Skip to main content

Advertisement

Log in

Effect of Alloy Composition on Microstructure and Tensile Properties of Net-Shaped Castings of Al–Zn–Mg–Cu Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, the effect of alloy composition on uniaxial tensile properties of Al–Zn–Mg–Cu alloys was investigated using seven distinctive alloy compositions. The sample alloys were manufactured as net-shaped components using the controlled diffusion solidification technology coupled with the tilt pour gravity casting process. The effect of T4 and T6 heat treatment on the castings was investigated using seven alloy compositions with the total alloying content (Zn + Mg + Cu) varying from 4.6 to 10.6 wt%. The uniaxial tensile yield strengths (0.2% proof stress) of the respective alloys were measured for T4 temper and varied between 125 and 316 MPa and for the T6 temper samples varied between 280 and 540 MPa. A quantitative image analysis was carried out to measure the eutectic phase fraction, which was compared with predictions from thermodynamic solidification simulations. The experimental phase characterization of various secondary phases/precipitates was conducted using an electron microscopy (STEM) methodology along with energy dispersive spectroscopy (EDS) results; other experimental method such as the Archimedes’ density measurements was also used to evaluate porosity content in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. L. Cheah, J. Heywood, R. Kirchain, in IEEE International Symposium on Sustainable Systems and Technology (ISSST), 2010

  2. U.S. Environmental Protection Agency, Assessment and Standards Division, Office of Transportation and Air Quality, EPA-420-D-09-003 (2009)

  3. I.J. Polmear, Light Alloys From Traditional Alloys to Nano-crystals, 4th edn. (Butterworth-Heinemann, Oxford, 2006)

    Google Scholar 

  4. J.E. Hatch, Aluminum: Properties and Physical Metallurgy (American Society for Metals (ASM), Ohio, 1984)

    Google Scholar 

  5. R. Ghiaasiaan, X. Zeng, S. Shankar, Mater. Sci. Eng. A 594, 260 (2014)

    Article  Google Scholar 

  6. R. Ghiaasiaan, S. Shankar, D. Apelian, in TMS Conference, San Diego, CA, USA, 2014

  7. S.R. Ghiaasiaan, Ph.D. Thesis, McMaster University, Hamilton, Ontario, Canada, 2015

  8. R. Ghiaasiaan, B. Shalchi-amirkhiz, S. Shankar, Mater. Sci. Eng. A 698, 206 (2017)

    Article  Google Scholar 

  9. G. Birsan, P. Ashtari, S. Shankar, Int. J. Cast Met. Res. 24(6), 378 (2011)

    Article  Google Scholar 

  10. A.A. Khalaf, S. Shankar, Metall. Mater. Trans. A 42, 2456 (2011)

    Article  Google Scholar 

  11. A.A. Khalaf, S. Shankar, J. Mater. Sci. 47, 8153 (2012)

    Article  Google Scholar 

  12. A.A. Khalaf, Acta Mater. 103, 301 (2016)

    Article  Google Scholar 

  13. A. Deschamps, Y. Breâchet, Acta Mater. 47(1), 293 (1999)

    Article  Google Scholar 

  14. M.J. Starink, S.C. Wang, Acta Mater. 51, 5131 (2003)

    Article  Google Scholar 

  15. M. Dixit, R.S. Mishra, K.K. Sankaran, Mater. Sci. Eng. A 478, 163 (2008)

    Article  Google Scholar 

  16. L.F. Mondolfo, Metall. Rev. 153, 94–95 (1971)

    Google Scholar 

  17. H. Loffler, I. Kovacs, J. Lendvai, J. Mater. Sci. 18, 2215 (1983)

    Article  Google Scholar 

  18. M.D. David, R.D. Foley, J.A. Griffin, C.A. Monroe, Int. J. Metalcast. 10, 1–2 (2016)

    Article  Google Scholar 

  19. M.D. David, R.D. Foley, J.A. Griffin, Int. Metalcast. 10, 2 (2016)

    Article  Google Scholar 

  20. H. Akhyar, Husaini, Int. Metalcast. 10, 452 (2016)

    Article  Google Scholar 

  21. J.D. Robson, P.B. Prangnell, Acta Mater. 49, 599 (2001)

    Article  Google Scholar 

  22. M.F. Ibrahim, G.H. Garza-Elizondo, A.M. Samuel, F.H. Samuel, Int. J. Metalcast. 10, 264 (2016)

    Article  Google Scholar 

  23. Pandat thermodynamic simulation software with PanAl2014 database; Computherm LLC. http://www.computherm.com/. Accessed Dec 2014.

  24. Eberbach (Corporation, ANN Michigan) equipped with an image processing software: NIS BR 3.10 image acquisition system

  25. ImageJ, Image processing and Analysis in Java, 1.42q Java 1.6.0 (32 bit)

  26. ASM Handbook committee, Metals Handbook, Metallographic, Structure and Phase diagram, vol. 8, 8th edn. (American Society for Metals, Milton Park, 1973)

    Google Scholar 

  27. N.E. Mazibuko, U.A. Curle, Mater. Sci. Forum 690, 343 (2011)

    Article  Google Scholar 

  28. F. Czerwinski, Magnesium Injection Molding (Springer, Berlin, 2008), pp. 280–281

    Book  Google Scholar 

  29. ASTM B328-96(2003)e1, Standard Test Method for Density, Oil Content, and Interconnected Porosity of Sintered Metal Structural Parts and Oil-Impregnated Bearings (Withdrawn 2009). (ASTM International, West Conshohocken, 2003). https://doi.org/10.1520/b0328-96r03e01. www.astm.org. Accessed Dec 2014.

  30. D.A. Porter, Kenneth E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (Taylor & Francis Group, Milton Park, 2009)

    Google Scholar 

  31. R.L. Fleischer, Acta Metall. 11, 203 (1963)

    Article  Google Scholar 

  32. N.F. Mott, F.R.N. Nabarro, Phys. Soc. Lond. 1, 271 (1984)

    Google Scholar 

  33. R. Labusch, Phys. Status Solidi 41, 659 (1970)

    Article  Google Scholar 

  34. D.K. Xu, N. Birbilis, P.A. Rometsch, Corros. Sci. 54, 17 (2012)

    Article  Google Scholar 

  35. W. Kurz, D.J. Fisher, (Trans Tech Publications, Switzerland-Germany-UK-USA, 1986)

  36. T.Y. Ahn, J.G. Jung, E.J. Baek, S.S. Hwang, K. Euh, J. Alloys Compd. 701(15), 660 (2017)

    Article  Google Scholar 

  37. F. Jiang, H.S. Zurob, G.R. Purdy, H. Zhang, Mater. Charact. 117, 47 (2016)

    Article  Google Scholar 

  38. I. Kalem, C. Hamilton, S. Dymek, Mater. Des. 60, 295 (2014)

    Article  Google Scholar 

  39. W. Huo, L. Hou, Y. Lang, H. Cui, L. Zhuang, J. Zhang, Mater. Sci. Eng. A 626, 86 (2015)

    Article  Google Scholar 

  40. E.O. Hall, Proc. Phys. Soc. Lond. 643, 747 (1951)

    Article  Google Scholar 

  41. N.J. Petch, J. Iron Steel Inst. Lond. 173, 25 (1953)

    Google Scholar 

  42. G.E. Dieter, Mechanical Metallurgy (McGraw Hill Book Company (UK) limited, New York, 1988)

    Google Scholar 

  43. J.D. Embury, D.J. Lloyd, T.R. Ramachandran, in Aluminum Alloys—Contemporary Research and Applications, (Treatise on Materials Science and Technology, vol. 31, ed. by A.K. Vasudevan, R.D. Doherty (Academic Press Inc, Boston, 1989)

    Google Scholar 

  44. M. Lalpoor, D.G. Eskin, L. Katgerman, Mater. Sci. Eng. A 497, 186 (2008)

    Article  Google Scholar 

  45. D.H. Kirkwood, Mater. Des. 21, 387 (2000)

    Article  Google Scholar 

  46. M.C. Flemings, Metall. Mater. Trans. B 22, 269 (1991)

    Article  Google Scholar 

  47. Mill Certificate, Al 7050 Product data sheet (ALCOA worldwide, 2013). http://www.alcoa.com. Accessed Dec 2014.

  48. ASM International, ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, Materials Park, 1990)

    Google Scholar 

  49. V.V. Ravikumar, S. Kumaran, Int. J. Miner. Metall. Mater. 24(2), 179 (2017)

    Article  Google Scholar 

  50. W.W. Wang, B.B. Jia, S.J. Luo, Trans. Nonferrous Met. Soc. China 19, 337 (2009)

    Article  Google Scholar 

  51. Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, H. Liu, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 14–3, 246 (2007)

    Google Scholar 

  52. A.J. Morris, R.F. Robey, P.D. Couch, E. De los Rios, Mater. Sci. Forum 242, 181 (2007)

    Article  Google Scholar 

  53. X. Peng, Q. Guo, X. Liang, Y. Deng, Y. Gu, G. Xu, Z. Yin, Mater. Sci. Eng. A 688(14), 146 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to the Natural Sciences and Engineering Research Council (NSERC) of Canada for their financial support through the Discovery Grant programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanth Shankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiaasiaan, R., Shankar, S. Effect of Alloy Composition on Microstructure and Tensile Properties of Net-Shaped Castings of Al–Zn–Mg–Cu Alloys. Inter Metalcast 13, 300–310 (2019). https://doi.org/10.1007/s40962-018-0254-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-018-0254-z

Keywords

Navigation