Skip to main content
Log in

Controlled one step thinning and doping of two-dimensional transition metal dichalcogenides

一步法可控减薄和掺杂二维过渡金属硫族化合物

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have drawn intensive attention due to their ultrathin feature with excellent electrostatic gating capability, and unique thickness-dependent electronic and optical properties. Controlling the thickness and doping of 2D TMDCs are crucial toward their future applications. Here, we report an effective HAuCl4 treatment method and achieve simultaneous thinning and doping of various TMDCs in one step. We find that the HAuCl4 treatment not only thins thick MoS2 flakes into few layers or even monolayers, but also simultaneously tunes MoS2 into p-type. The effects of various parameters in the process have been studied systematically, and an Au intercalation assisted thinning and doping mechanism is proposed. Importantly, this method also works for other typical TMDCs, including WS2, MoSe2 and WSe2, showing good universality. Electrical transport measurements of field-effect transistors (FETs) based on MoS2 flakes show a big increase of On/Off current ratios (from 102 to 107) after the HAuCl4 treatment. Meanwhile, the subthreshold voltages of the MoS2 FETs shift from −60 to +27 V after the HAuCl4 treatment, with a p-type doping behavior. This study provides an effective and simple method to control the thickness and doping properties of 2D TMDCs, paving a way for their applications in high performance electronics and optoelectronics.

摘要

二维过渡金属硫族化合物(TMDCs)具有超薄结构, 且其电学、 光学性质对厚度具有很强的依赖性, 近年来备受研究者们的广泛关注. 如何控制TMDCs的厚度和掺杂, 是其未来应用的关键所在. 本文提出了一种简单高效的HAuCl4处理方法, 实现了TMDCs的一步法可控减薄和掺杂, 可以制备出薄层及单层TMDCs, 同时实现了对MoS2的可控p型掺杂. 本文系统研究了关键实验参数的影响, 并基于此提出了金插层辅助减薄和掺杂TMDCs的机理. 研究还发现该方法具有普适性, 可以实现对多种TMDCs的可控减薄, 包括MoSe2, WS2, WSe2. 电学测试表明, HAuCl4处理后的MoS2纳米片具有更高的场效应晶体管开关比, 其阈值电压向正电压方向偏移. 本工作提出的这种控制二维TMDCs材料厚度和掺杂的方法, 对其未来在高性能电子和光电器件的应用具有一定参考价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai Z, Liu B, Zou X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  4. Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117: 6225–6331

    Article  CAS  Google Scholar 

  5. Desai SB, Madhvapathy SR, Sachid AB, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102

    Article  CAS  Google Scholar 

  6. Ross JS, Klement P, Jones AM, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotech, 2014, 9: 268–272

    Article  CAS  Google Scholar 

  7. Frisenda R, Molina-Mendoza AJ, Mueller T, et al. Atomically thin p–n junctions based on two-dimensional materials. Chem Soc Rev, 2018, 47: 3339–3358

    Article  CAS  Google Scholar 

  8. Dobusch L, Schuler S, Perebeinos V, et al. Thermal light emission from monolayer MoS2. Adv Mater, 2017, 29: 1701304

    Article  Google Scholar 

  9. Liu J, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage. Sci China Mater, 2016, 59: 459–474

    CAS  Google Scholar 

  10. Wachter S, Polyushkin DK, Bethge O, et al. A microprocessor based on a two-dimensional semiconductor. Nat Commun, 2017, 8: 14948

    Article  CAS  Google Scholar 

  11. Scheuschner N, Ochedowski O, Kaulitz AM, et al. Photoluminescence of freestanding single- and few-layer MoS2. Phys Rev B, 2014, 89: 124506

    Article  Google Scholar 

  12. Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805–136811

    Article  Google Scholar 

  13. Desai SB, Madhvapathy SR, Amani M, et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv Mater, 2016, 28: 4053–4058

    Article  CAS  Google Scholar 

  14. Cheiwchanchamnangij T, Lambrecht WRL. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B, 2012, 85: 205302

    Article  Google Scholar 

  15. Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011, 11: 5111–5116

    Article  CAS  Google Scholar 

  16. Varghese A, Sharma CH, Thalakulam M. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials. Nanoscale, 2017, 9: 3818–3825

    Article  CAS  Google Scholar 

  17. Wang D, Wang Y, Chen X, et al. Layer-by-layer thinning of two-dimensional MoS2 films by using a focused ion beam. Nanoscale, 2016, 8: 4107–4112

    Article  CAS  Google Scholar 

  18. Liu N, Kim P, Kim JH, et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano, 2014, 8: 6902–6910

    Article  CAS  Google Scholar 

  19. Li HM, Lee D, Qu D, et al. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat Commun, 2015, 6: 6564

    Article  CAS  Google Scholar 

  20. Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2via chemical doping. Nano Lett, 2013, 13: 5944–5948

    Article  CAS  Google Scholar 

  21. Tarasov A, Zhang S, Tsai MY, et al. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv Mater, 2015, 27: 1175–1181

    Article  CAS  Google Scholar 

  22. Zhang X, Qiao XF, Shi W, et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from mono-layer, multilayer to bulk material. Chem Soc Rev, 2015, 44: 2757–2785

    Article  CAS  Google Scholar 

  23. Chen KC, Chu TW, Wu CR, et al. Atomic layer etchings of transition metal dichalcogenides with post healing procedures: Equivalent selective etching of 2D crystal hetero-structures. 2D Mater, 2017, 4: 034001

    Article  Google Scholar 

  24. Magda GZ, Pető J, Dobrik G, et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci Rep, 2015, 5: 14714

    Article  CAS  Google Scholar 

  25. Luo Y, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun, 2019, 10: 269

    Article  Google Scholar 

  26. Dhall R, Neupane MR, Wickramaratne D, et al. Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling. Adv Mater, 2015, 27: 1573–1578

    Article  CAS  Google Scholar 

  27. Wi S, Kim H, Chen M, et al. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano, 2014, 8: 5270–5281

    Article  CAS  Google Scholar 

  28. Gao J, Kim YD, Liang L, et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv Mater, 2016, 28: 9735–9743

    Article  CAS  Google Scholar 

  29. Sun L, Zheng J. Optical visualization of MoS2 grain boundaries by gold deposition. Sci China Mater, 2018, 61: 1154–1158

    Article  CAS  Google Scholar 

  30. Siao MD, Shen WC, Chen RS, et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat Commun, 2018, 9: 1442

    Article  CAS  Google Scholar 

  31. Kiriya D, Zhou Y, Nelson C, et al. Oriented growth of gold nanowires on MoS2. Adv Funct Mater, 2015, 25: 6257–6264

    Article  CAS  Google Scholar 

  32. Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt Express, 2013, 21: 4908–4916

    Article  CAS  Google Scholar 

  33. Cunningham PD, Hanbicki AT, McCreary KM, et al. Photo-induced bandgap renormalization and exciton binding energy reduction in WS2. ACS Nano, 2017, 11: 12601–12608

    Article  CAS  Google Scholar 

  34. Jin Y, Keum DH, An SJ, et al. A van der Waals homojunction: Ideal p-n diode behavior in MoSe2. Adv Mater, 2015, 27: 5534–5540

    Article  CAS  Google Scholar 

  35. Shaw JC, Zhou H, Chen Y, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res, 2015, 7: 511–517

    Article  Google Scholar 

  36. Xia J, Huang X, Liu LZ, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6: 8949–8955

    Article  CAS  Google Scholar 

  37. Liu B, Ma Y, Zhang A, et al. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano, 2016, 10: 5153–5160

    Article  CAS  Google Scholar 

  38. Zhao W, Ghorannevis Z, Chu L, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 2013, 7: 791–797

    Article  CAS  Google Scholar 

  39. Liu B, Köpf M, Abbas AN, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 2015, 27: 4423–4429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (51722206 and 11674150), the Youth 1000-Talent Program of China, the Economic, Trade and Information Commission of Shenzhen Municipality for the “2017 Graphene Manufacturing Innovation Center Project” (201901171523), Shenzhen Basic Research Project (JCYJ20170307140956657 and JCYJ20160613160524999), Guangdong Innovative and Entrepreneurial Research Team Program (2017ZT07C341 and 2016ZT06D348), and the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ren J convinced the idea and performed most experiments under the guidance from Liu B. Teng C helped to test the electronic performance of FETs. Cai Z and Liu J helped to conduct some materials characterization. Pan H fabricated devices under guidance of Zhao Y. Liu B directed the research and supervised the project. Ren J and Liu B wrote the mansucript with feedbacks from other authors.

Corresponding author

Correspondence to Bilu Liu  (刘碧录).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Jie Ren is currently a Master student in the Low Dimensional Materials and Device Lab under the supervision of Prof. Bilu Liu at Tsinghua-Berkeley Shenzhen Institute, Tsinghua University. Her research topic is about the modification and use of two-dimensional transition metal dichalcogenides for electronics.

Bilu Liu obtained BSc degree from the University of Science and Technology of China (2006), and PhD from the Institute of Metal Research, Chinese Academy of Sciences (2012). He worked in the University of Southern California as postdoctoral researcher and later research assistant professor (2012–2016). He is now an associate professor at Tsinghua-Berkeley Shenzhen Institute, Tsinghua University. His research interests cover chemistry and materials science of low-dimensional materials with emphasis on carbon and 2D materials, and their applications.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Teng, C., Cai, Z. et al. Controlled one step thinning and doping of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62, 1837–1845 (2019). https://doi.org/10.1007/s40843-019-9461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9461-8

Keywords

Navigation