. J Periodontol 80:1719–1730. https://doi.org/10.1902/jop.2009.090283

    Article  PubMed  Google Scholar 

  11. Renvert S, Quirynen M (2015) Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res 26:15–44. https://doi.org/10.1111/clr.12636

    Article  PubMed  Google Scholar 

  12. Maruyama N, Maruyama F, Takeuchi Y, Aika- wa C, Izumi Y, Nakagawa I (2014) Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci Rep 4:6602. https://doi.org/10.1038/srep06602

    Article  PubMed Central  PubMed  Google Scholar 

  13. Heitz-Mayfield LJ, Lang NP (2010) Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 53:167–181. https://doi.org/10.1111/j.1600-0757.2010.00348.x

    Article  Google Scholar 

  14. Renvert S, Polyzois I (2015) Risk indicators for peri-implant mucositis: a systematic literature review. J Clin Periodontol 42:172–186. https://doi.org/10.1111/jcpe.12346

    Article  Google Scholar 

  15. Lang NP, Berglundh T (2011) Periimplant diseases: where are we now?—consensus of the seventh European workshop on periodontology. J Clin Periodontol 38:178–181. https://doi.org/10.1111/j.1600-051X.2010.01674.x

    Article  PubMed  Google Scholar 

  16. Linkevicius T, Puisys A, Vindasiute E, Linke-viciene L, Apse P (2013) Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin Oral Implants Res 24:1179–1184. https://doi.org/10.1111/j.1600-0501.2012.02570.x

    Article  PubMed  Google Scholar 

  17. Dalago HR, Schuldt Filho G, Rodrigues MA, Renvert S, Bianchini MA (2016) Risk indicators risk indicators for peri-implantitis. A cross sectional study with 916 patients. Clinical Oral Implants 00:1–7. https://doi.org/10.1111/clr.12772

    Article  Google Scholar 

  18. Strietzel FP, Reichart PA, Kale A, Kulkarni M, Wegner B, Kuchler I (2007) Smoking interferes with the prognosis of dental implant treatment: a systematic review and meta-analysis. J Clin Periodontol 34:523–544. https://doi.org/10.1111/j.1600-051X.2007.01083.x

    Article  PubMed  Google Scholar 

  19. Klokkevold PR, Han TJ (2007) How do smoking, diabetes, and periodontitis affect outcomes of implant treatment? Int J Oral Maxillofac Implants 22:173–202

    PubMed  Google Scholar 

  20. Rinke S, Ohl S, Ziebolz D, Lange K, Eickholz P (2011) Prevalence of peri-implant disease in partially edentulous patients: a practice based cross sectional study. Clin Oral Implants Res 22:826–833. https://doi.org/10.1111/j.1600-0501.2010.02061.x

    Article  PubMed  Google Scholar 

  21. Laine ML, Leonhardt A, Roos-Jansa ker AM et al (2006) IL1RN gene polymorphism is associated with periimplantitis. Clin Oral Implants Res 17:380–385. https://doi.org/10.1111/j.1600-0501.2006.01249.x

    Article  PubMed  Google Scholar 

  22. Fu J-H, Hsu Y-T, Wang H-L (2012) Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur J Oral Implantol 5:91–103

    Google Scholar 

  23. Oates TW, Dowell S, Robinson M, McMahan CA (2009) Glycemic control and implant stabilization in type 2 diabetes mellitus. J Dent Res 88:367–371. https://doi.org/10.1177/0022034509334203

    Article  PubMed Central  PubMed  Google Scholar 

  24. Krennmair G, Seemann R, Piehslinger E (2010) Dental implants in patients with rheumatoid arthritis: clinical outcome and peri-implant findings. J Clin Periodontol 37:928–936. https://doi.org/10.1111/j.1600-051X.2010.01606.x

    Article  PubMed  Google Scholar 

  25. Galindo-Moreno P, Fauri M, Avila-Ortiz G, Fernandez Barbero JE, Cabrera-Leon A, Sanchez-Fernandez E (2005) Influence of alcohol and tobacco habits on peri-implant marginal bone loss: a prospective study. Clin Oral Implants Res 16:579–586. https://doi.org/10.1111/j.1600-0501.2005.01148.x

    Article  PubMed  Google Scholar 

  26. Froum SJ, Rosen PS (2012) A proposed classification for peri-implantitis. Int J Periodontics Restorative Dent 32:533–540

    PubMed  Google Scholar 

  27. Bobia F, Pop RV (2010) Periimplantitis. Aetiology, diagnosis, treatment. A review from the literature. Curr Health Sci J 36:171–175

    Google Scholar 

  28. Algraffee H, Borumandi F, Cascarini L (2011) Peri-implantitis (review). Br J Oral Maxillofac Surg 50:689–694. https://doi.org/10.1016/j.bjoms.2011.11.020

    Article  PubMed  Google Scholar 

  29. Prathapachandran J, Suresh N (2012) Management of peri-implantitis. Dent Res J (Isfahan) 9:516–521

    Article  Google Scholar 

  30. Roncati M, Lucchese A, Carinci F (2013) Non-surgical treatment of peri-implantitis with the adjunctive use of an 810 nm diode laser. J Indian Soc Periodontol 17:812–815

    Article  PubMed  Google Scholar 

  31. Smeets R, Henningseng A, Jung O, Heiland M, Hammächer C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis, a review. Head Face Med 10:4–8. https://doi.org/10.1186/1746-160X-10-34

    Article  Google Scholar 

  32. Meyle J (2012) Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around dental implants. Eur J Oral Implantol 5:71–81

    Google Scholar 

  33. Khandge N, Pradhan S, Doshi Y, Kulkarni A (2013) Comparison of the effects of different laser wavelengths on implants surfaces. Int J Laser Dentistry 3:14–18

    Article  Google Scholar 

  34. Convissar RA (2015) Principles and practice of laser dentistry, 2nd edn, pp 107–109

    Google Scholar 

  35. Dr. rer. Medic. René Franzen lectures. Module 5, 24-30.10.2016. Master of science in laser in dentistry, EN2015, Aachen university

  36. Dr. rer. Medic. René Franzen lectures. Module 3, 14-18.03.2016. Master of science in laser in dentistry, EN2015, Aachen University

  37. Bader C, Krejci I (2006) Indication and limitation of Er:YAG laser applications in dentistry. Am J Dent 19:181

    Google Scholar 

  38. Kreisler M, Kohnen W, Marinello C, Götz H, Duschner H, Jansen B, D'Hoedt B (2002) Bactericidal effect of the Er:YAG laser on dental implant surface: an in vitro study. J Periodontol 73:1292–1298. https://doi.org/10.1902/jop.2002.73.11.1292

    Article  PubMed  Google Scholar 

  39. Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I (2007) Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci 22:143–157. https://doi.org/10.1007/s10103-006-0430-x

    Article  PubMed  Google Scholar 

  40. Yan M, Liu M, Wang M, Yin F, Xia H (2015) The effects of Er:YAG on the treatment of peri-implantitis: a meta-analysis of randomized controlled trials. Lasers Med Sci 30:1843–1853. https://doi.org/10.1007/s10103-014-1692-3

    Article  PubMed  Google Scholar 

  41. Kamel MS, Khosa A, Tawse-Smith A, Leichter J (2014) The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci 29:1977–1985. https://doi.org/10.1007/s10103-013-1396-0

    Article  PubMed  Google Scholar 

  42. Stübinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, Sader R (2010) Surface alteration of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25:104–111

    PubMed  Google Scholar 

  43. Romanos GE, Gutknecht N, Dieter S, Schwarz F, Crespi R, Sculean A (2009) Laser wavelengths and oral implantology: Review Article. Lasers Med Sci 24:961–970

    Article  PubMed  Google Scholar 

  44. Friedmann A, Antic L, Bernimoulin J-P, Purucker P (2006) In vitro attachment of osteoblasts on contaminated rough titanium surfaces treated by Er:YAG laser. J Biomed Mater Res 79A:53–60. https://doi.org/10.1002/jbm.a.30699

    Article  Google Scholar 

  45. Schwarz F, Sahm N, Iglhaut G, Becker J (2011) Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. J Clin Periodontol 38:276–284. https://doi.org/10.1111/j.1600-051X.2010.01690.x

    Article  PubMed  Google Scholar 

  46. Wang Y, Zhang Y, Miron RJ (2015) Health, maintenance, and recovery of soft tissues around implants. Clin Implant Dent Relat Res 18:618–634. https://doi.org/10.1111/cid.12343

    Article  PubMed  Google Scholar 

  47. Takasaki AA, Mizutani K, Schwarz F et al (2009) Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 51:109–140. https://doi.org/10.1111/j.1600-0757.2009.00302.x

    Article  Google Scholar 

  48. Rutger Persson G, Roos-Jansaker A-M, Lindahl C, Renvert S (2011) Microbiologic results after non-surgical erbium-doped:yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. J Periodontol 82:1267–1278. https://doi.org/10.1902/jop.2011.100660

    Article  PubMed  Google Scholar 

  49. Renvert S, Lindahl C, Roos Jansaker A-M, Persson GR (2011) Treatment of peri-implantitis using Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol 38:65–73. https://doi.org/10.1111/j.1600-051X.2010.01646.x

    Article  PubMed  Google Scholar 

  50. Badran Z, Bories C, Struillou X, Saffarzadeh A, Verner C, Soueida A (2011) Er:YAG laser in the clinical management of severe peri-implantitis: a case report. J Oral Implantol. https://doi.org/10.1563/AAID-JOI-D-09-00145.1

    Article  PubMed  Google Scholar 

  51. Schwarz F, John G, Mainusch S, Sahm N, Becker J (2012) Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination. A two-year clinical follow up report. J Clin Periodontol 39:789–797. https://doi.org/10.1111/j.1600-051X.2012.01867.x

    Article  PubMed  Google Scholar 

  52. Schwarz F, Hegewald A, John G, Sahm N, Becker J (2013) Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. J Clin Periodontol 40:962–967. https://doi.org/10.1111/jcpe.12143

    Article  PubMed  Google Scholar 

  53. Schwarz F, John G, Hegewald A, Becker J (2015) Non-surgical treatment of peri-implant mucositis and peri-implantitis at zirconia implants: a prospective case series. J Clin Periodontol 42:783–788. https://doi.org/10.1111/jcpe.12439

    Article  PubMed  Google Scholar 

  54. Hauser-Gerspach I, Mauth C, Waltimo T, Meyer J, Stübinger S (2014) Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci 29:1329–1337. https://doi.org/10.1007/s10103-013-1303-8

    Article  PubMed  Google Scholar 

  55. Scarano A, Nardi G, Murmura G, Rapani M, Mortellaro C (2016) Evaluation of the removal bacteria on failed titanium implants after irradiation with erbium-doped yttrium aluminium garnet laser. J Craniomaxillofac Surg 27:1202–1204. https://doi.org/10.1097/SCS.0000000000002735

    Article  Google Scholar 

  56. Chen C-J, Ding S-J, Chen C-C (2016) Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg 34:379–388. https://doi.org/10.1089/pho.2016.4103

    Article  PubMed  Google Scholar 

  57. Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F (2016) Decontamination of titanium implants using physical methods. Clin Oral Implants Res 00:1–9. https://doi.org/10.1111/clr.12914

    Article  Google Scholar 

  58. Stübinger S, Homann F, Etter C, Miskiewicz M, Wieland M, Sader R (2008) Effect of Er:YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med 40:223–228. https://doi.org/10.1002/lsm.20614

    Article  PubMed  Google Scholar 

  59. Duarte PM, Reis AF, de Freitas PM, Ota-Tsuzuki C (2009) Bacterial adhesion on smooth and rough titanium surfaces after treatment with different instruments. J Periodontol 80:1824–1832. https://doi.org/10.1902/jop.2009.090273

    Article  PubMed  Google Scholar 

  60. Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, Marchi GM (2009) Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg 27:473–479. https://doi.org/10.1089/pho.2008.2293

    Article  PubMed  Google Scholar 

  61. Kim S-W, Kwon Y-H, Chung J-H, Shin S-I, Herr Y (2010) The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant. J Periodontal Implant Sci 40:276–282. https://doi.org/10.5051/jpis.2010.40.6.276

    Article  PubMed Central  PubMed  Google Scholar 

  62. Stübinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, Sader R (2010) Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25:104–111

    PubMed  Google Scholar 

  63. Lee J-H, Kwon Y-H, Herr Y, Shin S-I, Chung J-H (2011) Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants. J Periodontal Implant Sci 41:135–142. https://doi.org/10.5051/jpis.2011.41.3.135

    Article  PubMed Central  PubMed  Google Scholar 

  64. Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G, Passeri G (2011) The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol 82:1169–1177. https://doi.org/10.1902/jop.2010.100428

    Article  PubMed  Google Scholar 

  65. Shin S-I, Min H-K, Park B-H, Kwon Y-H, Park J-B, Herr Y, Heo S-J, Chung J-H (2011) The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci 26:767–776. https://doi.org/10.1007/s10103-010-0819-4

    Article  PubMed  Google Scholar 

  66. Kim J-H, Herr Y, Chung J-H, Shin S-I, Kwon Y-H (2011) The effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double acid-etched implants. J Periodontal Implant Sci 41:234–241. https://doi.org/10.5051/jpis.2011.41.5.234

    Article  PubMed Central  PubMed  Google Scholar 

  67. Geminiani A, Caton JG, Romanos GE (2011) Temperature increase during CO2 and Er:YAG irradiation on implant surfaces. Implant Dent 20:1. https://doi.org/10.1097/ID.0b013e3182310d57

    Article  Google Scholar 

  68. Park J-H, Heo S-J, Koak J-Y, Kim S-K, Han C-H, Lee J-H (2012) Effects of laser irradiation on machined and anodized titanium disks. Int J Oral Maxillofac Implants 27:265–272

    PubMed  Google Scholar 

  69. Yamamoto A, Tanabe T (2013) Treatment of peri-implantitis around TiUnite-surface implants using Er:YAG laser Microexplosion. Int J Periodontics Restorative Dent 33:21–29. https://doi.org/10.11607/prd.1593

    Article  PubMed  Google Scholar 

  70. Shin S-I, Lee E-K, Kim J-H, Lee J-H, Kim S-H, Kwon Y-H, Herr Y, Chung J-H (2013) The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci 28:823–831. https://doi.org/10.1007/s10103-012-1162-8

    Article  PubMed  Google Scholar 

  71. Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, Schwarz F, Izumi Y (2013) Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Lasers Med Sci 28:1057–1068. https://doi.org/10.1007/s10103-012-1171-7

    Article  PubMed  Google Scholar 

  72. Turp V, Akgungor G, Sen D, Tuncelli B (2014) Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching. Photomed Laser Surg 32:533–539. https://doi.org/10.1089/pho.2014.3730

    Article  PubMed  Google Scholar 

  73. Arami S, Tabatabae MH, Namdar SF, Chiniforush N (2014) Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics. J Dent, Tehran University of Medical Sciences 11:233–241

    Google Scholar 

  74. Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A (2015) Effects of Er:YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 30:561–566. https://doi.org/10.1007/s10103-013-1361-y

    Article  PubMed  Google Scholar 

  75. Caglar I, Yanıkoglu N (2016) The effect of sandblasting, Er:YAG laser, and heat treatment on the mechanical properties of different zirconia cores. Photomed Laser Surg 34:17–26. https://doi.org/10.1089/pho.2015.3980

    Article  PubMed  Google Scholar 

  76. Prof. Dr. med. dent. Norbert Gutknecht lectures. Module 3. 14-20.03.2016. Master of science in laser in dentistry. Aachen University. “EN2015”

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Smeo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeo, K., Nasher, R. & Gutknecht, N. Antibacterial effect of Er:YAG laser in the treatment of peri-implantitis and their effect on implant surfaces: a literature review. Laser Dent Sci 2, 201–211 (2018). https://doi.org/10.1007/s41547-018-0043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41547-018-0043-2

Keywords

Navigation