Skip to main content
Log in

Multi-frequency ultrasound transducers for medical applications: a survey

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Nowadays, ultrasound imaging (US) has made extensive applications in the field of the medical imaging due to its particular advantages, in which the transducer plays an important role. The traditional single-frequency transducers can not meet the requirements of various medical applications, such as harmonic imaging (HI), second-order ultrasound field imaging (SURF) and acoustic radiation force imaging (ARFI). Therefore, multi-frequency, especially dual-frequency (DF) transducers are proposed, each of which transmits and/or receives the ultrasound in different frequencies. The multi-frequency transducer configurations mainly contain five types which named vertical stack, horizontal stack, transducers with polyvinylidene fluoride (PVDF) layer, interleaved arrays and annular array. In this paper, the design, fabrication and recent developments of the multi-frequency transducers are presented and compared by defragmenting more than a hundred papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Akiyama, I., Saito, S., Ohya, A.: Development of an ultra-broadband ultrasonic imaging system: prototype mechanical sector device. J. Med. Ultrason. 33(2), 71–76 (2006)

    Article  Google Scholar 

  • Angelsen, B.A., Hansen, R.: 7a-1 surf imaging-a new method for ultrasound contrast agent imaging. In: Ultrasonics Symposium, 2007. IEEE, pp. 531–541. IEEE (2007)

  • Azuma, T., Ogihara, M., Kubota, J., Sasaki, A., Umemura, S.-I., Furuhata, H.: Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(5), 1211–1224 (2010)

    Article  Google Scholar 

  • Azuma, T., Umemura, S.-I., Kobayashi, T., Izumi, M., Kubota, J., Sasaki, A., Furuhata, H.: Dual frequency array transducer for ultrasonic-enhanced transcranial thrombolysis. In: Ultrasonics, 2003 IEEE Symposium, vol. 1, pp. 680–683. IEEE (2003)

  • Azuma, T., Umemura, S., Ogihara, M., Kubota, J., Kobayashi, T., Izumi, M., Sasaki, A., Furuhata, H.: Prototype dual frequency bilaminar array transducer capable of therapeutic exposure at 500 khz and doppler monitoring at 2 mhz. In: Ultrasonics Symposium, 2004 IEEE, vol. 1, pp. 141–144. IEEE (2004)

  • Azzouz, H., de la Rosette, J.: Hifu: local treatment of prostate cancer. eau-ebu update series 4(2), 62–70 (2006)

    Article  Google Scholar 

  • Bandyopadhyay, A., Panda, R.K., Janas, V.F., Agarwala, M.K., Danforth, S.C., Safari, A.: Processing of piezocomposites by fused deposition technique. J. Am. Ceram. Soc. 80(6), 1366–1372 (1997)

    Article  Google Scholar 

  • Bandyopadhyay, A., Panda, R., McNulty, T., Mohammadi, F., Danforth, S., Safari, A.: Piezoelectric ceramics and composites via rapid prototyping techniques. Rapid Prototyp. J. 4(1), 37–49 (1998)

    Article  Google Scholar 

  • Blana, A., Walter, B., Rogenhofer, S., Wieland, W.F.: High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience. Urology 63(2), 297–300 (2004)

    Article  Google Scholar 

  • Bouakaz, A., ten Cate, F., de Jong, N.: A new ultrasonic transducer for improved contrast nonlinear imaging. Phys. Med. Biol. 49(16), 3515 (2004)

    Article  Google Scholar 

  • Bouakaz, A., Frigstad, S., Ten Cate, F.J., de Jong, N.: Super harmonic imaging: a new imaging technique for improved contrast detection. Ultrasound Med. Biol. 28(1), 59–68 (2002)

    Article  Google Scholar 

  • Bouakaz, A., Krenning, B.J., Vletter, W.B., Ten Cate, F.J., De Jong, N.: Contrast superharmonic imaging: a feasibility study. Ultrasound Med. Biol. 29(4), 547–553 (2003)

    Article  Google Scholar 

  • Burns, P., Powers, J., Fritzsch, T.: Harmonic imaging-new imaging and doppler method for contrast-enhanced us. In: Radiology, vol. 185, pp. 142–142. Radiological Soc North Amer 20th And Northampton Sts, Easton (1992)

  • Castellini, C., Passig, G., Zarka, E.: Using ultrasound images of the forearm to predict finger positions. IEEE Trans. Neural Syst. Rehabil. Eng. 20(6), 788–797 (2012)

    Article  Google Scholar 

  • Chandrana, C., Kharin, N., Vince, G.D., Roy, S., Fleischman, A.J.: Demonstration of second-harmonic ivus feasibility with focused broadband miniature transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(5), 1077–1085 (2010)

    Article  Google Scholar 

  • Chen, J., Dai, J.-Y., Zhang, C., Zhang, Z., Feng, G.: Broadband focusing ultrasonic transducers based on dimpled linbo 3 plate with inversion layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2797–2802 (2012)

    Google Scholar 

  • Chen, Y., Nguyen, M., Yen, J.T.: 7.5 mhz dual-layer transducer array for 3-d rectilinear imaging. Ultrasonic Imaging 33(3), 205–216 (2011)

    Article  Google Scholar 

  • Chen, Y., Nguyen, M., Yen, J.T.: Recent results from dual-layer array transducers for 3-d imaging. In: 2010 IEEE International Ultrasonics Symposium, 2400–2403. IEEE (2010)

  • Chomas, J., Dayton, P., May, D., Ferrara, K.: Nondestructive subharmonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(7), 883–892 (2002)

    Article  Google Scholar 

  • Chopra, R., Luginbuhl, C., Foster, F.S., Bronskill, M.J.: Multifrequency ultrasound transducers for conformal interstitial thermal therapy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(7), 881–889 (2003)

    Article  Google Scholar 

  • Cobbold, R.S.: Foundations of biomedical ultrasound. Oxford University Press, Oxford (2006)

    Google Scholar 

  • Cochran, A., Reynolds, P., Hayward, G.: Multilayer piezocomposite transducers for applications of low frequency ultrasound. In: Ultrasonics Symposium, 1997 Proceedings, 1997 IEEE, vol. 2, pp. 1013–1016. IEEE (1997)

  • Czernuszewicz, T.J., Homeister, J.W., Caughey, M.C., Farber, M.A., Fulton, J.J., Ford, P.F., Marston, W.A., Vallabhaneni, R., Nichols, T.C., Gallippi, C.M.: Non-invasive in vivo characterization of human carotid plaques with acoustic radiation force impulse ultrasound: comparison with histology after endarterectomy. Ultrasound Med. Biol. 41(3), 685–697 (2015)

    Article  Google Scholar 

  • Czernuszewicz, T.J., Gallippi, C.M., Wang, Z., Ma, J., Jiang, X.: Acoustic radiation force (arf) generation with a novel dual-frequency intravascular transducer. In: 2014 IEEE International Ultrasonics Symposium, pp. 2284–2287. IEEE (2014)

  • Dahl, J.J., Dumont, D.M., Allen, J.D., Miller, E.M., Trahey, G.E.: Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study. Ultrasound Med. Biol. 35(5), 707–716 (2009)

    Article  Google Scholar 

  • De Fraguier, S., Gelly, J.-F., Wolnerman, L., Lannuzel, O.: A novel acoustic design for dual frequency transducers resulting in separate bandpass for color flow mapping (cfm). In Ultrasonics Symposium, 1990 Proceedings, IEEE 1990, pp. 799–803. IEEE (1990)

  • Deng, L.: OReilly, M.A., Jones, R.M., An, R., Hynynen, K.: A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Phys. Med. Biol. 61(24), 8476 (2016)

    Article  Google Scholar 

  • Doherty, J.R., Dahl, J.J., Kranz, P.G., El Husseini, N., Chang, H.-C., Chen, N.-K., Allen, J.D., Ham, K.L., Trahey, G.E.: Comparison of acoustic radiation force impulse imaging derived carotid plaque stiffness with spatially registered mri determined composition. IEEE Trans. Med. Imaging 34(11), 2354–2365 (2015)

    Article  Google Scholar 

  • Forsberg, F., Shi, W.T., Jadidian, B., Winder, A.A.: Multi-frequency harmonic arrays: initial experience with a novel transducer concept for nonlinear contrast imaging. Ultrasonics 43(2), 79–85 (2004)

    Article  Google Scholar 

  • Frijlink, M.E., Goertz, D.E., Luc, C., Damme, V., Krams, R., Van Der Steen, A.F.: Intravascular ultrasound tissue harmonic imaging in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(10), 1844–1852 (2006)

    Article  Google Scholar 

  • Frijlink, M.E., Goertz, D.E., Vos, H.J., Tesselaar, E., Blacquière, G., Gisolf, A., Krams, R., van der Steen, A.F.: Harmonic intravascular ultrasound imaging with a dual-frequency catheter. Ultrasound Med. Biol. 32(11), 1649–1654 (2006)

    Article  Google Scholar 

  • Fukuda, M., ImANo, K.: A novel system using double-layered piezoelectric transducer for detecting sub-harmonic components of ultrasonic pulse waves. Int. J. Soc. Mater. Eng. Resour. 15(2), 42–45 (2008)

    Article  Google Scholar 

  • Fukuda, M., Imano, K.: Detection of subharmonic components generated from microbubbles in water using double-layered piezoelectric transducer with aligning polarization directions. Acoust. Sci. Technol. 29(6), 399–402 (2008)

    Article  Google Scholar 

  • Fukuda, M., Makoto, M., Imano, K.: Real time detection of second-harmonic components generated from plastic-deformed metal rod using double-layered piezoelectric transducer. Jpn. J. Appl. Phys. 46(7S), 4529 (2007)

    Article  Google Scholar 

  • Fukuda, M., Nishihira, M., Imano, K.: Application of a double-layered piezoelectric transducer in the generation of short ultrasonic pulses. Jpn. J. Appl. Phys. 43(5S), 3131 (2004)

    Article  Google Scholar 

  • Fukuda, M., Nishihira, M., Imano, K.: Real time extraction system using double-layered piezoelectric transducer for second-harmonic ultrasonic pulse waves. Jpn. J. Appl. Phys. 45(5S), 4556 (2006)

    Article  Google Scholar 

  • Garcia-Garcia, H.M., Costa, M.A., Serruys, P.W.: Imaging of coronary atherosclerosis: intravascular ultrasound. Eur. Heart J. 31(20), 2456–2469 (2010)

    Article  Google Scholar 

  • Gessner, R.C., Aylward, S.R., Dayton, P.A.: Mapping microvasculature with acoustic angiography yields quantifiable differences between healthy and tumor-bearing tissue volumes in a rodent model. Radiology 264(3), 733–740 (2012)

    Article  Google Scholar 

  • Gessner, R.C., Frederick, C.B., Foster, F.S., Dayton, P.A.: Acoustic angiography: a new imaging modality for assessing microvasculature architecture. J. Biomed. Imaging 2013, 14 (2013)

    Google Scholar 

  • Gessner, R., Lukacs, M., Lee, M., Foster, F.S., Dayton, P.A.: High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer in-vitro and in-vivo studies. In: 2009 IEEE International Ultrasonics Symposium, pp. 275–278. IEEE (2009)

  • Goertz, D.E., Frijlink, M.E., Tempel, D., van Damme, L.C., Krams, R., Schaar, J.A., Folkert, J., Serruys, P.W., de Jong, N., van der Steen, A.F.: Contrast harmonic intravascular ultrasound: a feasibility study for vasa vasorum imaging. Investig. Radiol. 41(8), 631–638 (2006)

    Article  Google Scholar 

  • Goldberg, B.B., Liu, J.-B., Forsberg, F.: Ultrasound contrast agents: a review. Ultrasound Med. Biol. 20(4), 319–333 (1994)

    Article  Google Scholar 

  • Goldberg, B.B., Raichlen, J.S., Forsberg, F.: Ultrasound contrast agents: basic principles and clinical applications. Martin Dunitz, London (2001)

    Google Scholar 

  • Gueck, W., Lu, X.-M.: Transducer for multi-purpose ultrasound. May 4 2005, uS Patent App. 11/123,585

  • Guiroy, A., Novell, A., Ringgaard, E., Lou-Moeller, R., Gregoire, J.-M., Abellard, A.-P., Zawada, T., Bouakaz, A., Levassort, F.: Dual-frequency transducer for nonlinear contrast agent imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(12), 2634–2644 (2013)

    Article  Google Scholar 

  • Gururaja, T., Shurland, A., Chen, J.: Medical ultrasonic transducers with switchable frequency bands centered about f 0 and 2f 0. In: Ultrasonics Symposium, 1997. Proceedings 1997 IEEE, vol. 2, pp. 1659–1662. IEEE (1997)

  • Hansen, R., Angelsen, B.A.: Surf imaging for contrast agent detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 280–290 (2009)

    Article  Google Scholar 

  • Hansen, R., Måsøy, S.-E., Johansen, T.F., Angelsen, B.A.: Utilizing dual frequency band transmit pulse complexes in medical ultrasound imaging. J. Acoust. Soc. Am. 127(1), 579–587 (2010)

    Article  Google Scholar 

  • Herickhoff, C.D., Wilson, C.M., Grant, G.A., Britz, G.W., Light, E.D., Palmeri, M.L., Wolf, P.D., Smith, S.W.: Dual-mode ivus transducer for image-guided brain therapy: preliminary experiments. Ultrasound Med. Biol. 37(10), 1667–1676 (2011)

    Google Scholar 

  • Hossack, J.A., Auld, B.A.: Improving the characteristics of a transducer using multiple piezoelectric layers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(2), 131–139 (1993)

    Article  Google Scholar 

  • Hossack, J.A., Auld, B.: Multiple layer transducers for broadband applications. In: Ultrasonics Symposium, 1991 Proceedings, IEEE 1991, pp. 605–610. IEEE (1991)

  • Hossack, J.A., Mauchamp, P., Ratsimandresy, L.: A high bandwidth transducer optimized for harmonic imaging. In: Ultrasonics Symposium, 2000 IEEE, vol. 2, pp. 1021–1024. IEEE (2000)

  • Hu, X., Zheng, H., Kruse, D.E., Sutcliffe, P., Stephens, D.N., Ferrara, K.W.: A sensitive tlrh targeted imaging technique for ultrasonic molecular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(2), 305–316 (2010)

    Article  Google Scholar 

  • Hynynen, K.: The threshold for thermally significant cavitation in dog’s thigh muscle in vivo. Ultrasound Med. Biol. 17(2), 157–169 (1991)

    Article  Google Scholar 

  • Jeong, J.S., Chang, J.H., Shung, K.K.: Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 1913–1922 (2009)

    Article  Google Scholar 

  • Kim, H.H., Cannata, J.M., Liu, R., Chang, J.H., Silverman, R.H., Shung, K.K.: 20 mhz/40 mhz dual element transducers for high frequency harmonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2683–2691 (2008)

    Article  Google Scholar 

  • Kim, J., Li, S., Kasoji, S., Dayton, P.A., Jiang, X.: Phantom evaluation of stacked-type dual-frequency 1–3 composite transducers: a feasibility study on intracavitary acoustic angiography. Ultrasonics 63, 7–15 (2015)

    Article  Google Scholar 

  • Kim, J., Li, S., Jiang, X., Kasoji, S., Dayton, P.A.: Development of transmitters in dual-frequency transducers for interventional contrast enhanced imaging and acoustic angiography. In: 2014 IEEE International Ultrasonics Symposium, pp. 679–682. IEEE (2014)

  • Kino, G.S.: Acoustic waves: devices, imaging and analog signal processing, no. 43 KIN (1987)

  • Kruse, D.E., Lai, C.-Y., Stephens, D.N., Sutcliffe, P., Paoli, E.E., Barnes, S.H., Ferrara, K.W.: Spatial and temporal-controlled tissue heating on a modified clinical ultrasound scanner for generating mild hyperthermia in tumors. IEEE Trans. Biomed. Eng. 57(1), 155–166 (2010)

    Article  Google Scholar 

  • Li, S., Kim, J., Wang, Z., Jiang, X., Kasoji, S., Lindsey, B., Dayton, P.A.: A 3 mhz, 18 mhz dual-layer co-linear array for transrectal acoustic angiography. In: Ultrasonics Symposium (IUS), pp. 1–4. 2015 IEEE International. IEEE (2015)

  • Li, S., Huang, W., Jiang, X., Jian, X., Cui, Y.: A dual-layer micromachined pmn-pt 1–3 composite transducer for broadband ultrasound imaging. In: 2013 IEEE International Ultrasonics Symposium (IUS), pp. 781–784. IEEE (2013)

  • Li, S., Kim, J., Wang, Z., Jiang, X., Kasoji, S., Lindsey, B., Dayton, P.A.: A dual-frequency co-linear array for prostate acoustic angiography. In: Ultrasonics Symposium (IUS), 2016 IEEE International, pp. 1–4. IEEE (2016)

  • Li, Y., Ma, J., Martin, K.H., Choi, H., Dayton, P.A., Jiang, X., Shung, K.K., Zhou, Q.: A configurable dual-frequency transmit, receive system for acoustic angiography imaging. In: 2014 IEEE International Ultrasonics Symposium, pp. 731–733. IEEE (2014)

  • Lindsey, B.D., Martin, K.H., Dayton, P.A., Ma, J., Wang, Z., Jiang, X.: Dual-frequency intravascular ultrasound imaging of microbubble contrast agents: ex vivo and in vivo demonstration. In: Ultrasonics Symposium (IUS), 2015 IEEE International, pp. 1–4. IEEE (2015)

  • Lindsey, B.D., Dayton, P.A., Kim, J., Jiang, X.: A dual-frequency endoscopic transducer for imaging vascular invasion in pancreatic cancer. In: Ultrasonics Symposium (IUS), 2016 IEEE International, pp. 1–4. IEEE (2016)

  • Lukacs, M., Lee, M., Cherin, E., Yin, J., Hirson, D., Foster, F.S., Gessner, R., Dayton, P.A.: Hybrid dual frequency transducer and scanhead for micro-ultrasound imaging. In: 2009 IEEE International Ultrasonics Symposium, pp. 1000–1003. IEEE (2009)

  • Ma, J., Martin, K.H., Dayton, P.A., Jiang, X.: A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(5), 870–880 (2014)

    Article  Google Scholar 

  • Ma, J., Martin, K.H., Li, Y., Dayton, P.A., Shung, K.K., Zhou, Q., Jiang, X.: Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Phys. Med. Biol. 60(9), 3441 (2015)

    Article  Google Scholar 

  • Ma, J., Jiang, X., Martin, K.H., Dayton, P.A.: Small aperture, dual frequency ultrasound transducers for intravascular contrast imaging. In: 2013 IEEE International Ultrasonics Symposium (IUS), pp. 769–772. IEEE (2013)

  • Ma, J., Wang, Z., Jiang, X.: Design, fabrication, and test of a small aperture, dual frequency ultrasound transducer. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, p. 86951H. International Society for Optics and Photonics (2013)

  • Manh, T., Hoff, L., Johansen, T.F.: Design and prototyping of dual layer linear arrays. In: 2014 IEEE International Ultrasonics Symposium, pp. 971–974. IEEE (2014)

  • Martin, K.H., Lindsey, B.D., Ma, J., Nichols, T.C., Jiang, X., Dayton, P.A.: Ex vivo porcine arterial and chorioallantoic membrane acoustic angiography using dual-frequency intravascular ultrasound probes. Ultrasound Med Biol. 42(9), 2294–2307 (2016)

    Google Scholar 

  • Masøy, S.-E., Standal, Ø., Nasholm, P., Johansen, T.F., Angelsen, B.: Surf imaging: in vivo demonstration of an ultrasound contrast agent detection technique. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(5), 1112–1121 (2008)

    Article  Google Scholar 

  • Merks, E.J., Bouakaz, A., Bom, N., Lancee, C.T., Van Der Steen, A.F., De Jong, N.: Design of a multilayer transducer for acoustic bladder volume assessment. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(10), 1730–1738 (2006)

    Article  Google Scholar 

  • Muir, T., Carstensen, E.: Prediction of nonlinear acoustic effects at biomedical frequencies and intensities. Ultrasound Med. Biol. 6(4), 345–357 (1980)

    Article  Google Scholar 

  • Myhre, O.F., Kvam, J., Angelsen, B.A.: Dual frequency transducer design for suppression of multiple scattering. In: Ultrasonics Symposium (IUS), 2016 IEEE International, pp. 1–4. IEEE (2016)

  • Måsøy, S.-E., Standal, Ø., Deibele, J.M., Näsholm, S.P., Angelsen, B., Johansen, T.F., Tangen, T.A., Hansen, R.: Nonlinear propagation acoustics of dual-frequency wide-band excitation pulses in a focused ultrasound system. J. Acoust. Soc. Am. 128(5), 2695–2703 (2010)

    Article  Google Scholar 

  • Nakamura, K., Fukazawa, K., Yamada, K., Saito, S.: An ultrasonic transducer for second imaging using a linbo/sub 3/plate with a local ferroelectric inversion layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(3), 651–655 (2006)

    Article  Google Scholar 

  • Nakamura, K., Hosoya, M., Shimizu, H.: Estimation of thickness of ferroelectric inversion layers in litao3 plates by measuring piezoelectric responses. Jpn. J. Appl. Phys. 29(S1), 95 (1990)

    Article  Google Scholar 

  • Nasholm, S.P., Hansen, R., Masoy, S.-E., Johansen, T.F., Angelsen, B.A.: Transmit beams adapted to reverberation noise suppression using dual-frequency surf imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(10), 2124–2133 (2009)

    Article  Google Scholar 

  • Nightingale, K., McAleavey, S., Trahey, G.: Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med. Biol. 29(12), 1715–1723 (2003)

    Article  Google Scholar 

  • Owen, N., Chapelon, J., Bouchoux, G., Berriet, R., Fleury, G., Lafon, C.: Dual-mode transducers for ultrasound imaging and thermal therapy. Ultrasonics 50(2), 216–220 (2010)

    Article  Google Scholar 

  • Owen, N.R., Curra, F.P.: Multilayer transducer for nonlinear imaging with application to targeting and monitoring of therapeutic ultrasound. In: 2010 IEEE International Ultrasonics Symposium, pp. 893–896. IEEE (2010)

  • Palanchon, P., Bouakaz, A., Klein, J., de Jong, N.: Multifrequency transducer for microemboli classification and sizing. IEEE Trans. Biomed. Eng. 52(12), 2087–2092 (2005)

    Article  Google Scholar 

  • Saitoh, S., Izumi, M., Abe, K.: A low-impedance ultrasonic probe using a multilayer piezoelectric ceramic. Jpn. J. Appl. Phys. 28(S1), 54 (1989)

    Article  Google Scholar 

  • Saitoh, S., Izumi, M., Mine, Y.: A dual frequency ultrasonic probe for medical applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(2), 294–300 (1995)

    Article  Google Scholar 

  • Sanghvi, N., Foster, R., Bihrle, R., Casey, R., Uchida, T., Phillips, M., Syrus, J., Zaitsev, A., Marich, K., Fry, F.: Noninvasive surgery of prostate tissue by high intensity focused ultrasound: an updated report. Eur. J. Ultrasound 9(1), 19–29 (1999)

    Article  Google Scholar 

  • Schaar, J., Regar, E., Mastik, F., Saia, F., De Korte, C., De Feyter, P., Van der Sleen, A., Serruys, P.: Incidence of vulnerable plaques in humans: assessment with intravascular palpography. Eur. Heart J. 5(24), 419 (2003)

    Article  Google Scholar 

  • Schaetzle, U., Sheljaskov, T., Lerch, R.: Ultrasound transducer for diagnostic and therapeutic use. Oct. 20 1998, uS Patent 5,823,962

  • Shankar, P., Krishna, P.D., Newhouse, V.: Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med. Biol. 24(3), 395–399 (1998)

    Article  Google Scholar 

  • Shapiro, R.S., Wagreich, J., Parsons, R., Stancato-Pasik, A., Yeh, H.-C., Lao, R.: Tissue harmonic imaging sonography: evaluation of image quality compared with conventional sonography. AJR Am. J. Roentgenol. 171(5), 1203–1206 (1998)

    Article  Google Scholar 

  • Shih, C.-C., Huang, C.-C., Zhou, Q., Shung, K.K.: High-resolution acoustic-radiation-force-impulse imaging for assessing corneal sclerosis. IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013)

    Article  Google Scholar 

  • Silverman, R.H., Coleman, D.J., Ketterling, J.A., Lizzi, F.L.: High-frequency harmonic imaging of the eye. In: Medical Imaging. International Society for Optics and Photonics, pp. 16–25 (2005)

  • Smith, M., Dunhill, A.: The design and performance of pvdf transducers. In: IEEE, 1987 Ultrasonics Symposium, pp. 675–680. IEEE (1987)

  • Souquet, J., Defranould, P., Desbois, J.: Design of low-loss wide-band ultrasonic transducers for noninvasive medical application. IEEE Trans. Sonics Ultrason. 26(2), 75–80 (1979)

    Article  Google Scholar 

  • Starritt, H., Duck, F., Hawkins, A., Humphrey, V.: The development of harmonic distortion in pulsed finite-amplitude ultrasound passing through liver. Phys. Med. Biol. 31(12), 1401 (1986)

    Article  Google Scholar 

  • Starritt, H., Perkins, M., Duck, F., Humphrey, V.: Evidence for ultrasonic finite-amplitude distortion in muscle using medical equipment. J. Acoust. Soc. Am. 77(1), 302–306 (1985)

    Article  Google Scholar 

  • Stephens, D.N., Kruse, D.E., Ergun, A.S., Barnes, S., Lu, X.M., Ferrara, K.W.: Efficient array design for sonotherapy. Phys. Med. Biol. 53(14), 3943 (2008)

    Article  Google Scholar 

  • Stephens, D.N., Lu, X.M., Proulx, T., Walters, W., Dayton, P.A., Tartis, M., Kruse, D.E., Lum, A.F., Kitano, T., Stieger, S.M., et al.: Multi-frequency array development for drug delivery therapies. In: 2006 IEEE International Ultrasonics Symposium, IUS (2006)

  • Sun, X., Yang, X., Zhu, X., Liu, H.: Explore dual-frequency ultrasound transducers for morphological changes of deep-layered muscles. IEEE Sens. J. PP(99), 1 (2017)

  • Takeuchi, S., Al Zaabi, M.R.A., Sato, T., Kawashima, N.: Development of ultrasound transducer with double-peak-type frequency characteristics for harmonic imaging and subharmonic imaging. Jpn. J. Appl. Phys. 41(5S), 3619 (2002)

    Article  Google Scholar 

  • Takeuchi, A.Z.M.R.A., Shinichi, T.Sato, Kawashima, N.: Ultrasound transducer with double-peak frequency characteristics for subharmonic imaging. Jpn. J. Appl. Phys. 42(5S), 3253 (2003)

  • Topete, J., Alvarez-Arenas, T.: Annular multifrequency piezoelectric array for enhanced wideband ultrasonic response. In: IEEE SENSORS, 2014 Proceedings, pp. 102–105. IEEE (2014)

  • Trahey, G.E., Palmeri, M.L., Bentley, R.C., Nightingale, K.R.: Acoustic radiation force impulse imaging of the mechanical properties of arteries: in vivo and ex vivo results. Ultrasound Med. Biol. 30(9), 1163–1171 (2004)

    Article  Google Scholar 

  • Tranquart, F., Grenier, N., Eder, V., Pourcelot, L.: Clinical use of ultrasound tissue harmonic imaging. Ultrasound Med. Biol. 25(6), 889–894 (1999)

    Article  Google Scholar 

  • Tsai, C.-H., Zhang, J.-W., Liao, Y.-Y., Liu, H.-L.: Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers. Phys. Med. Biol. 61(7), 2926 (2016)

    Article  Google Scholar 

  • van Neer, P.L., Danilouchkine, M.G., Matte, G.M., van der Steen, A.F., de Jong, N.: Dual-pulse frequency compounded superharmonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2316–2324 (2011)

    Article  Google Scholar 

  • Van Neer, P.L., Matte, G., Danilouchkine, M.G., Prins, C., Van Den Adel, F., De Jong, N.: Super-harmonic imaging: development of an interleaved phased-array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(2), 455–468 (2010)

    Article  Google Scholar 

  • Van Neer, P., Matte, G., Danilouchkine, M., Verweij, M.D., de Jong, N.: A study of phased array transducer topology for superharmonic imaging. In: 2010 IEEE International Ultrasonics Symposium, pp. 1222–1223. IEEE (2010)

  • Vos, H.J., Frijlink, M., Droog, E., Goertz, D.E., Blacquiere, G., Gisolf, A., De Jong, N., Van Der Steern, A.: Transducer for harmonic intravascular ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(12), 2418–2422 (2005)

    Article  Google Scholar 

  • Vos, H., Frijlink, M., Droog, E., Goertz, D., Blacquiere, G., Gisolf, A., De Jong, N., Van der Steen, A.: A 20–40 mhz ultrasound transducer for intravascular harmonic imaging. In: Ultrasonics Symposium, 2004 IEEE, vol. 3, pp. 1966–1969. IEEE (2004)

  • Wang, Z., Li, S., Jiang, X., Liu, R., Geng, X.: Design, fabrication and characterization of a bi-frequency co-linear array (7.5 mhz, 15mhz). In: 2013 IEEE International Ultrasonics Symposium (IUS), pp. 504–507. IEEE (2013)

  • Wang, Z., Ma, J., Jiang, X., Martin, K.H., Dayton, P.A.: An array transmitter for dual-frequency contrast enhanced intravascular ultrasound imaging. In:2014 IEEE International Ultrasonics Symposium, pp. 2104–2107. IEEE (2014a)

  • Wang, Z., Li, S., Liu, R., Geng, X., Jiang, X.: A bi-frequency co-linear array transducer for biomedical ultrasound imaging. In: ASME 2014 International Mechanical Engineering Congress and Exposition, p. V003T03A085. American Society of Mechanical Engineers (2014b)

  • Wang, Z., Jiang, X., Czernuszewicz, T.J., Gallippi, C.M.: Dual-frequency ivus transducer for acoustic radiation force impulse (arfi) imaging. In: Ultrasonics Symposium (IUS), 2015 IEEE International, pp. 1–4. IEEE (2015)

  • Wang, Z., Li, S., Czernuszewicz, T.J., Gallippi, C.M., Liu, R., Geng, X., Jiang, X.: Design, fabrication, and characterization of a bifrequency colinear array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(2), 266–274 (2016a)

    Article  Google Scholar 

  • Wang, Z., Martin, K.H., Huang, W., Dayton, P.A., Jiang, X.: Contrast enhanced superharmonic imaging for acoustic angiography using reduced form-factor lateral mode transmitters for intravascular and intracavity applications. IEEE Trans. Ultrason. Ferroelectr. Freq, Control (2016b)

    Google Scholar 

  • Wang, Z., et al.: Dual-frequency ultrasound transducers for medical imaging (2016c). https://repository.lib.ncsu.edu/

  • Ward, B., Baker, A., Humphrey, V.: Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound. J. Acoust. Soc. Am. 101(1), 143–154 (1997)

    Article  Google Scholar 

  • Wu, Z., Xi, K., Zhu, B., Zheng, H., Tan, Y.: Theoretical and experimental investigation of ultrasonic transducers with dual oppositely polarized pmn-pt layers in wide frequency range. IEEE Trans. Ind. Electron. 63(4), 2313–2319 (2016)

    Article  Google Scholar 

  • Yamamizu, S., Chubachi, N.: Ultrasonic transducer composed of two piezoelectric layers with variable weighting. Jpn. J. Appl. Phys. 24(S1), 68 (1985)

    Article  Google Scholar 

  • Yen, J.T., Seo, C.H., Awad, S.I., Jeong, J.S.: A dual-layer transducer array for 3-d rectilinear imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(1), 204–212 (2009)

    Article  Google Scholar 

  • Zhang, Q., Lewin, P.A., Bloomfield, P.E.: Pvdf transducers-a performance comparison of single-layer and multilayer structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(5), 1148–1156 (1997)

    Article  Google Scholar 

  • Zhao, J.-Z., Alves, C., Snook, K., Cannata, J., Chen, W.-H., Meyer, R., Ayyappan, S., Ritter, T., Shung, K.: Performance of 50 mhz transducers incorporating fiber composite, pvdf, pbtio 3 and linbo 3. In: Ultrasonics Symposium, 1999 Proceedings. 1999 IEEE, vol. 2, pp. 1185–1190. IEEE (1999)

  • Zheng, H., Kruse, D.E., Stephens, D.N., Ferrara, K.W., Sutcliffe, P., Gardner, E.: A sensitive ultrasonic imaging method for targeted contrast microbubble detection. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5290–5293. IEEE (2008)

Download references

Acknowledgements

The contribution was funded by the National Natural Science Foundation of China (Grant nos. 51575338, 51575407, 51475427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X.L., Yan, J.P., Li, Y.F. et al. Multi-frequency ultrasound transducers for medical applications: a survey. Int J Intell Robot Appl 2, 296–312 (2018). https://doi.org/10.1007/s41315-018-0057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0057-7

Keywords

Navigation