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Abstract
Purpose of Review We review and provide comment on
issues of scale in ecological studies in the context of two
paradigms used to define landscapes: the patch-mosaic and
gradient models. Our intent is to offer guidance for structuring
habitat-selection models with examples of how scale, autocor-
relation, measurement error, and choice of patch-mosaic or
gradient models, analysis methods, and covariates by the
researcher can influence inferences regarding landscape–
organism interactions.
Recent Findings Methods that allow the organism or data to
define the grain and extent of scale of the study offer promise
by reducing subjectivity in choices of scale. Ultimately, we
recommend that the ecological phenomenon of interest should
shape the selection of models defining landscape–organism
interaction; however, the choice of model remains with the
researcher and is dependent on the research question and the
availability of data. Clearly, both the patch-mosaic and gradi-
ent models can provide reasonable frameworks for study, and
multiple scales that draw from both paradigms often may be
most appropriate.
Summary Scale has been identified as a crucial feature of
landscape ecology, yet scale as a paradigm has offered little
direction for ecologists. Likewise, debate contrasting gradient

models and patch-mosaic models offers few new insights
on how ecologists might decide on an appropriate scale
for analysis of organism distribution or habitat selection.
Various ecological processes influence organisms at different
scales and modeling approaches need to be able to accommo-
date multiple scales simultaneously, which may vary by land-
scape structure and movement ecology. The continuum of
scales and combinations of both gradient and patch-mosaic
landscapes provides the necessary array of structures that
can be used to construct combinations of landscape covariates
that coincide with the ecology of the organism across scales.
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Introduction

Several of the foundations of spatial ecology were conceptu-
alized and modeled for a landscape consisting of patches.
These included the ideal free distribution [1], metapopulations
[2], and foraging theory such as the marginal value theorem
[3]. The patch concept made the mathematical theory simple
and tractable, although this approach reduced and simplified
much of the spatial variation. Landscape ecologists have
continued the reliance on concepts of the patch with the
patch-mosaic model (PMM) [4, 5]. Users of the PMM
assumed that the distribution of organisms can be explained
adequately by discrete patches, or polygons, with aggregated
and homogenous characteristics. For example, one might use
aerial photographs to delineate discrete patches of vegetation
type for use in habitat-selection analyses. The early formation
of the PMM might have been as much based on adherence to
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the patch concept as on the limited availability and irrelevancy
of fine-grained spatial data (both telemetry and environmen-
tal) for analyses. The shortcoming of the PMM was that in
many circumstances it did not capture the environmental
complexity inherent in patches and ecological systems.
Critics claimed that delineation of patches for the PMM often
could be subjective and that it oversimplified systems by
offering an organism being modeled only a binary choice of
whether they use or do not use a patch.

To remedy these deficiencies, McGarigal and Cushman [6,
7] proposed a gradient model (GM) of landscape structure.
Instead of representing landscapes as patches of a particular
type, the GM represented environmental conditions along a
continuous scale. Whereas the practitioner of the PMM
decides the cut-off values and therefore spatial extent of
patches, the GM eliminates this burden and lessens the bias
in analysis by allowing the organism to delineate the extent of
patches through observed use. One might suppose that the
advent of highly accurate and precise global positioning sys-
tem (GPS) radiotelemetry at fine temporal scales, combined
with remote-sensing technology [8], reinforced the relevance
of the GM paradigm for asking more fine-grained questions.
Technological advances allowed researchers to estimate vari-
ables such as greenness [9] or vegetation height and cover [10]
continuously and over large areas, thereby facilitating a more
dynamic characterization of habitats suitable for organisms.

Despite these advances, both the PMM and GM remain
relevant conceptual frameworks for the analysis and charac-
terization of landscape–organism interactions. Both provide
context-specific advantages that depend on the nature of the
landscape of interest and environmental covariates available.
For example, although organizing a landscape into patches or
a classified map can erode information that exists at finer
spatial scales, or create discontinuities at larger scales, vege-
tation patches truly exist even though mapping of vegetation
communities might simplify the actual spatial heterogeneity
[11]. Patches often make sense for characterizing patterns of
vegetation or landscape heterogeneity, and these patches can
be important for characterizing how organisms are distributed
on landscapes [12]. In a practical sense, the PMM also pro-
vides for an intuitive understanding of landscape variation,
and lends itself well to visualization. This can be of great
importance for application, e.g., foresters map forest stands
of similar composition that are then managed as a unit.
However, patches make less sense when considering those
environmental covariates that are best measured with contin-
uous metrics such as elevation, distance to certain features, or
predation-risk values [7, 8].

Here, we organize what we believe to be key consider-
ations for buildingmodels of landscape–organism interactions
and suggest that the appropriate framework rests along a con-
tinuum and often requires analysis involving multiple scales
and a mix of the GM and PMM. Deciding on the appropriate

model structure to investigate a given ecological question
requires thoughtful consideration of several aspects of a study.
We do not believe that it is possible to prescribe a priori the
necessary components of an effective spatial model of land-
scape–organism interactions but we know that the following
components can have major influence and warrant attention:
landscape organization, autocorrelation, measurement error,
and the influence of decisions made by the researcher.

How Do We Organize and Define Landscapes
to Study Organisms?

Our perception of landscape–organism interactions harks back
to early definitions of ecology, i.e., seeking an understanding
of the distribution and abundance of organisms [13]. For
animals, movement and habitat selection (space use) are
fundamental mechanisms that result in patterns of distribution
[14]. Various environmental variables that contribute to space
use can be relevant at different spatial scales, which in turn
requires flexible characterization of habitats [15, 16•, 17•].
Models of habitat selection, such as resource selection
functions [18], can readily accommodate predictor covariates
measured at a variety of scales drawing from either the PMM
or GM.

Many methods exist for characterizing landscapes and
the choice of scale can substantially influence results [19•].
Complex landscape–organism interactions frame the relevant
ecological scale, but, even more importantly, also the ecolog-
ical phenomenon of interest. The onus of determining
what level of information loss is acceptable rests with the
researcher, and begins with the proper formulation of the
research question.

We suggest that both the PMM and GM have similar short-
comings resulting in a loss of information. Indeed, any spatial
characterization of an environment will impart some level of
homogenization, and an important consideration for the
researcher is what degree of loss of heterogeneity is accept-
able. Aggregating spatial information into homogeneous
patches under the PMM results in a greater loss of information
regarding landscape heterogeneity than under a GM frame-
work, although loss of information under a GM framework
also occurs. Depending on scale and sampling capability,
researchers aggregate information in the GMbased on the grid
resolution for maps (i.e., cell or pixel size), sampling intensity,
and observation limits [11]. Therefore, in many cases the
application of GM is essentially a finer-resolution use of the
PMM, and we reiterate that the appropriate framework rests
along this continuum and often features multi-scale analysis
[16•, 20].

The potential ramifications from the aggregation of spatial
information extend beyondmore commonplace consequences
such as the reduction of vegetation classes in a patch.
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Simplifying a landscape into the PMM destroys some struc-
tural attributes of the landscape. For example, although a
researcher canmeasure the distance of an organism to the edge
of a homogenous patch, there is a loss of information about the
gradient of environmental heterogeneity leading to the edge
[21]. A nice example is from the northern spotted owl (Strix
occidentalis caurina), which avoids ‘hard’ edges such as those
created by timber harvest but selects ‘feathered’ edges created
by natural processes such as fire [22]. In context of estimating
a habitat-selection model such as a resource-selection function
for owls, it might be best to use fine-grained spatial data (GM)
that facilitates characterization of edge conditions. Yet, patch
structure remains useful for defining old growth stands that are
essential components of spotted owl habitats and necessary
for forest management.

In other instances, aggregation into patches at a fine scale is
defensible to identify foraging patches. In elk (Cervus
elaphus), foraging occurs in small patches of vegetation
followed by larger movements between foraging patches
within the home range [23]. However, seasonal ranges are
shaped at much larger scales. Elk move many kilometers
between summer and winter ranges, across which gradients
of road density influence habitat selection [24, 25]. Likewise,
aggregation into patches can be useful for modeling anthro-
pogenic disturbances (e.g., forestry cutblocks) and habitat
management regimes of landscapes. For example, the use of
patches by caribou (Rangifer tarandus) has been linked to
both the intrinsic characteristics of a patch and those of the
surrounding matrix [26]. In this case, the use of the PMM
incorporates analysis at different scales, which is important
for species that respond to disturbance at multiple scales
[27]. The PMM also provides results (e.g., patch sizes neces-
sary for habitat use) that can be directly applied to land and
resource management.

Organizing and defining landscapes involves aggregating
spatial data into bins or zones. This can trigger the modifiable
areal unit problem (MAUP), which remains an unresolved
problem in landscape ecology. In short, MAUP occurs when
the interpretation of results varies according to scale [28, 29].
For example, a response variable can show a negative rela-
tionship with a predictor variable at a fine scale and a positive
relationship at coarser scales [30]. This is not only an issue for
spatial scale, but for temporal scales as well (Modifiable
Temporal Unit Problem [MTUP]) [31]. We suspect that the
MAUP is more prevalent in most map classifications, such as
the PMM [32]; however, to date this has not been tested. One
potential solution to the MAUP is to incorporate random
effects of space into a mixed-effects model, especially if the
factors leading to spatial heterogeneity are unknown [30].
However, this is not a one-size-fits-all solution, because the
number and size of areas represented by random effects still
requires careful consideration, and this solution would not
apply to the MTUP [30].

To recap, organizing and defining landscapes, e.g., creating
maps, invariably requires choices of scale and these choices
influence our ability to characterize the spatial ecology of
organisms. To avoid the MAUP we believe that the safest
scales will be those anchored with some form of biological
motivation, e.g., estimating movement-constrained habitat
selection models [25], or within the bounds of the animal’s
home range [18]. Yet, political boundaries or other manage-
ment constraints often impose scales or patches that compro-
mise our ability to study spatial patterns driven by ecological
processes.

Autocorrelation

Finer-resolution data across spatiotemporal scales are now
widely available thanks to ever-increasing technological ad-
vancements [33], but these data often are correlated in space
and time, violating statistical inference assumptions [29].
Landscapes by their very nature are autocorrelated. After all,
when we plot the spatial autocorrelogram, we can estimate
patch size at the spatial lag where the autocorrelation goes to
zero [34], thus the autocorrelation function of a GM landscape
can be used as an objective method for creating a map of
PMM. Important landscape structure can be discerned from
the range of the autocorrelation of environmental covariates
[35, 36]. The PMM will always increase spatial autocorrela-
tion above that of the GM by aggregating spatial units into
patches [11]. In context of habitat modeling, spatial autocor-
relation will result in variances being underestimated even
though the estimated models might be unbiased [37]. This
creates potential problems for statistical inference, although
this problem tends to be lessened in landscape ecology be-
cause the statistical paradigm is usually one of developing
weight of evidence instead of Popperian hypothesis testing.
Comparing alternative models using information-theoretic
metrics such as the Akaike Information Criteria has become
more common than trying to estimate P-values. Nevertheless,
we still need some way to evaluate whether our models have
utility for prediction or at least explaining variability. Whether
using GM or PMM, we might measure a model’s predictive
ability by cross validation [38], and several alternative ap-
proaches are available. We could, for instance, estimate a
model for habitat selection that is based on autocorrelated
landscape attributes and then examine residuals from this
model. If these landscape attributes were the source of the
autocorrelation, the residuals should lack spatial autocorrela-
tion and we can conclude that the autocorrelation simply
reflects the underlying landscape pattern [39]. Alternatively,
we might be interested in the magnitude of model coefficients
to evaluate the existence of selection for or against a landscape
attribute. Because of autocorrelation, our estimates of
variance associated with these coefficient estimates will be
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underestimated [11] and this will be more serious for PMM
than for GM. Thus, we could expect that confidence intervals
for those coefficients might not overlap zero even though in
reality there is no significant effect, i.e., a type I error. Variance
inflation methods exist, such as sandwich estimators or
Newey-West estimators, which can be used to fix this problem
[40, 41], or modeling approaches can include autocorrelation
structures [42]. Thus autocorrelation remains a consideration
when building effective models of landscape–organisms
interactions, but seldom is it likely to be a major constraint.

Measurement Error

While landscape ecologists have become cognizant of poten-
tial issues arising from autocorrelation, problems stemming
from measurement error can be less obvious. Measurement
error adds noise, uncertainty, can influence effect size [43],
and might contribute to the MAUP [28]. With small sample
sizes in particular, measurement error can increase the magni-
tude of the observed effect resulting in a significant relation-
ship (type I error), whereas with larger samples the effect size
would have been much smaller [43]. Measurement error
is present in any remotely collected data, including data
commonly used to evaluate species–habitat relationships such
as GPS radiotelemetry data and habitat variables commonly
derived in a geographic information system (GIS; e.g.,
landcover type, digital-elevations models, normalized differ-
ence vegetation index, etc.). Measurement error can affect
both precision and accuracy [29]. Researchers often assume
that poor precision should not inherently lead to bias; howev-
er, past research illustrates that this assumption is not always
true [44]. Indeed, poor precision itself can result in attenuation
bias, which can lead to incorrect conclusions [44, 45]. That
said, in the case of radiotelemetry, measurement error associ-
ated with fix success is often predictable, and consequently
tools exist to overcome this bias in habitat selection modeling
using statistical corrections [33, 46–49].

Higher-resolution data often used in the GM approach, e.g.,
from remote sensing, are not necessarily precise, and there can
be substantial measurement error associated with such data
layers [50]. Misclassification of habitats can significantly
affect results using both the GM and PMM, with selection
coefficients in species–habitat models providing an example
[50, 51]. These types of errors may be compounded in the
PMM, where aggregation into larger homogenous patches
can incorporate multiple errors or misclassifications [52]. In
general, rare habitats are more subject to type II error (false
negatives), while common habitat types are more subject to
type I errors (false positives) [48]. Again, these errors can
be exacerbated by broader homogenization in the PMM.
Linear features such as roads, trails, and power lines can be
particularly problematic when coupled with radiotelemetry

relocation data; linear features might be quite common on
the landscape, but animal use of these features might be gross-
ly underrepresented because of measurement error [53, 54].

Although the homogenization of the PMM can in some
cases compound issues of measurement error [52], awareness
of these shortcomings by the researcher could help to mitigate
adverse effects. In contrast, the finer resolution of the GM
could lead users to, knowingly or not, ignore measurement
error associated with covariates. For example, we may con-
sider a satellite imagery land-cover classification with accura-
cy above 80% adequate to use in our analysis, but might not
consider what error this introduces into results [55]. Habitat-
selection models drawing from multiple attributes of the land-
scape actually modulate these errors so that extrapolations to
population dynamics may not be unreliable [56].

Choices Made When Building Models

Aside from errors that may be inherent in remotely sensed data
from measurement error, the researcher can further introduce
biases in data layers through selection of resolution (grain) and
domain (extent). The grain and extent of the data used will affect
the perceived animal response to human-imposed landscape
change [57], and so we should seek to minimize these effects.
Often, researchers choose grain and extent subjectively, compli-
cating comparisons between ecological studies [15]. The scale
of spatial layers should match the data or processes of interest
[58, 59], and movement ecology can help us to identify those
scales [28, 60]. For example, researchers should not couple im-
precise Argos satellite data with fine-scale habitat characteristics
in a habitat-selection model [44]—similarly, the decision to use
the PMM or GM should depend on the question at hand.

In the case of animals, movement across scales is non-
arbitrary, reinforcing that habitat selection requires consider-
ation of multiple scales [61]. When studying animal behavior,
it is often useful or necessary for appropriate inference to
capture the perception of the landscape by the organism
[16•]. In habitat-selection models, space use of an animal is
contrasted with what is available [40, 62]. For the most part,
the grain, or resolution, of availability influences the adequacy
of sampling landscape variation, while the extent dictates
which behaviors are captured and missed [62]. The resolution
of habitat attributes can shape the observed pattern in selection
with variation in what is deemed available (termed the func-
tional response in habitat selection); specifically, smaller grain
sizes show a stronger signal for a relationship between selec-
tion and availability [63] and this is true for either GM or
PMM. Further, changing the extent of the area sampled to
characterize availability can alter observed patterns of selec-
tion even though the resolution of availability and the
used domain remain constant [17•]. Availability extent can
be delineated using observed movement behavior [60].
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Movement and selection response to a habitat feature, (e.g., human
disturbance) can be modeled together, corresponding to the reality
of an organism responding to their environment [25, 42]. The
researcher invariably must attempt to think like the study animal;
for example, does the animal perceive a clearcut itself (PMM) or
does the animal perceive the cover afforded by the dense vegeta-
tion associated with the clearcut that could be measured on a
gradient? When inferring selection behavior, the pivotal decision
is what the animals perceive to be available [64]. However, instead
of being viewed as solely a challenge or caution, the flexibility in
availability domains provides freedom for researchers to study
wildlife behavior that acts simultaneously across scales [16•].

This notion is important because wildlife behavior at one scale
is not isolated from its behavior at a different scale. Observed
behavioral responses at different scales are inextricably linked
and occurring simultaneously as animals move through space
and time. For example, the strategies of prey in response to pre-
dation risk (natural and human) include coarse and fine-scale
variation in the use of the landscape, from seasonal migrations
to movements into cover within hours [17•, 25, 65, 66]. Whether
the multiple components that influence the ecology of scale are
best tied to PMM or GM depends more on the structure of the
landscape than the process of habitat selection or movement.

The scale of behavior might occur within a hierarchy, with
coarser scales regulating behavior at finer scales and factors
most limiting to animal fitness enacting their influence at the
coarsest scales [67, 68]. The scale-dependent hierarchy of land-
scape–organism interaction has been documented in light of
predation risk and human disturbance [27, 69]. Conversely,
the scaling-up hypothesis suggests that fine-scale drivers are
linked to the observations occurring at coarse scales [70]. A
scaling up, or scale-independent, pattern in selection behavior
has been observed in recent literature that employ a multi-scale
comparative approach when studying risk avoidance and re-
source selection [17•, 71], indicating that this concept is deserv-
ing of further exploration. Likewise, mixing PMM and GM
approaches to characterize the landscape can allow better con-
ceptualization of how animals perceive their environment.

Conclusion

How ecological patterns and processes relate to the scale at
which we study them has long been of interest to ecologists
[72]. More recently, authors have advocated for multi-scale
research and methods that emphasize or allow for the behavior
of an organism to identify biologically relevant scales.
Observing the variation in the behavior of an organism at mul-
tiple scales, and with different resources availability,
provides opportunity for the data to inform the influence of
a landscape feature [73–75]. Likewise, characterizing land-
scapes with a mix of variables drawn from both GM and
PMM gives us the flexibility to accommodate the complexity

of spatial ecology. Despite the longstanding discussion of scale
[76], a review conducted by McGarigal et al. [16•] highlights
the paucity of multi-scale research in habitat-selection studies.
Further, the decision of scale might be perpetually discretionary
due the complexity of the issue. Given this, researchers should
clearly present the rationale regarding selection of scale [16•].
However, only 29% of all studies (45% of mammal studies)
provide biological reasons for the choice [77].

We emphasize that in many cases the ‘appropriate scale’ for
ecological studies is in fact a range of scales. A recent study
tested variation in models of cougar (Puma concolor) habitat
selection by creating 2500 models with variables defined at dif-
ferent grains, from different sources, and as either continuous
(GM) or categorical (PMM). The best performingmodels tended
to have a mix of patches and gradients and used finer grain,
although more studies will be necessary to determine if the same
effects are found in other model types and ecosystems [19•].
Habitat selection during dispersal often demonstrates a mix of
scales [78, 79] or optimization at intermediate scales [80, 81].

Though it is appealing to search for general methods to
define ‘appropriate scales’, environmental complexity and
the influence of the research interest on appropriate scale
render generalities elusive.We argue that the selection of scale
should be driven primarily by a well-defined question [82].
The choice of an appropriate landscape framework will then
depend on this question and the format of covariates.
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