Skip to main content
Log in

Effect of preconditioning temperature on the water absorption of concrete

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

The interest in predicting the service life of reinforced concrete structures has stimulated the development of studies on the setting of durability parameters. This indicators of durability must be easily obtained and provide reliable results about the durability of the material. This article aims to determine the effect of the preconditioning temperature on the water absorption of concrete by capillarity and by immersion. Cylinder specimens of concrete were made using Brazilian cement with 27% of pozzolanic addition and four water-cement ratios (0.42, 0.48, 0.54 and 0.60). Three drying temperatures (50, 70 and 105 °C) were established. In addition, compressive strength and electrical resistivity properties were evaluated after water absorption by immersion tests. The results show that the drying temperature impacts significantly on water absorption, compressive strength and electrical resistivity. Moreover, the intensity of this effect varies according to the water-cement ratio. The water absorption by immersion presents a good correlation with compressive strength and electrical resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Basheer L, Kropp J, Cleland DJ (2001) Assessment of the durability of concrete from its permeation properties: a review. Constr Build Mater 15(2):93–103. https://doi.org/10.1016/S0950-0618(00)00058-1

    Article  Google Scholar 

  2. Nepomuceno AA (2005) Mecanismo de transporte de fluidos no concreto. In: Isaia GC (ed) Concreto: Ensino, Pesquisas e Realizações, 3rd edn. IBRACON, São Paulo, pp 447–550

    Google Scholar 

  3. Associação brasileira de normas técnicas (2005) NBR 9778: Argamassa e concreto endurecidos—determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro

  4. Associação brasileira de normas técnicas (2012) NBR 9779: Argamassa e concreto endurecidos—determinação da absorção de água por capilaridade. Rio de Janeiro

  5. Parrott LJ (1994) Moisture conditioning and transport properties of concrete test specimens. Mater Struct 27(8):460–468. https://doi.org/10.1007/BF02473450

    Article  Google Scholar 

  6. Zhang SP, Zong L (2014) Evaluation of relationship between water absorption and durability of concrete materials. Adv Mater Sci Eng. https://doi.org/10.1155/2014/650373

    Article  Google Scholar 

  7. Medeiros MHF, Raisdorfer JW, Hoppe Filho J (2017) Influência da sílica ativa e do metacaulim na velocidade de carbonatação do concreto: relação com resistência, absorção e relação a/c. Amb Constr 17:125–139. https://doi.org/10.1590/s1678-86212017000400189

    Article  Google Scholar 

  8. Mohammadi B, Nokken M, Mirvalad S (2017) Development of in situ water absorption method: laboratory study and field validation. J Mater Civ Eng 29(10):4017182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002045

    Article  Google Scholar 

  9. Villagrán Zaccardi YA, Alderete NM, De Belie N (2017) Improved model for capillary absorption in cementitious materials: progress over the fourth root of time. Cem Concr Res 100:153–165. https://doi.org/10.1016/j.cemconres.2017.07.003

    Article  Google Scholar 

  10. Sanjuan MA, Munoz-Martialay R (1996) Oven-drying as a preconditioning method for air permeability test on concrete. Mater Lett 27:263–268. https://doi.org/10.1016/0167-577X(95)00283-9

    Article  Google Scholar 

  11. Choinska M, Khelidj A, Chatzigeorgiou G, Pijaudier-Cabot G (2007) Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cem Concr Res 37:79–88. https://doi.org/10.1016/j.cemconres.2006.09.015

    Article  Google Scholar 

  12. Bahador S, Jong HC (2007) Study on moisture transport and pore structure of pc and blended cement concrete by monitoring the weight loss during the drying process. In: 32nd conference on our world in concrete & structures, Singapore

  13. Camões A (2010) Influência da temperatura de secagem na avaliação do desempenho do betão. In: Encontro Nacional de Betão Estrutural, Lisboa

  14. Castro J, Bentz D, Weiss J (2011) Effect of sample conditioning on the water absorption of concrete. Cem Concr Compos 33:805–813. https://doi.org/10.1016/j.cemconcomp.2011.05.007

    Article  Google Scholar 

  15. Brue F, Davy CA, Skoczylas F et al (2012) Effect of temperature on the water retention properties of two high performance concretes. Cem Concr Res 42:384–396. https://doi.org/10.1016/j.cemconres.2011.11.005

    Article  Google Scholar 

  16. Kizilkanat AB, Yuzer N, Kabay N (2013) Thermo-physical properties of concrete exposed to high temperature. Constr Build Mater 45:157. https://doi.org/10.1016/j.conbuildmat.2013.03.080

    Article  Google Scholar 

  17. Venecanin SD (1990) Thermal incompatibility of concrete components and thermal properties of carbonate rocks. ACI Mater J 87(6):602–607

    Google Scholar 

  18. Khoury GA (1992) Compressive strength of concrete at high temperatures: a reassessment. Mag Concr Res 44:291–309. https://doi.org/10.1680/macr.1992.44.161.291

    Article  Google Scholar 

  19. Alarcon-Ruiz L, Platret G, Massieu E, Ehrlacher A (2005) The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem Concr Res 35:609–613. https://doi.org/10.1016/j.cemconres.2004.06.015

    Article  Google Scholar 

  20. Martys NS, Ferraris CF (1997) Capillary transport in mortars and concrete. Cem Concr Res 27:747–760. https://doi.org/10.1016/S0008-8846(97)00052-5

    Article  Google Scholar 

  21. Bagheri AR, Zanganeh H (2012) Comparison of rapid tests for evaluation of chloride resistance of concretes with supplementary cementitious materials. J Mater Civ Eng 24:1175–1182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000485

    Article  Google Scholar 

  22. Santos L (2006) Avaliação da resistividade elétrica do concreto como parâmetro para a previsão da iniciação da corrosão induzida por cloretos em estruturas de concreto. Universidade de Brasília, Dissertação

    Google Scholar 

  23. Associação brasileira de normas técnicas (2007) NBR 5739: Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro

  24. Asociación Española de Normalización y Certificación (2014) UNE 83988-2: Durabilidad del hormigón. Métodos de ensayo. Determinación de la resistividad eléctrica. Parte 2: Método de las cuatro puntas o de Wenner, 2014

  25. Rilem TC (1999) 116-PCD Permeability of concrete as a criterion of its durability. Mater Struct Constr 32:174–179. https://doi.org/10.1007/BF02481509

    Article  Google Scholar 

  26. Medeiros MHF, Raisdorfer JW, Hoppe Filho J, Medeiros-Junior RA (2017) Partial replacement and addition of fly ash in Portland cement: influences on carbonation and alkaline reserve. J Build Pathol Rehabil 2:4. https://doi.org/10.1007/s41024-017-0023-z

    Article  Google Scholar 

  27. Castro AL, Ferreira FGS (2013) Absorção de água de concretos dosados a partir do empacotamento de partículas. In: 55º Congresso Brasileiro do Concreto, Gramado

  28. Gardner DR, Lark RJ, Barr B (2005) Effect of conditioning temperature on the strength and permeability of normal- and high-strength concrete. Cem Concr Res 35:1400–1406. https://doi.org/10.1016/j.cemconres.2004.08.012

    Article  Google Scholar 

  29. CEB-FIP (1989) Diagnosis and assessment of concrete structures—state of the art report. CEB Bull 192:83–85

    Google Scholar 

  30. Medeiros-Junior RA, Lima MG (2016) Electrical resistivity of unsaturated concrete using different types of cement. Constr Build Mater 107:11–16. https://doi.org/10.1016/j.conbuildmat.2015.12.168

    Article  Google Scholar 

  31. Safiuddin M, Raman S, Zain M (2015) Effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Materials (Basel) 8:8608–8623. https://doi.org/10.3390/ma8125464

    Article  Google Scholar 

  32. Phan LT (2008) Pore pressure and explosive spalling in concrete. Mater Struct 41:1623–1632. https://doi.org/10.1617/s11527-008-9353-2

    Article  Google Scholar 

  33. Wong HS, Zobel M, Buenfeld NR, Zimmerman RW (2009) Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying. Mag Concr Res 61:571–589. https://doi.org/10.1680/macr.2008.61.8.571

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Post-Graduation Program in Civil Construction (PPGECC) of the Federal University of Parana (UFPR) for their infrastructure support for this research development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo A. Medeiros-Junior.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, S.R., Macedo, A.L.A. & Medeiros-Junior, R.A. Effect of preconditioning temperature on the water absorption of concrete. J Build Rehabil 3, 3 (2018). https://doi.org/10.1007/s41024-018-0032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-018-0032-6

Keywords

Navigation