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Abstract

Purpose of Review Terrestrial ecosystems in the Arctic-Boreal region play a crucial role in the global carbon cycle as a carbon
sink. However, rapid warming in this region induces uncertainties regarding the future net carbon exchange between land
and the atmosphere, highlighting the need for better monitoring of the carbon fluxes. Solar-Induced chlorophyll Fluorescence
(SIF), a good proxy for vegetation CO? uptake, has been broadly utilized to assess vegetation dynamics and carbon uptake
at the global scale. However, the full potential and limitations of SIF in the Arctic-Boreal region have not been explored.
Therefore, this review aims to provide a comprehensive summary of the latest insights into Arctic-Boreal carbon uptake through
SIF analyses, underscoring the advances and challenges of SIF in solving emergent unknowns in this region. Additionally,
this review proposes applications of SIF across scales in support of other observational and modeling platforms for better
understanding Arctic-Boreal vegetation dynamics and carbon fluxes.

Recent Findings Cross-scale SIF measurements complement each other, offering valuable perspectives on Arctic-Boreal
ecosystems, such as vegetation phenology, carbon uptake, carbon-water coupling, and ecosystem responses to disturbances.
By incorporating SIF into land surface modeling, the understanding of Arctic-Boreal changes and their climate drivers can
be mechanistically enhanced, providing critical insights into the changes of Arctic-Boreal ecosystems under global warming.
Summary While SIF measurements are more abundant and with finer spatiotemporal resolutions, it is important to note that
the coverage of these measurements is still limited and uneven in the Arctic-Boreal region. To address this limitation and further
advance our understanding of the Arctic-Boreal carbon cycle, this review advocates for fostering a SIF network providing long-
term and continuous measurements across spatial scales. Simultaneously measuring SIF and other environmental variables in
the context of a multi-modal sensing system can help us comprehensively characterize Arctic-Boreal ecosystems with spatial
details in land surface models, ultimately contributing to more robust climate projections.
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Background

Terrestrial ecosystems in the Arctic-Boreal region play a
critical role in the global carbon cycle and climate change
mitigation as a significant net carbon sink through vege-
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tation photosynthesis [1, 2]. Based on the Coupled Model
Intercomparison Project Phase 6 (CMIP6; [3]), a tipping
point of the carbon cycle is projected with reduced net sink
in the Arctic-Boreal region by the end of the 21st century
and potentially to turn the region into a net carbon source
in the next century [4, 5]. This weaker net carbon sink can
be attributed to unique consequences of rapid warming in
this region [6], which have divergent impact on photosynthe-
sis. For example, (1) thawing permafrost enhances microbial
decomposition, while it may favor photosynthetic carbon
uptake through enriched soil nutrients [7-9]; (2) more fre-
quent and widespread fires [10—12] rapidly clear vegetation
coverage and release large amounts of carbon into the atmo-
sphere reversing decades of carbon uptake [13, 14]; and
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(3) shifts of plant compositions [15—17], plant productivity
[18, 19], and plant phenology [20-22] lead to heteroge-
neous changes in carbon uptake [23-25]. Due to complex and
understudied ecosystem-climate feedbacks [26-33], the car-
bon uptake by photosynthesis at the ecosystem level, which
is also known as Gross Primary Productivity (GPP), is highly
uncertain in this region. Compared to the 24% uncertainty of
global GPP (3.3 + 0.8 gt C yr—!; [34]), the uncertainty of
Arctic-Boreal GPP is 227% of its typical value (0.22 4+ 0.50
kg C m~2yr~!), becoming the second largest uncertainty
source for the carbon cycle [35]. Therefore, to better under-
stand the ecosystem-climate feedbacks in the Arctic-Boreal
region and constrain the uncertainties on the global carbon
cycle [36, 37], there is a pressing need to closely monitor
GPP [5, 38, 39].

GPP can be evaluated both directly and remotely. Direct
measurements of GPP rely on chamber-based measurements
[40, 41] and tower-based Eddy Covariance techniques (EC)
[42, 43]. Chamber-based measurements are advantageous at
evaluating GPP from different vegetation types within an
ecosystem. However, existing chambers in the Arctic-Boreal
region are mostly manual and thus laborious [44]. Contrarily,
EC averages out fine-scale heterogeneity but provides con-
venient long-term monitoring [43]. While the state-of-the-art
flux product in this region (i.e., ABCflux [39]) synthesizes
available chamber-based and EC observations, the represen-
tativeness of this product is still limited due to the spatial
scarcity and temporal sporadicity of both methods [35, 39,
45, 46], especially compared to growing long-term EC net-
works in other regions [47-59],

Remote sensing techniques, on the other hand, can infer
GPP continuously with extensive spatial coverage [60-64] in
spite of some shortfalls unique to the Arctic-Boreal region,
such as seasonal gaps of observations and complications from
non-vegetation [65, 66]. A conceptual model of remotely
inferred GPP can be expressed as:

GPP = fPAR x PAR x LUE, (1)

where PAR is Photosynthetic Activate Radiation, and fPAR is
the fraction of PAR being absorbed by chlorophyll. The prod-
uct of fPAR and PAR, that is the Absorbed PAR (APAR), will
be primarily partitioned between photochemical quenching
for photosynthesis and dissipation of excess energy as heat by
photoprotective pigments. A small amount of APAR will be
re-emitted in red and far-red wavelengths as Solar-Induced
chlorophyll Fluorescence (SIF) [67]. Hence, Light Use Effi-
ciency (LUE) quantifies the fraction of APAR utilized by
photosynthesis.

Conventionally, remotely inferred GPP is based on the
canopy color measured by optical reflectance because the
canopy greenness is a proxy of APAR [64, 68, 69]. The veg-
etation indices of greenness measurements such as Normal-
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ized Difference Vegetation Index (NDVI) [68] and Enhanced
Vegetation Index (EVI) [70] are commonly used for this
purpose. Nevertheless, canopy greenness alone provides no
information about LUE [71, 72]. This limitation of canopy
greenness challenges the GPP estimation for land cover types
with sustained canopy greenness and APAR, such as ever-
green forests which is one of the dominant land cover types
in the Arctic-Boreal region [73, 74].

More recently, advancements in remote sensing have
revealed that canopy-scale far-red SIF, i.e., far-red SIF
escaped from the canopy and detected by remote instru-
ments, serves as a better proxy for GPP than conventional
greenness measurements [75, 76]. A conceptual model for
instantaneous canopy-scale SIF measurements [77, 78] can
be written as:

SIF = fPAR x PAR X ®F X fegc, (2)

where @ is the quantum yield of fluorescence, and fesc
is the probability of fluorescence escaping the canopy and
reaching the remote instruments [79, 80]. To account for the
dependence of SIF on the instantaneous PAR at the time of
measurement, the instantaneous SIF measurements are often
normalized to daily mean SIF (SIFg.) by solar zenith angle
[65, 81-84].

This conceptual model underscores that SIF is primarily
driven by APAR as a bi-product of photosynthesis ([76]).
Meanwhile, SIF also contains LUE information [75] because
@ r is under the regulation of photoprotective pigments [85].
These links with APAR and LUE make SIF a critical tool for
mechanistically tracking GPP in land cover types with and
without persistent canopy greenness. Besides, SIF retrieval
is less sensitive to common background noise in the Arctic-
Boreal region, such as water and snow [66, 69, 86, 87]. Given
these strengths, SIF is an effective tool in the Arctic-Boreal
region. Several studies have presented this advantage of SIF
over canopy greenness empirically [66, 86, 88—91]. However,
the full potential of SIF in evaluating vegetation dynamics
and constraining uncertainties on carbon fluxes with spatial
details is still underexplored.

There have been a few review articles on SIF [92-94] that
extensively discuss observational platforms, retrieval tech-
niques, the physiological link between SIF and photosynthe-
sis at the molecular level and global scale. However, limited
by their global scopes, these reviews have not assessed the
unique challenges of SIF in the Arctic-Boreal region, such as
limited observations and underrepresented land cover types.
To advance the application of SIF in the Arctic-Boreal region,
this review focuses on recent progress on Arctic-Boreal SIF
observations and assessing the prospects of SIF research
across the Arctic-Boreal region for better monitoring veg-
etation dynamics and carbon fluxes in response to climate
change.
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Cross-scale SIF Measurements

This section aims to comprehensively overview cross-scale
instruments used for measuring SIF in the Arctic-Boreal
region. Currently, there are only a few studies [66, 95-97]
quantitatively analyze the linear proximity of SIF and GPP
from different observational platforms (Fig. 1). By examin-
ing the advantages and limitations of spaceborne, airborne,
and tower-based instruments, their applications can be opti-
mized for capturing the spatial distribution and temporal
dynamics of SIF in the Arctic-Boreal region [66, 91, 98].

Spaceborne SIF

Several generations of spaceborne instruments have been
deployed to measure SIF across the globe, but not all of
them are optimal for the Arctic-Boreal region. Notable
satellite missions/instruments overpassing the Arctic-Boreal
region (north of 50°N) include the Global Ozone Monitoring
Experiment-2 (GOME-2) [99], Greenhouse gases Observ-
ing SATellite (GOSAT) [100], SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CartograpHY (SCIA-
MACHY) [101], Orbiting Carbon Observatory-2 (OCO-
2) [102], Carbon Dioxide Observation Satellite Mission
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Fig.1 A graphic summary of published r? in the Arctic-Boreal region
between GPP and SIF from different observational platforms and spatial
resolutions, including an airborne platform with spatial resolutions of 10
m, 20 m, 40 m, and 80 m; tower-based platforms without uniform spatial
resolution (Table 2); and a spaceborne platform at 10km resolution.
Each scatter represents a study site/spatial resolution. The airborne data
points are from the modeled instantaneous GPP and airborne snapshot
of SIF [95], while the tower-based and spaceborne data points are from
daily mean Eddy Covariance (EC) GPP and daily mean tower/satellite
SIF [66, 96, 97]. Cheng et al., [66] reported 2 based on the climatology,
which may not be derived from synced timeseries of GPP and SIF

(TanSat) [103], and TROPOspheric Monitoring Instrument
(TROPOMI) [82]. Each satellite mission/instrument has dif-
ferent scanning patterns and satellite orbits, resulting in
diverse spatial and temporal characteristics of SIF measure-
ments (Table 1, Fig. 2). Therefore, it is important to consider
these differences when comparing their SIF measurements
across satellite missions/instruments and inferring GPP from
their SIF measurements [98]. To address this issue in the
context of Arctic-Boreal ecosystems, common methods of
processing SIF measurements will be discussed in this sec-
tion.

Spatial Coverage and Resolution

The spatial coverage of satellite missions/instruments deter-
mines the geographic range of SIF measurements. Most
existing satellites, such as SCIAMACHY, GOME/GOME-
2, GOSAT/GOSAT-2, TanSAT, OCO-2, and TROPOMI
(Table 1, Fig.2a), have polar or near-polar orbits that allow
for SIF measurements in the Arctic-Boreal region as they pass
over the entire latitudinal range of the region. However, cer-
tain satellites, namely Tropospheric Emissions: Monitoring
Pollution (TEMPO) and Sentinel-4, have limited coverage
and primarily focus on lower latitudes of the region, up to
58° N and 65° N, respectively (refer to Table 1 and Fig. 2a).
As a result, these satellite missions/instruments will not pro-
vide sufficient SIF measurements for the entire Arctic-Boreal
region.

The spatial resolution of SIF measurements determines
their spatial representativeness relative to the heteroge-
neous surface in the Arctic-Boreal. Fine spatial resolution
is important for the Arctic-Boreal region because the land
cover in this region is highly heterogeneous, with the co-
existence of different land cover types, such as vegetation,
water, and snow [104]. In addition, complex topography
poses challenges in resolving these diverse land cover types
within large pixels [66, 105, 106]. Coarse spatial resolu-
tions may yield a wide range of correlations between SIF
and GPP (Fig. 1). Therefore, SIF measurements with finer
spatial resolution have greater potential to represent dif-
ferent land cover types more accurately and distinguish
their contributions to the carbon cycle in the Arctic-Boreal
region [96, 107, 108]. Also, measurements with lower spa-
tial resolutions (larger pixel sizes) are more susceptible to
contaminations from clouds and aerosols, such as SCIA-
MACHY, GOME/GOME-2, GOSAT/GOSAT-2 [99, 109].
Currently, state-of-the-art satellite missions/instruments like
TROPOMI and OCO-2 offer SIF measurements with finer
spatial resolutions. Upcoming missions, particularly the
European Space Agency’s FLuorescence EXplorer (FLEX)
[110, 111], will significantly enhance the spatial resolution,
with a footprint size of 300 x 300 m?, which will be the small-
est among current SIF measurements (Fig.2b). It is worth

@ Springer



16

Current Climate Change Reports (2024) 10:13-32

Table 1 Existing and upcoming satellite missions/instruments measuring SIF in the Arctic-Boreal region (north of 50°N)

Space Time
Instruments/Satellites Coverage Resolution Span Global Coverage Cycle
(Overpass at Equator)
SCIAMACHY/ENVISAT!  global 30 x 240km? 2003-2012 6 days (10:00 LST)
GOME/ERS-2? global 40 x 320km? 1995-2003 3 days (10:30 LST)
GOME-2/MetOp-A3 global 40 x 80km? or 40 x 40km?  2007—present 1.5 days (9:30 LST)
TANSO-FTS/GOSAT* global 10.5km-diameter circular 2010-present 3 days (13:00 LST)
TANSO-FTS/GOSAT-2° global 9.7km-diameter circular 2019—present 6 days (13:00 LST)
AGCS/TanSat® global 2 x 2km? 2017—-present 16 days (13:30 LST)
0CO0-27 global 1.3 x 2km? 2014—present 16 days (13:30 LST)
TROPOMI/Sentinel-5p° global 7 x (3.5-15) km? 2018—present 1 day (13:30 LST)
FLORIS/FLEX'! global 300 x 300m? planned for 2025 27 days (10:00 LST)
coz2m’3 global 2x2 km? planned for 2025 11 days (11:30 LST)
TEMPO/IS-40e!? 18°N=58°N, 67°W—-125°W  2.21 x 4.97 km? launched on Apr 7,2023  geostationary (hourly)
Sentinel-4/MTG!? 30°N-65°N, 30°W-45°E 8x8 km? planned for 2024 geostationary (hourly)

This table compares the coverage and resolution of the measurements in space, and time. The common names of SIF products are bolded, which

will be referred to hereinafter

'SCIAMACHY: SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY; Envisat: Environment satellite; [101, 128]

2GOME: Global Ozone Monitoring Experiment; ERS-2: European Remote-Sensing 2; [99]

3GOME-2: Global Ozone Monitoring Experiment-2; MetOp-A: Meteorological Operational Satellites - A; [101]

4TANSO-FTS: Thermal And Near-infrared Spectrometer for carbon Observation-Fourier Transform Spectrometer; GOSAT: Greenhouse gases

Observing SATellite; [129]

STANSO-FTS: Thermal And Near-infrared Spectrometer for carbon Observation-Fourier Transform Spectrometer; GOSAT-2: Greenhouse gases

Observing SATellite; [130]

6 AGCS: Atmospheric Carbon dioxide Grating Spectroradiometer; TanSat: Carbon Dioxide Observation Satellite Mission; [103]

70CO-2: Orbiting Carbon Observatory-2; [131]

9TROPOMI: TROPOspheric Monitoring Instrument; Sentinel-5p: Sentinel 5 Precursor; [82, 132]
''FLORIS: Fluorescence Imaging Spectrometer; FLEX: FLuorescence EXplorer; [110, 111]
10TEMPO: Tropospheric Emissions: Monitoring Pollution; IS-40e: Intelsat 40e; [133]

IZMTG: Meteosat Third Generation; [134, 135]
13C0,-M: the Copernicus CO, Monitoring satellite; [136]

noting that SIF measurements from a smaller footprint are
more likely to be influenced by topography and thus need
more rigorous corrections when instantaneous SIF measure-
ments (Eq.2) are normalized to daily mean values [65].

To provide more surface details at smaller spatial scales
than the existing spaceborne measurements, there are sev-
eral hybrid products that downscale SIF measurements to
scales as fine as hundreds of meters using optical reflectance
measurements and environmental data [112-117]. However,
the accuracy of these downscaled global products (such as
spatially contiguous SIF (CSIF) [113] and Global *OCO-2’
SIF (GOSIF) [114]) and their performance of tracking GPP
have not been assessed across the Arctic-Boreal region at
the finer spatial scale. Madani et al. [118] only validated the
temporal variations of CSIF but not its spatial representa-
tiveness for a few Arctic-Boreal EC towers. Wen et al. [119]
cross-validated the global spatial patterns of downscaled and
satellite SIF products and found that downscaled SIF prod-
ucts can yield large biases in the Arctic-Boreal region because
of the poor performance of universal downscaling models
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in this region. The higher noise in optical reflectance mea-
surements due to background soil, water, and snow [66, 86,
113] can potentially affect the accuracy and reliability of the
downscaled SIF products as well. To better train the down-
scaling models, more satellite observations with finer spatial
resolutions in the Arctic-Boreal region are needed. Airborne
instruments with much higher spatial resolutions (e.g., 30 m;
Section2.2) can help validate the spatial representativeness
of downscaled products. However, such validation has only
been done outside the Arctic-Boreal region [119]. Therefore,
further validation and assessments of these downscaled prod-
ucts are needed for the Arctic-Boreal region to ensure their
performance in this unique region.

Sampling Frequency and Overpass Time
The revisit time and swath width of satellites together deter-

mine the time required to complete one cycle of global
SIF measurements and, thus, the sampling frequency at a



Current Climate Change Reports (2024) 10:13-32 17
b) Footprint Sizes
GOME] : 7 km
. N TEMPO
150°E 30°E E : . Sentinel-4
! 1
1 1
> | oco-2 [FOZM FLEX
2| & D
s Ha)
< [ | TROPOMI
180° 0° 8 i
; [TanSat
1
4 i ]
1
] —_—
i GOSAT
150°W 30°W | e
1
GOM]2 GOR4T-2
I
70 km
— - = ’ ‘ T T T T
40°N 40°N
c) Mission Span
Sentinel-4 - e
TEMPO - e
CO2M - IRRRRRRRRNNN] 2
FLEX 11 ap
TROPOMI A an -
0CO-2 - AR RERERRRRRENNE] 2
TanSat A (ERRRRERNEREEY 2
GOSAT-2 A -
GOSAT A mn i P
GOME-2 - NRRRRRR NN NN RN RN NN NN RN RN RN RN NN NN NN NN NN NN RRRRRRRRRRRAnE >
GOME -JnannnsnEnnsnnennEnnEnnunnunann
SCIAMACHY - ERRRRRRRRRRRRNRRRRRRRRERRE
1995 2000 2005 2010 2015 2020 2025 2030
year

Fig.2 A graphic summary of existing and upcoming satellite missions
measuring SIF in the Arctic-Boreal region (north of 50°N): (a) The
spatial coverage of satellites that do not cover the entire Arctic-Boreal
region; (b) The comparison of satellite footprints; And (c) the mis-
sion span and temporal resolution of SIF measurements. In (c), arrows

specific location. These factors together determine the tem-
poral coverage and resolution of SIF measurements in the
Arctic-Boreal region. Existing and upcoming satellite mis-
sions have a wide range of sampling frequencies (Table 1,
Fig.2c), allowing for tracking the dynamics of SIF across
temporal scales.

indicate ongoing or future missions, and dashes suggest the tempo-
ral resolution of SIF measurements. A densely dashed line means a
higher temporal frequency. The exact value of temporal frequency can
be referred to Table 1

At seasonal and longer scales, polar-orbiting satellites
have difficulties getting the complete and accurate seasonal
cycle of SIF in the Arctic-Boreal region because of the lack of
valid sampling during shoulder seasons and winters. Because
SIF is driven by solar radiation (Eq.2), to keep the mea-
surement noises low, SIF measurements are often filtered
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out if they are taken at low solar radiation conditions, such
as when the solar zenith angle exceeds certain thresholds.
This will remove most of the observations during the Arctic-
Boreal winters and potentially miss the onset and cessation
of growing seasons depending on the threshold and sam-
pling frequency (Fig.3). A stricter threshold, such as 70°
used in [82, 99], will exclude more SIF measurements dur-
ing shoulder seasons compared to a looser threshold, such as
80° wused in [109] (Fig.3). This artificial cutoff of grow-
ing season varies by instruments with different sampling
frequencies leading to misshaped growth seasonality, par-
ticularly for instruments with low sampling frequency [120,
121]. Missing the onset and cessation of GPP can cause large
uncertainties in the net carbon flux during the shoulder sea-
sons, when the majority of net carbon emission happens in the
Arctic-Boreal region [122]. Such artificial cutoffs of grow-
ing season also fail to precisely track the temporal shifts of
growth onset and cessation with climate change [33, 123,
124].

To track the subdaily and diurnal variations of pho-
tosynthesis, satellite missions/instruments like TROPOMI
with different overpass times at certain locations can be
useful [125, 126]. Additionally, geostationary satellite mis-
sions/instruments like TEMPO, Sentinel-4, and canceled
Geostationary Carbon Cycle Observatory (GeoCarb) [127]
can offer multiple SIF measurements each day. Unfortu-
nately, none of the existing or upcoming geostationary
satellite missions have complete coverage in space for the
Arctic-Boreal region (Table 1, Fig. 2a). Therefore, relying on
satellite SIF measurements alone is challenging to track the
subdaily and diurnal variations in photosynthesis in the entire

Daily Minimum Solar Zenith Angel (degrees)

latitude (*)

50 100 150 200 250 300 350
day of year

Fig. 3 The zonal mean of minimum solar zenith angle over a year,
representing the availability of solar radiation at the local solar noon
across different latitudes. The minimum solar zenith angle greater than
90° means polar night, when solar radiation is zero throughout the day.
The white contours represent the two common thresholds for filtering
out SIF measurements at low solar radiation conditions (80° in [109]
and 70° in [82, 99])). These thresholds indicate the maximum solar
zenith angle (minimum solar radiation) acceptable for valid SIF mea-
surements. SIF measurements taken at solar zenith angles higher than
the thresholds are excluded due to the low signal-to-noise ratio
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Arctic-Boreal region. Instead, tower-based instruments can
be more feasible for tracking the dynamics of SIF at a sub-
daily scale and over longer terms (Section?2.3).

Airborne SIF

As an analog of spaceborne instruments, airborne instru-
ments measure SIF at enhanced spatial resolutions benefiting
from a closer distance between the aircraft and the ground.
Among a few airborne SIF instruments (summarized in
[137]), NASA Jet Propulsion Laboratory’s Chlorophyll Flu-
orescence Imaging Spectrometer (CFIS) [138] is the only
instrument has extensively flown in the Arctic-Boreal region.
During NASA’s Arctic-Boreal Vulnerability Experiment
(ABoVE) airborne campaign in 2017 [139], CFIS SIF was
retrieved at the finest resolution of 30 m, with a focus on more
than 20 EC tower sites across Alaska and northwest Canada
[140]. Unfortunately, there has not been reported SIF-GPP
relationship using CFIS SIF. Tagliabue et al. [95] reported r>
of 0.5 between the snapshots of GPP and SIF from a Euro-
pean airborne instrument (HyPlant). The optimal airborne
SIF-GPP relationship can be achieved by spatially aggregat-
ing SIF observations (Fig. 1). Therefore, the small pixels of
CFIS SIF, together with optical reflectance measurements,
can better resolve the spatial distribution of different land
covers [91, 102, 141] and align with the footprints of EC GPP
[142, 143]. The existing collections of snapshots can also
help validate the spatial representativeness of downscaled
SIF products discussed in Section2.1.1. However, such val-
idation with a few snapshots does not hold over time. For
example, CFIS sampled SIF in the Arctic-Boreal region for
only two days during the ABoVE airborne campaign in 2017.
Without additional repeated sampling, it is challenging to
assess the rapid and heterogeneous changes of Arctic-Boreal
vegetation under climate change.

Tower-Based SIF

Existing tower-based instruments (summarized in [98]) are
competent for continuously measuring day-to-day and sub-
daily variations in SIF at specific locations. Tower-based SIF
and EC GPP measurements often have overlapping footprints
[57], making them ideal for deriving SIF-GPP relationships
at diurnal and seasonal scales [66, 144].

However, similar to the spatially limited EC GPP mea-
surements, tower-based SIF measurements are also scarce
in the Arctic-Boreal region. Currently, PhotoSpec (in Delta
Junction, Alaska and in Saskatchewan, Canada) [96] and
FluoSpec2 (in Toolik, Alaska) [145] are the only tower-
based instruments actively measuring SIF in the Arctic-
Boreal region, which hinders extensive examination of
SIF-GPP relationship across the Arctic-Boreal region. Only
two Boreal forests have reported tower-based SIF-GPP
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relationship (Fig. 1; [66, 96, 97]). Nevertheless, novel tower-
based SIF observation systems are progressing quickly with
the potential to be deployed in the Arctic-Boreal region,
e.g., Tower Spectrometer on Wheels for Investigating Fre-
quent Timeseries (TSWIFT; [146]), the Fluorescence Box
(JB Hyperspectral; Dusseldorf, Germany), Automatically
long-term SIF observation system (AutoSIF; [83]), the Fluo-
rescence Auto-Measurement Equipment (FAME; [147]), and
a NASA/Goddard Space Flight Center Prototype for Field
Spectroscopy (FUSION). The specifications of these tower-
based SIF observation systems are summarized in Table 2.
It is worth noting that these systems have various spectral
characteristics, field of view, and mobility (Table 2), which
are critical for the representativeness of SIF retrievals and
comparison retrievals across different systems. For example,
although tower-based SIF is often retrieved at around 760
nm, the various spectral ranges and spectral resolutions (Full
Width at Half Maximum) lead to uncertainties in the retrieved
SIF values [99, 148]. The accuracy of different retrieval algo-
rithms is summarized by Mohammed et al. [92].

A small field of view, such as in PhotoSpec, makes it easy
to target individual trees, filter out background noises (e.g.,
snow), and resolve SIF signals from different parts of the
canopy by scanning individual trees [149]. Pierrat et al. [96]
remotely detected diverse growing onsets across species in a
mixed-species Boreal forest by taking advantage of the small
field of view in PhotoSpec.

The directional effect between the solar incidence angle
and the viewing angle is not negligible for tower-based instru-
ments because of large variations in the solar incidence angle
in the Arctic-Boreal region [150]. The directional effect
can be reduced by fusing observations from different view

Table 2 Existing and new SIF observation systems

geometries [146, 151]. Therefore, the systems with scan-
ning telescopes, e.g., PhotoSpec, TSWIFT, and FUSION, are
advantageous, although harsh winter weather can be chal-
lenging for the parts of rotating mechanics.

Enhancing Cross-scale Observational Network

Airborne and tower-based SIF measurements complement
the coarse spatiotemporal resolutions of spaceborne SIF in
the Arctic-Boreal region. However, the current availability of
airborne and tower-based instruments is constrained to a few
sites and a brief sampling duration in the Arctic-Boreal region
compared to lower latitudes. Additionally, regional studies
on the Arctic-Boreal vegetation dynamics are imbalanced
across continents, with a greater focus on North America
than Eurasia as a result of imbalanced data availability, while
Eurasia is also a significant contributor to the global carbon
cycle [124]. Therefore, enhancing the international network
of airborne and tower-based SIF measurements is the key to
validating spaceborne measurements and investigating scale-
dependent vegetation dynamics throughout the entire Arctic-
Boreal region [91, 107].

As sensing technology advances, flying lower-cost and
lighter airborne instruments on Unmanned Aerial Vehi-
cles (UAV) becomes convenient to provide frequent SIF
measurements at fine spatial resolution [152, 153]. More
encouragingly, collaborations among agencies are exploring
the opportunities to fly airborne instruments more frequently
and regularly, such as NASA ABoVE and National Eco-
logical Observatory Network (NEON) airborne observation
platform [139].

Systems Spectral Range (nm) (FWHM! (nm)) Field of View Mobility Examples in the Arctic-
Boreal region

PhotoSpec2 650-712 (0.3), 729-784 (0.3) 0.7° 2-D scanning [96, 144]

FluoSpecZ3 730-780 (0.14) 25 Downward looking [145]

TSWIFT* 729-784 (0.3) 0.7 2-D scanning and mobile —

FLOX? 650-800 (0.3) 25 Downward looking —

AutoSIF° 640-805 (0.3) 25 Downward looking —

FAME’ 730-786 (0.15) 25 Downward looking —

FUSION® 650840 (1.5) 25 2-D scanning -

This table compares the spectral characteristics, field of view, and mobility of these systems

IFWHM: Full Width at Half Maximum;
ZPhotoSpec [149]
3FluoSpec2 [145]

4TSWIFT: Tower Spectrometer on Wheels for Investigating Frequent Timeseries; [146]

SFLOX: the Fluorescence Box; JB Hyperspectral, Dusseldorf, Germany;

6 AutoSIF: Automatically long-term SIF observation system; [83]
TFAME: the Fluorescence Auto-Measurement Equipment; [147]

8FUSION: a NASA/Goddard Space Flight Center Prototype for Field Spectroscopy;
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The success of volunteer-based EC networks, such as
Fluxnet, is an excellent example of strengthening carbon
cycle studies through global collaboration [57]. In the
spectral imaging community, a similar network of optical
reflectance called SpecNet [154] has made fruitful findings
to boost the connections between remote sensing and carbon
uptake [155]. There are only a few tower-based SIF mea-
surements in the Arctic-Boreal region and mostly in North
America. Going forward, fostering a similar tower-based SIF
network is strongly favored for understanding the biochem-
ical and biophysical processes in the Arctic-Boreal region.
The two PhotoSpec instruments [96, 144] and one FluoSpec2
instrument [145] are prototypes of such a network, showing
promise in this regard. Expanding the SIF network in the
Arctic-Boreal region is viable with lower-cost and easier-
maintained sensors [156, 157].

Quantitative Estimation of GPP
in the Arctic-Boreal Region

Empirical SIF-GPP Relationship

GPP is often quantitatively evaluated by satellite SIF using
empirical models at the seasonal scale [66, 158]. Tak-
ing Egs. (1) and (2) together, inferring seasonal GPP from
SIF. leads to solving the GPP/SIF . ratio (k), which con-
tains the information of LUE, @, and feg:

GPP =k x SIFc, 3)
k = f(LUE, q)vaesc)- 4

At the canopy level, this SIF-GPP relationship (Eq.3) is
approximately linear such that k is relatively constant across
different months [159, 160]. Empirical studies [66, 161-163]
solve the parameter k by linearly regressing GPP and SIF.
Then, the k values are categorized based on generic plant
functional type to integrally represent different plant physi-
ology (e.g., LUE and @) and canopy structures (e.g., fesc)
(Eq.4). The first study [66] to derive k values for unique
Arctic-Boreal land cover types shows that high-stature land
cover types (e.g., evergreen and deciduous forests) have
higher k than lower-stature land cover types (e.g., low shrubs
and tundra). However, the reported k values still have large
uncertainties inherited from SIF and GPP datasets due to
large footprints, background noise, and lack of validation
[90, 164]. Validating the satellite SIF and GPP measure-
ments with more evenly distributed tower-based SIF and GPP
can significantly reduce extrapolation [165] and improve the
confidence of k values and GPP predictions thanks to rel-
atively small and homogeneous footprints of tower-based
instruments [66, 166, 167]. The spatial representativeness
of k values within the footprint of tower-based instruments
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can be further validated with airborne snapshots [91] once
more repeated airborne missions are available.

As the record of SIF measurements becomes longer, map-
ping the changes in GPP over the long term is possible. In
the Arctic-Boreal region, the empirically derived k should be
calibrated regularly to keep up to date with the changing plant
composition and canopy structure due to warming, such as
shrub expansion, forest-tundra ecotone shifts, and wildfires.
Within a satellite footprint, these changes can be reflected in
the mixing of vegetation types and changes in k. However,
there are not sufficient observations to quantify such changes
[168] including SIF.

There have been discussions on the goodness of assum-
ing linear SIF-GPP relationship [162, 167]. Interestingly, the
reported SIF-GPP relationship in the Arctic-Boreal region
is debatable. At monthly and daily scales, the Arctic-Boreal
k value of the linear SIF-GPP relationship shifts with sea-
son (Fig.4a) according to both regional-scale [66, 118,
167] and tower-based [144] studies. As the temporal scale
refines to half-hourly, the SIF-GPP relationship becomes
nonlinear (Fig.4b) due to small light response of SIF in
winter and seasonal variations in light use efficiency [144].
There have not been mechanistic analyses exploring the lin-
earity/nonlinearity of SIF-GPP relationship over the entire
Arctic-Boreal region. Existing global-scale analyses attribute
the nonlinearity to the nonlinear response to environmental
stresses [166, 169] and aggregated directional effect [80, 170,
171]. Considering environmental stresses caused by climate
change, large seasonal variations of solar incidence angle,
and heterogeneous canopy structure in the Arctic-Boreal
region, more work should be done to mechanistically explain
the linearity/nonlinearity of the SIF-GPP relationship across
this region. Future works resolving such complex roles of
climate drivers and radiative factors on the SIF-GPP rela-
tionship will also benefit from evaluating the climate change
impacts on carbon uptake and tracking physiological and
structural changes of Arctic-Boreal vegetation at different
temporal scales.

Machine Learning Models

Without the need to solve the complex mechanisms, machine
learning approaches [166, 172, 173] conveniently offer a
potential solution to simulate the complex SIF-GPP relation-
ship and predict GPP using satellite SIF, optical reflectance,
environmental data, and land cover information. FluxSat
and FluxSat V2.0 are examples of such datasets [172, 174,
175]. In FluxSat, the prediction of GPP in high productiv-
ity areas directly benefits from incorporating SIF [174]. In
other regions, including the Arctic-Boreal region, the sig-
nificance of SIF data for the machine learning-based GPP
prediction needs further investigations [172]. Meanwhile,
these machine learning models also inherent the compounded
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a) Monthly/Daily

—— summer
——~- spring/fall
------ dormancy

GPP

SIF

Fig. 4 A graphic demonstration of the seasonal variations in (a) lin-
ear and (b) nonlinear SIF-GPP relationships reported by Pierrat et al.
[144] and Chen et al. [167]. The linear relationship is mostly found in
monthly or daily scale analyses. The nonlinear relationship is mostly
found in half-hourly scale analyses. The linear relationship follows

uncertainties from SIF and other optical remote sensing
observations in the Arctic-Boreal region, such as spatial het-
erogeneity (Section?2.1) and snow contamination [66]. More
tower-based observations of both GPP and SIF across the
Arctic-Boreal region can help reduce the extrapolation uncer-
tainties [165] and improve the accuracy of machine learning
models in the Arctic-Boreal region.

Advances in Carbon Cycle Modeling with SIF

Intrinsically, process-based models (Table 3) simulate GPP
using parameterized photosynthetic traits, e.g., the maxi-
mum rate of carboxylation and photosynthesis yield, [176].
These parameters are estimated based on tower-based mea-
surements and then extrapolated globally [177].

Dynamic vegetation models and [123, 178, 179] and other
process-based terrestrial ecosystem models [180—182] sim-
ulate the mechanics of fluorescence and radiative transfer,
where SIF measurements can be assimilated into these mod-
els and optimize the photosynthetic parameters. On the other
hand, conventional land surface models, which do not simu-
late SIF directly, SIF-driven GPP can be used to optimize the
parameterized photosynthetic traits and constrain the errors

b) Half-Hourly

—— growing season
----- dormancy

GPP

SIF

Eq.3. The nonlinear relationship follows the mathematical form of
y =a*x/(b+ x) [144]. Dormancy has a smaller range of SIF due to
the low productivity in the Arctic-Boreal region. Outside the dormancy,
there is not enough evidence to determine the relative magnitudes of
the nonlinear relationship curve from season to season

in simulating global carbon fluxes in land surface models
[183-186]. In the Arctic-Boreal region, GPP simulated by
the optimized models has improved the spatial distribution
and temporal patterns, which reveal a strong reduction of
GPP in the Arctic-Boreal region [123, 178, 187].

Recently, there has been significant progress in simulat-
ing radiative transfer and SIF within land surface models
[188]. This advancement provides opportunities for phys-
ically simulating the SIF-GPP relationship. Future studies
can benchmark the model simulation with remote sensing in
order to better map photosynthetic traits and investigate the
complex climate drivers of carbon fluxes, especially in the
Arctic-Boreal region.

One drawback of these models is their global universal
parameterization, which often neglects or oversimplifies the
complex vegetation distribution and land cover types in the
Arctic-Boreal region, leading to large uncertainties in the
simulated carbon fluxes and their spatial variations. Better
resolving the SIF-GPP relationship for Arctic-Boreal land
cover types [118] and justifying its spatial representativeness
given the heterogeneous land cover within coarse footprints
[91, 168] is critical for simulating spatially detailed changes
in carbon fluxes.
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Table 3 Process-based models that incorporate SIF

Type Models

Dynamic vegetation models
(LPJmLA4) [179]

Other process-based terrestrial
ecosystem models

TRENDY [123]; Terrestrial Biosphere Model (TBM [178]; Lund-Potsdam-Jena managed Land

Boreal Ecosystem Productivity Simulator (BEPS) [180]; Biosphere Energy Transfer Hydrology-Soil
Canopy Observation, Photosynthesis and Energy fluxes (BETHY-SCOPE); [181]; Mechanistic Light

Reaction-SIF model (MLR-SIF) [182]

Land surface models

Energy Exascale Earth System Model (E3SM) [183]; Community Land Model version 4.5 (CLM4.5)

[184]; Community Land Model version 5 (CLMS5 [185]); JSBACH [186]

Emergent Changes in Arctic-Boreal Region

As SIF measurements become more abundant in the Arctic-
Boreal region, we are gaining more insights into mecha-
nistically tracking GPP using SIF data obtained at various
spatiotemporal scales [189]. This section focuses on review-
ing the applications of SIF in monitoring crucial changes in
the Arctic-Boreal region [10]. Meanwhile, outlooks on future
research are provided for deepening our understanding of the
resulting changes in the global carbon cycle.

Arctic“Greening”/“Browning” and Its Climate
Drivers

Under the scenario of global warming, Arctic “greening”
and “browning” have been signature indicators of changing
vegetation dynamics, which are composed of changes in veg-
etation phenology and vegetation distribution [32]. SIF has
been mostly used in evaluating the vegetation phenology over
the Arctic-Boreal region, including the peak GPP during the
growing season, the timing of growth onset and cessation,
and the length of the growing season. Implementing SIF in
detecting changes in vegetation distribution and land cover
types is understudied.

Vegetation Phenology

Large-scale and long-term studies [32, 190-192] rely on long
records of satellite greenness measurements, such as NDVI
or EVI, to evaluate changes in vegetation phenology across
the Arctic-Boreal region. However, these greenness measure-
ments primarily reflect APAR and leaf area rather than actual
GPP [71, 72]. This limitation restricts the accurate estimation
of changing carbon fluxes and the identification of underly-
ing mechanisms driving these changes [193-195], especially
in needle-leaf forests where the responses of GPP and green-
ness measurements to climate diverge [86, 89, 196]. Since
SIF varies with both APAR and LUE, it is a better proxy
than the greenness measurements for tracking the seasonal
GPP across various land cover types in the Arctic-Boreal
region [85, 88, 197].
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The spring onsets of SIF and GPP in the Arctic-Boreal
region closely follow the rising temperature and landscape
thawing [86, 194, 198, 199], which is consistent with find-
ings from proximal measurements in a sub-alpine ecosystem
[200]. Warming causes extended non-frozen periods, lead-
ing to a longer growing season [33, 201]. Both SIF and GPP
indicate that an early onset caused by warming may induce
reduced magnitude of photosynthesis in fall, as soil moisture
depletes [202]. Meanwhile, exposure to cold temperatures
can delay the spring onset of SIF and GPP [203]. It is worth
noting that the onset of SIF may occur earlier than GPP due
to the earlier activation of the photosystem compared to pho-
tosynthesis [204].

The cessation of SIF and GPP in the Arctic-Boreal region
isregulated by temperature, soil moisture, and radiation [193,
205-208]. In ecosystems with weaker radiation limitation,
GPP increases more with warming compared to the ecosys-
tems strongly limited by radiation [209]. SIF and GPP have
an earlier cessation than canopy greenness due to divergent
responses to temperature in the fall [89]. As the Arctic-Boreal
region warms, the cessation of growth is projected to be more
water-limited [33, 194, 205].

In the long term, the existing satellite SIF measurements
do not have sufficiently long records to robustly derive the
trends in changing vegetation phenology (Fig.2c) compared
to conventional greenness measurements (e.g., more than
50-year records of Landsat reflectance [210]). Nevertheless,
SIF records have been mostly used to validate the long-term
trend observed from the vegetation indices of greenness mea-
surements. SIF measurements in the Arctic-Boreal region
agree with greenness measurements in showing that warm-
ing leads to an earlier and higher peak in GPP [118, 201,
211-213]. However, further warming will not continue pro-
moting GPP once the optimal temperature is surpassed [214,
215]. Notably, the peaks of GPP and SIF occur earlier
than the peak of greenness, indicating a decoupling of peak
timing between photosynthetic rate and canopy greenness
[90]. This mismatch between the peaks, which could be a
result of delayed canopy development, increases with ris-
ing atmospheric CO? and reduced maximum photosynthetic
rate [216].
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Across the Arctic-Boreal region, these temporal changes
in vegetation phenology are not homogeneous [32]. Madani
et al. [118] use CSIF, a downscaled SIF product, to study
the spatial pattern of changes in Arctic-Boreal phenology
and suggest that such heterogeneous climate sensitivity can
be explained at the regional level and characterized by plant
functional traits. Incorporating SIF with better-represented
plant functional traits in land surface models can improve the
estimation of carbon fluxes as vegetation phenology changes.

Detecting Land Cover Changes and Vegetation
Compositions

So far, this paper has mainly focused on far-red SIF. However,
it is important to note that SIF emissions include both red
and far-red wavelengths. Remote sensing instruments often
report canopy-scale SIF in far-red wavelengths because of
the reabsorption of red SIF by chlorophyll [217]. The ratio
between red and far-red SIF at the leaf level can provide addi-
tional information about biochemical traits, leaf morphology,
and photosynthetic phenology [218, 219]. Therefore, the
leaf-level red:far-red SIF ratio may help to identify plant
functional type and monitor land cover changes [220]. How-
ever, this conclusion may not hold at the canopy level with
remotely measured SIF due to the reabsorption of red SIF.

Droughts and Wildfires

Rapid warming in the Arctic-Boreal region is projected to
increase the frequency of droughts and wildfires, which may
interrupt the increasing trend of GPP and release CO? from
thawing permafrost into the atmosphere. SIF measurements
have been used to monitor ecosystem response to these dis-
turbances and recovery.

Droughts

A case study of the 2010 Russian drought [221] uses SIF and
greenness measurements to show that the drought impact on
GPP through both reduced fPAR and LUE (refer to Egs. 1 and
2). However, the reduction of LUE dominates the decreasing
GPP in forests, while the reduction of fPAR is the main reason
for the decreasing GPP in grasslands. Furthermore, Li et al.
[222] use SIF as a proxy for photosynthetic phenology and
find that Arctic-Boreal forests recovery from droughts not
only depends on the severity of droughts but also the relative
timing of droughts and vegetation phenology.

More advanced, SIF can help understand the ecosys-
tem response to droughts from an ecohydrology perspective
as transpiration and photosynthesis are coupled processes.
For example, Recent studies [206, 223-225] use SIF to
mechanistically constrain the dynamics of transpiration and
characterize the seasonal patterns of transpiration in the

Arctic-Boreal region, suggesting SIF has the potential to
investigate climate drivers of carbon and water cycles simul-
taneously.

The diurnal dynamics of photosynthesis are important
for understanding the coupled carbon-water cycles and
ecosystem-climate feedbacks [226]. In the Arctic-Boreal
region, the diurnal variations of GPP characterized by tower-
based measurements reveal a nonlinear relationship between
SIF-GPP in Boreal forests due to light saturation [144],
underlying significance of the diurnal SIF measurements
for improving the modeling of the vegetation dynamics.
Spaceborne instruments, such as TROPOMI, TEMPO, and
Sentinel-4, provide great potential for measuring SIF at
different times of the day, while TROPOMI is the only
instrument that covers the entire Arctic-Boreal region. The
diurnal pattern of TROPOMI SIF is consistent with GPP
[126] indicating the potential of evaluating diurnal variations
of carbon-water cycles from space [227].

To comprehensively characterize biochemical and bio-
physical processes, combining multi-modal remote sensors
(including SIF instruments) and addressing different com-
ponents of the carbon-water cycles are beneficial. For exam-
ple, using visible-near infrared reflectance (including SIF),
microwave, lidar, and thermal imaging to simultaneously
monitor photosynthesis, ecohydrology, canopy structure, and
water stress in respective. For future reference in the Arctic-
Boreal region, applying this multi-modal concept is available
from space [228-230], aircraft [231], and towers [232].

Wildfires

In the case of wildfires, applying SIF to monitoring the
change in GPP can be challenging because the SIF-GPP
relationship may change if wildfires alter the plant composi-
tion as discussed in Section 3.1. Madani et al. [213] compare
burned and unburned areas with the same land cover types
and show that SIF-driven GPP has shown a faster recovery
after wildfires happened, although there is an instantaneous
decrease in GPP during wildfires [213].

Conclusion and Future Directions

This paper comprehensively summarizes cross-scale SIF
instruments and new insights gained regarding carbon fluxes
by using SIF in the Arctic-Boreal region. Through a thorough
review of existing and upcoming satellite missions/instru-
ments, this paper highlights the complementary nature of
spaceborne, airborne, and tower-based SIF measurements,
which collectively enable wide-ranging spatiotemporal cov-
erage and resolutions in the Arctic-Boreal region. These
cross-scale SIF measurements provide new insights into
long-term variations and spatial patterns of photosynthetic
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dynamics and the carbon uptake from subdaily to seasonal
scales in the Arctic-Boreal region, which are key to mech-
anistically constraining the carbon fluxes in land surface
models.

For future references, it is important to acknowledge
that current SIF measurements in the Arctic-Boreal region
are still limited and their spatial resolutions are too coarse
for the heterogeneous land cover. Overcoming these lim-
itations requires fostering an extensive SIF observational
network to improve land surface modeling in the Arctic-
Boreal region and validate existing quantitative models.
Integration of multi-modal instruments that combine SIF and
other (a)biotic variables holds promise to comprehensively
represent the diverse plant functional traits and their cli-
mate sensitivity with climate change. Such data synergies and
model improvements are becoming possible as both NASA
ABOVE and the Department of Energy’s Next Generation
Ecological Experiment in the Arctic (DOE NGEE-Arctic)
are towards their ending phases, which focus on data synthe-
sis and modeling. Taken together, SIF still has great potential
for advancing our understanding of the ecosystem-climate
feedbacks and projecting climate change impact across the
Arctic-Boreal region.
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