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Abstract
Purpose of Review We summarize recent progress on autonomous observations of ocean carbonate chemistry and the develop-
ment of a network of sensors capable of observing carbonate processes at multiple temporal and spatial scales.
Recent Findings The development of versatile pH sensors suitable for both deployment on autonomous vehicles and in compact,
fixed ecosystem observatories has been a major development in the field. The initial large-scale deployment of profiling floats
equipped with these new pH sensors in the Southern Ocean has demonstrated the feasibility of a global autonomous open-ocean
carbonate observing system.
Summary Our developing network of autonomous carbonate observations is currently targeted at surface ocean CO2 fluxes and
compact ecosystem observatories. New integration of developed sensors on gliders and surface vehicles will increase our coastal
and regional observational capability. Most autonomous platforms observe a single carbonate parameter, which leaves us reliant
on the use of empirical relationships to constrain the rest of the carbonate system. Sensors now in development promise the ability
to observe multiple carbonate system parameters from a range of vehicles in the near future.

Keywords Autonomous platforms . Carbonate observations . Ocean acidification . Ocean biogeochemical sensors

Introduction

The oceanic carbonate system is going through unprecedented
change. Each year, the ocean absorbs approximately 25% of
anthropogenic emissions of carbon dioxide (CO2) to the at-
mosphere [1] and has absorbed at least 25% of all anthropo-
genic CO2 since the industrial revolution [2, 3]. While this
reduces atmospheric CO2 concentrations, it comes at a cost.

The dissolving of CO2 acidifies the seawater (lowers pH) and
shifts the equilibrium of carbonate species, decreasing carbon-
ate ion and increasing bicarbonate concentration [4–6]. On
average, open ocean pH has decreased by approximately
0.0018 year−1 over the past 15–30 years [7]. This process,
known as ocean acidification, is happening more rapidly than
at any other time in Earth’s history [8].

Ocean acidification is thought to have widespread detri-
mental impacts on marine organisms and ecosystems includ-
ing those that support valuable fisheries [9–11]. For example,
pteropods, a pelagic sea snail that is an important prey species
for fish such as salmon, cod, and mackerel, have been dem-
onstrated to be especially vulnerable to elevated CO2 condi-
tions [12]. Mass mortality events in shellfish hatcheries have
also been linked to ocean acidification [13]. Coral reefs, which
provide trillions of dollars in societal services worldwide, are
projected to experience decreased net calcification, a key pro-
cess in maintaining ecosystem function [14]. The impact of
acidification is being felt globally, but with significant hetero-
geneity in the temporal and spatial patterns of response due to
regional differences in chemistry, circulation, and biology. For
example, modeling results predict that some ocean regions
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will acidify significantly faster than the open ocean, such as
upwelling regions like the California Current System [15], the
Arctic Ocean [16], and the Southern Ocean [17], making them
potentially more vulnerable to ocean acidification. To observe
predicted changes in the ocean carbonate system, we must
have an instrumentation network that can capture acidification
and its effects at multiple temporal and spatial scales.

There are four Bmaster^ variables for the marine carbonate
system that we can measure: partial pressure (or fugacity) of
CO2 (pCO2), pH, dissolved inorganic carbon (DIC), and total
alkalinity (TA). The carbonate system can be described by a
system of equations such that it can be fully constrained by
measuring any two of the four parameters [4, 5]. Different
combinations of parameters must be measured or calculated
depending on the biogeochemical processes of interest. For
example, pCO2 is required to study the air-sea CO2 flux, as
the difference between air and seawater pCO2 describes the
thermodynamic potential for CO2 to go in or out of the water
[18]. DIC is particularly useful for studying production and
respiration dynamics in the open ocean [19, 20]. TA can be
used to study calcification and dissolution processes.
Anthropogenic carbon inventory calculations often use both
DIC and TA [21].

Observing changes in ocean conditions on the spatiotem-
poral scales necessary to constrain carbon uptake, storage
rates, and subsequent ecosystem impacts remains a significant
challenge. Prior to the development of autonomous systems to
measure ocean carbonate chemistry, our understanding of the
ocean carbonate system has come largely from discrete mea-
surements on repeat hydrography cruises that occupy transects
across the ocean basins approximately every decade [21–23],
monthly to seasonal time-series stations at single locations [7],
and underway surface observations of pCO2 from research
vessels and ships of opportunity [24]. These programs have
provided invaluable knowledge such as the ability to quantify
anthropogenic carbon inventories of the global ocean [2],
mean annual oceanic air-sea CO2 flux [25], and open-ocean
acidification rates [7]. However, there are limitations for ship-
based observing strategies. For example, large areas of the
ocean have never been sampled due to long transit times and
the expensive operating costs of research vessels. Decadal
observations provide no information on seasonal or interan-
nual variability. Data can be skewed towards summer months,
as research cruises are more frequently conducted during
calmer months especially in regions like the Southern Ocean
where harsh wintertime conditions make shipboard operations
difficult. Capturing the dynamic spatiotemporal variability in
coastal oceans can also be challenging from shipboard mea-
surements. In order to meet future scientific and societal
needs, development of new observational strategies is
required.

The recent expansion of autonomous platforms such as
moorings, profiling floats, underwater gliders, and mobile

surface vehicles provides a scalable solution to this
undersampling problem. Moorings are floating buoys an-
chored to the bottom of the ocean for typical deployment
lengths of up to a year. Profiling floats are buoyancy-driven
drifters that sample the water column on a regular cycle,
staying in deep waters in between profiles to conserve battery
power and limit bio-fouling [26]. Steerable profiling vehicles
can be buoyancy-driven underwater gliders [27], or propeller-
driven autonomous underwater vehicles [28], with tradeoffs
between deployment length and speed. Mobile surface vehi-
cles are relatively new tools for biogeochemical observations,
powe r ed by w ind o r wave en e rgy t o a ch i e v e
comparatively fast speeds while carrying larger payloads than
floats or gliders. While observations of pCO2 from moorings
are robust and established, deployments of sensors that mea-
sure carbonate system parameters have only recently begun on
other autonomous platforms. In particular, the recent addition
of pH to profiling platforms has set the stage for revolutionary
developments in this field. For example, as of January, 2019,
over 10,000 pH profiles (biogeochemical-argo.org) have been
made from profiling floats since the first deployments in 2012.
This is over twice the number of ship-based pH profiles span-
ning 1972–2013 [29]. Autonomous platforms and vehicles
provide finer scale resolution and coverage than ships or
moorings can provide and will form an important part of our
future ocean carbonate observing system.

In order to distinguish long-term changes in processes from
variations in the natural mean state, it is necessary to observe
processes over the relevant temporal and spatial scales [30].
For instance, patterns of air-sea CO2 exchange are important
to observe on short time and space scales in order to under-
stand the gas exchange component of surface observations,
but also must be measured globally over annual and decadal
time scales to understand long-term changes in the oceanic
uptake of anthropogenic CO2. Autonomous platforms inher-
ently involve tradeoffs in lifetime, payload, power consump-
tion, and measurement frequency, meaning that no single tool
can adequately sample all of the various processes of interest
(Fig. 1). For most processes, fully capturing the relevant scales
of variability and change will require a mix of vehicles. For
example, individual floats can be interpreted in a 1-
dimensional sense, providing detailed information on gas ex-
change and upper ocean processes, while an array of floats,
moorings, and gliders can provide information on basin to
global scales.

In this review, we summarize work from the past 5 years
highlighting the expansion of our autonomous carbonate ob-
serving capabilities, and some of the key recent scientific dis-
coveries. Recent reviews have highlighted advances in car-
bonate sensor technology [31, 32] so we instead focus on
the autonomous instrumentation that currently comprises our
carbonate observation network and promising emerging tech-
nologies. In this paper, we review (1) current autonomous
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observational capabilities, (2) emerging sensors and autono-
mous platforms for carbonate observations, and (3) challenges
for the measurement and interpretation of these novel
observations.

Current Autonomous Observational
Capabilities

Surface CO2 Measurements

Surface moorings are the oldest platform for autonomous ob-
servation of the carbonate system. Moorings provide high-
frequency observations that can be extended for years to

decades, making them suitable to observe variability and
long-term changes in ocean chemistry at a given location
(Fig. 1). Moorings are a relatively large-capacity platform that
can be serviced regularly, allowing for the deployment of
complex systems with minimal size and energy constraints.
The most common and widespread carbonate system obser-
vations on moorings are of pCO2 by the Moored Autonomous
pCO2 (MAPCO2) system [33]. Originally developed from the
technology used on shipboard underway systems [34], the
MAPCO2 system sequentially measures atmospheric and sea-
water pCO2 using a nondispersive infrared detector. These
measurements yield the pCO2 difference between air and wa-
ter (ΔpCO2) with an uncertainty of ± 2 μatm [33]. A key
characteristic of this system is the ability to conduct frequent

Fig. 1 Observational capabilities and carbonate system processes as a
function of time and space. Ocean processes that affect the carbonate
system (solid colored shapes with labels in the caption) are depicted as
a function of the temporal and spatial scales over which they must be
observed to capture important variability and/or long-term change. The
ability of different platforms to capture carbonate system processes is
overlaid for conventional approaches (red boxes, thinner lines) and au-
tonomous arrays (black, thick lines). Not all observational platforms cur-
rently provide equivalent measurements capabilities, in terms of either
parameters measured or spatial/temporal resolution. For example, profil-
ing floats are only equipped with pH sensors at present, while the
Volunteer Observing Ships provide only underway surface measure-
ments. Furthermore, the capability of a given platform to provide long-

duration measurements is not entirely captured in this figure; a research
cruise may provide a snapshot of a mesoscale process over several weeks,
but does not typically capture that process repeatedly over time. The exact
spatial and temporal sampling area covered by each platform will change
as arrays develop and mature; we have attempted to indicate the spatial
sampling coverage likely over the next 5 years. Note that the mooring box
includes both open-ocean observatories and compact, fixed observatories
deployed in coastal and benthic regions. Box boundaries that are directly
adjacent to one another (i.e., the upper boundaries of Profiling floats,
Decadal Hydrographic Survey, and Volunteer Observing Ships) indicate
the same temporal or spatial boundary but are offset for clarity
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in situ calibrations using traceable standard gases to achieve
climate-quality pCO2 data when combined with careful pre-
and post-deployment quality control and calibration [33].

MAPCO2 systems are deployed in a global network at over
40 locations, ranging from open ocean sites to the coastal
ocean, with the oldest records spanning up to 15 years
(www.pmel.noaa.gov/co2/, [35, 36]). These moorings record
year-round observations at most sites, characterizing
subseasonal to interannual, as well as regional variability of
pCO2 in an array that can be used to understand the large-
scale processes that influence air-sea carbon dioxide fluxes.
For example, long-term observations in a tropical coral reef
system demonstrated the importance of various processes that
influence air-sea CO2 flux including rainfall, nutrient delivery,
winds, and local biological communities [37, 38]. Sustained
mooring observations in the Tropical Pacific revealed that cli-
mate forcings such as El Niño/La Niña cycles [35, 39] and
anomalous warming events in the Pacific [40] are dominant
drivers for interannual variability of pCO2. Furthermore, these
surface observations of pCO2 are compiled along with ship-
board observations into the Surface Ocean CO2 Atlas
(SOCAT) [24], providing crucial information about the season-
al cycle for calculating global air-sea CO2 fluxes (e.g., [41, 42]).

In addition to using surface observations of CO2 to quantify
large-scale air-sea fluxes and understand the ocean’s role in
the global carbon cycle, surface CO2 observations have led to
an increased understanding of biogeochemical processes in
the upper ocean. In order to understand biogeochemical pro-
cesses, a second carbonate parameter is needed to fully con-
strain the carbonate system. pH sensors have been developed
for moorings (e.g., [43]) but the strong covariance of pCO2

and pH means that uncertainties in either measurement trans-
late to large uncertainties in the other calculated carbonate
system parameters that greatly exceed the uncertainty from
using two parameters that covary less strongly [19, 44, 45].
Empirical algorithms relating TA to commonly measured sur-
face variables have allowed the use of single carbonate system
parameters such as pCO2 to yield new understanding of sur-
face carbonate chemistry. For example, in a pair of papers,
Fassbender et al. [19, 20] used mooring observations from
Ocean Station Papa (Gulf of Alaska) and the Kuroshio
Extension to decompose surface biological production into
its organic and inorganic components. Similarly, the equatori-
al pCO2 observations used to characterize the relationship
between pCO2 and El Niño/La Niña were combined with
an algorithm estimate for TA to determine that pH in the
region was more variable and changing faster than expect-
ed [35]. In coastal regions, MAPCO2 measurements off
the Eastern coast of the United States were used to show
that riverine input and local biological production and
respiration were strong drivers of seasonal cycles in
pCO2 [46], while annual coral reef calcification rates were
estimated for a rim reef near Bermuda [47].

While the MAPCO2 network is providing highly accurate
observations and playing a critical role in our understanding of
the global ocean carbonate cycle, there are some limitations.
For example, moorings cannot provide spatial context to the
temporal variability they observe. Furthermore, the costs asso-
ciated with maintaining and servicing the moorings, especially
in the open ocean, make it unlikely that we will be able to
significantly increase the size of the mooring array. Finally,
subsurface processes greatly affect surface carbonate chemis-
try; thus, while surface variability can be observed from
MAPCO2 sensors on moorings, the technology employed on
these buoys requires frequent in situ calibration using standard
gases, whichmakes it unsuitable for subsurface measurements.

Compact, Fixed Observatories

In recent years, a number of in situ sensors for carbonate
chemistry have become commercially available, making au-
tonomous measurements more accessible to the community
[31]. These sensors allow for routine deployments in a wide
range of ecosystems by research groups that are not necessar-
ily experts in instrumentation. We make a distinction from the
surface mooring pCO2 systems in the previous section, as
these sensors are smaller (i.e., can be carried by a single per-
son), can make subsurface measurements, and do not require a
large surface mooring for deployment.

pH and pCO2 sensors are available from multiple vendors
that utilize a range of sensing techniques [31]. The
International Ocean Carbon Coordination Project (www.
ioccp.org) maintains an online database with the current
status of technology for carbonate chemistry instrumentation.
The development of pH sensors based on the Honeywell
DuraFET Ion Sensitive Field Effect Transistor (ISFET) tech-
nology is arguably one of the most significant recent advance-
ments in autonomous carbonate chemistry measurements. The
DuraFET was originally designed for industrial applica-
tions [48], but was adapted for oceanographic use after
demonstrating excellent stability and performance in sea-
water [49]. Nernstian behavior over large ranges in pH
and salinity was observed, allowing for accurate measure-
ments of pH [50]. The DuraFET was first adapted for
shallow water applications [51], and was further modified
for high-pressure, profiling float applications [52]. The
details and applications for the latter will be presented in
the next section. In this section, we highlight studies that
utilized self-contained autonomous sensors in fixed loca-
tions to investigate carbonate dynamics, with an emphasis
on coastal systems.

Nearshore coastal ecosystems are among the most produc-
tive in the world and are significant contributors to biodiver-
sity [53]. They also provide huge societal benefits through
storm protection and water quality improvement, and provide
billions of dollars in revenue from fishing, recreation, and
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tourism [54]. Many organisms that are thought to be vulnera-
ble to ocean acidification reside in these habitats, such as
bivalves, corals, and calcifying algae [10]. Coastal ecosystems
are highly dynamic, and can experience natural variability on
timescales ranging from hours to interannual (Fig. 1). The
magnitude of this natural variability can in some cases be
significantly larger than the expected changes due to ocean
acidification [55]. High biomass and productivity, a shallower
water column, and more pronounced changes in physical con-
ditions contribute to high-frequency variability, which is dif-
ficult or impossible to capture using discrete sampling ap-
proaches [56].

Compact fixed observatories are particularly useful in char-
acterizing high-frequency variability, and helped guide ocean
acidification research in investigating the impacts of natural
variability. For example, Hofmann et al. [55] compiled pH
sensor data from ecosystems ranging from Antarctica to trop-
ical coral reefs, and presented distinct biome-specific pH pat-
terns that occur on diel, semi-diel, and stochastic timescales.
This led to further investigation into exploring patterns of
variability in ecosystems such as kelp forests [57, 58], coral
reefs [59–62], seagrass meadows [63, 64], continental shelf
[65], and upwelling regions [66, 67]. Diel pH variability in
coral reefs was found to correlate with community structure
and net accretion rates [68], suggesting the potential for natu-
ral variability to influence impacts of ocean acidification.
Such observations are driving studies to examine the role nat-
ural variability plays in organismal response in ocean acidifi-
cation experiments [69–72].

High-resolution coastal data can also be used to model
future carbonate conditions using habitat-specific ocean acid-
ification models. For example, the first high-frequency near-
shore record of pH from under sea ice in Antarctica was used
to model future wintertime pH [73]. Takeshita et al. [67]
decomposed CO2 variability into its natural and anthropogen-
ic components and used different atmospheric CO2 pathways
to model future conditions over an upwelling shelf. The full
carbonate system was reconstructed and projected to the end
of the century by combining sensor time series and a mecha-
nistic model for a seagrass bed [64]. Development of autono-
mous systems that can directly measure key fluxes such as
benthic metabolism [74, 75] or air-sea flux [76] will help in
properly parameterizing such models [77]. These model out-
puts can act as another guide for experimental conditions in
ocean acidification studies of ecosystem responses, a crucial
complement to large-scale open-ocean observing systems.

Global Ocean Observations from Profiling Floats

Profiling floats are the only autonomous observational plat-
form that has been demonstrated to be scalable to a global
level for any measurement, and are particularly suited to study
basin-wide to global processes on seasonal to interannual

timescales (Fig. 1). The Argo profiling float array currently
consists of approximately 4000 floats, returning temperature
and salinity profiles from 2000 m to the surface every 10 days
from around the globe [26]. Given the ability of a float array to
make observations on seasonal to interannual timescales at
basin to global scales, significant effort has been devoted to
integrating biogeochemical sensors onto profiling floats, in-
cluding oxygen [78, 79], nitrate [80], and bio-optical measure-
ments for chlorophyll a fluorescence [81] and particle back-
scatter [82]. These biogeochemical profiling floats have been
used to study production dynamics [83–87], nutrient delivery
to oligotrophic waters [88], oxygen minimum zone dynamics
[89], regional air-sea fluxes [90–92], and elemental ratios
[93]. A pCO2 sensor has been integrated onto a profiling float
[94], but has not left the prototyping phase due to issues such
as long response time, need for frequent recalibration, and
high power requirements. An ISFET-based pH sensor repre-
sents the most recent addition to the sensor suite available for
biogeochemical profiling floats and has been demonstrated to
be robust and stable throughout the depth range and lifetime of
floats [52].

Until recently, most biogeochemical profiling floats were
deployed in small numbers by individual researchers or small
groups. Building on the success of these individual programs,
the Southern Ocean Carbon and Climate Observations and
Modeling (SOCCOM) program began the first attempt at cre-
ating a biogeochemical float array at the basin scale [95]. The
Southern Ocean plays a disproportionate role in moderating
the climate through heat uptake, anthropogenic CO2 uptake
[96], and nutrient delivery to the thermocline [97], yet remains
chronically under-sampled due to its remoteness and harsh
conditions, especially during the Austral winter. To address
this, the SOCCOM project began deploying biogeochemical
profiling floats in 2014 with the goal of establishing an array
of 200 floats over 6 years [95]. The floats are equipped with
oxygen, nitrate, pH, and bio-optical sensors, and provide mea-
surements every 10 days. Currently, there are over 120 pH-
equipped floats operating in the Southern Ocean (soccom.
princeton.edu), demonstrating that technological challenges
have been overcome to operate large biogeochemical float
arrays. After post-deployment quality control, (described in
the BChallenges^ section), these float pH measurements show
excellent agreement with independent bottle samples collect-
ed at the time of deployment to + 0.005 ± 0.01 (n = 952 bottle
samples; updated from Johnson et al. [95]).

The array of biogeochemical floats in the Southern Ocean
is providing novel insights into air-sea CO2 fluxes and bio-
geochemical processes. For example, large discrepancies in
winter surface pCO2 between float observations and climatol-
ogies based on shipboard observations [25] are consistently
observed [98–101]. This is not particularly surprising because
wintertime shipboard data are sparse. However, the implica-
tions for this discrepancy are potentially immense. An initial
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analysis of 35 floats over 3 years in the Southern Ocean found
an annual uptake of only 0.08 ± 0.55 Pg C year−1, instead of
the ~ 1 Pg C year−1 uptake calculated from ship-based esti-
mates, due primarily to increased wintertime outgassing
around the Polar Front [100]. This discrepancy represents ap-
proximately 50% of the annual contemporary global oceanic
CO2 uptake [1], and would pose a major challenge to our
understanding of the global carbon budget by effectively elim-
inating the role of the Southern Ocean as a carbon sink.
However, a follow-up study combining the float observations
with the mooring and underway pCO2 dataset (SOCAT) indi-
cates that while the outgassing observed by the SOCCOM
floats is real and significant, it likely represents a more modest
reduction in the Southern Ocean carbon uptake (Bushinsky
et al., in review, Global Biogeochemical Cycles).

Float-based estimates of other carbonate system parameters
can be used in conjunction with biogeochemical sensor data
such as nitrate or oxygen as an additional constraint on bio-
geochemical processes. Williams et al. [99] combined
SOCCOM float-derived carbonate system estimates and ni-
trate data to decompose the seasonal drivers of the carbonate
system, finding that carbonate system seasonal cycles agree
well with previous climatologies in the spring and summer
months but differ in winter months when data were previously
sparse. Measurements of biogeochemical parameters under
sea ice have been particularly lacking, and this is especially
true for carbonate observations. Estimated DIC from under-
ice floats was used to help quantify under-ice heterotrophy,
but yielded intriguing stoichiometric ratios between inorganic
carbon, oxygen, and nitrate that warrant more exploration
[102]. These studies highlight the large knowledge gaps that
could only be revealed through an array of sustained, autono-
mous observations.

Emerging Technologies

In this section, we discuss the likely platforms and sensors that
will comprise our near- and long-term autonomous future in
observing the carbonate system. One notable development
currently underway is the transition of relatively mature car-
bonate observing sensors from moorings and floats to gliders
and autonomous surface vehicles, which involves
repackaging of systems rather than development of new sen-
sors. We also discuss new sensing technology for carbonate
sensors and the opportunities they might bring.

While moorings and an ever-increasing number of profil-
ing floats are sampling the open ocean and small-scale local
observatories have been deployed in many near-shore loca-
tions, there is currently a gap in autonomous carbonate obser-
vations of regional processes. Coastal regions, boundary cur-
rents, and other meso- and submesoscale processes all have

significant importance to the global carbon cycle but currently
lack sustained autonomous observations for carbonate chem-
istry [103]. These regions have higher spatial and temporal
variability than can easily be sampled by ships and are either
too shallow or have fast moving currents that limit sampling
by profiling floats. For example, the California coastal upwell-
ing region is both an important fishery and likely to experience
early effects of acidification. Cruise transects have observed
significant seasonal upwelling-driven corrosive waters (Ω < 1)
on the shelf [104] and some areas experience persistent under-
saturated conditions [105]. Coastal glider transects using
buoyancy-driven vehicles in the California Current System,
as part of the California Cooperative Oceanic Fisheries
Investigations (CalCOFI) have been used to calculate Ω
[106] using empirical relationships with temperature and ox-
ygen [107], finding periodic undersaturation in nearshore
waters.

Underwater gliders have been demonstrated to be an effec-
tive platform at studying submeso- to mesoscale processes
such as fronts and eddies, and to connect the coastal ocean
to the open ocean [27]. Equipping gliders with carbonate pa-
rameter sensors should provide a much more spatially and
temporally detailed understanding in these complex and im-
portant regions. Developing new, or adopting existing sensing
technology for mobile profiling platforms is challenging, as
there are significant constraints on size, reagent consumption,
power, response time, and requires well-characterized dynam-
ic errors as the platform moves through the water column.
Despite these challenges, there are some larger powered au-
tonomous underwater vehicles (AUVs) that have been
equipped with pCO2 sensors [108] and initial test deploy-
ments of pH on gliders look promising [109, 110]. Such re-
gions will also likely require integration of overlapping vehi-
cles and platforms to make best use of the tradeoffs in dura-
tion, capacity, and sensor capabilities of our available observ-
ing capabilities (Fig. 1).

Another powerful platform for carbonate observations are
autonomous surface vehicles powered by wind or waves.
Vehicles such as Wave Gliders [111] and Saildrones [112]
are faster and more mobile than buoyancy-driven gliders but
more expensive to operate and typically have shorter deploy-
ment durations. A CO2 system originally designed for moor-
ing operations [34] and an ISFET pH sensor mounted on a
Wave Glider have produced high-resolution observations of
surface pCO2 and calculated air-sea CO2 fluxes in Monterey
Bay, California [113]. Similarly, Saildrones have been
equipped with modified MAPCO2 systems [114] and
DuraFET pH sensors and are capable of sampling fast moving
currents that may be inaccessible to profiling floats or gliders.

The development and refinement of existing sensing tech-
nology will be essential to expanding our autonomous observ-
ing capabilities. For example, refinement of sensor design and
conditioning significantly reduced initial drift for pH sensors
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on profiling floats [95]. Continuing to improve our current
sensor designs for reliability, performance, and reduction in
cost is an underappreciated yet important task. Solid state, low
power optical sensors for pH and pCO2 that use similar sens-
ing principles to the successful and widespread O2 sensor have
shown promising results in the laboratory and on autonomous
platforms [115, 116]. The development of robust, autonomous
measurements for additional parameters such as DIC, TA, or
carbonate ion concentration ([CO3

2−]) is also highly desired.
While using empirically estimated TA is appropriate for some
situations, this approach will not work in many coastal sys-
tems such as estuaries and coral reefs. Prototype in situ mea-
surement systems for DIC [45, 117–119] and TA [120] have
been successfully deployed with encouraging results.
However, all of these approaches utilize multiple pumps and
valves, making power consumption, size, robustness, and reli-
ability major challenges to overcome. Development of Blab-
on-chip^ devices has made great strides toward conducting in
situ chemistry on microfluidic scales [121], and could provide
a path forward for such in situ analyzers. Successful deploy-
ments of lab-on-chip devices on underwater gliders have been
demonstrated for nitrate [153]. Innovative TA sensors that gen-
erate hydrogen ions in situ through coulometry [122] or ion-
selective membranes [123] to conduct chronopotentiometric
titrations have also been demonstrated in the laboratory.
These sensors are small, solid state, and low power, making
them promising candidates for in situ sensing applications.

Recently, a method for accurate [CO3
2−] measurement

based on spectrophotometry has been developed [124–126].
[CO3

2−] measurements are particularly useful when the pri-
mary target is saturation state. The measurement principle is
very similar to spectrophotometric pH, and thus should be
adaptable for autonomous applications. [CO3

2−] is used to
calculate the saturation state of calcium carbonate (Ω) and
the ability to measure [CO3

2−] adds a fifth Bmaster^ variable
to evaluate the carbonate system [4, 125]. This measurement
could become a new and exciting tool to monitor ocean acid-
ification [127, 128], especially in coastal areas where low
saturation state is thought to be the primary driver for delete-
rious impacts from ocean acidification for organisms such as
bivalve larvae [13, 129] and pteropods [130].

The amount of particulate carbon produced in the form of
calcium carbonate relative to primary production of organic
carbon is an important but poorly constrained component of
the carbonate cycle [131]. Profiling floats have been equipped
with optical sediment traps to estimate vertical particle fluxes
out of the upper ocean. Initial results indicate these can be
converted into carbon flux estimates [132]. The highly spe-
cialized Carbon Flux Explorer profiling floats can observe
sinking particles and determine particulate inorganic carbon
rain rates in addition to organic carbon, finding significantly
greater export in the wintertime than indicated by more basic
sediment traps [133]. These technologies may provide an

additional constraint on estimates of inorganic carbon produc-
tion from measured carbonate system parameters.

Challenges

In addition to the development of new sensing technology,
similar amounts of effort should be devoted to the develop-
ment, adoption, and validation of robust calibration protocols.
Calibration protocols are essential for successfully operating a
network of autonomous platforms, as they ensure accuracy
and consistency throughout the array, and sensor drift can be
identified and corrected. Such a protocol has been established
and implemented for pH on profiling floats. The conductivity
sensor (used to calculate salinity) on Argo floats is corrected
using deep waters (> 1500m), as conditions are stable and can
be predicted using hydrographic measurements [134].
Following this approach, pH sensors are corrected by compar-
ing sensor pH to a deep reference pH field at 1500m [95]. The
reference pH field is calculated from empirical relationships
derived from hydrographic data using temperature, salinity,
pressure, and oxygen as inputs [135]. These algorithms can
be region-specific [135] or global [136–138]. It should be
noted that the accuracy of the reference pH field, and thus
corrected sensor pH, depends on other parameters measured
on the float such as temperature, salinity, pressure, and oxygen
[98]. Therefore, the quality of calibration for the other sensors
will affect the final corrected pH data as well. Furthermore,
regions where anthropogenic carbon has penetrated into the
deep ocean such as the North Atlantic will require regular
updates to the algorithms, or inclusion of more robust tempo-
ral trends in the algorithm [136]. The quality of float pH data is
similar to those from state-of-the-art hydrographic cruises,
demonstrating the capability of accurately observing carbon-
ate chemistry from autonomous profiling arrays.

Validation of the SOCCOM calibration protocols has been
achieved through the hydrographic casts and discrete bottle
data that typically accompany each float deployment. While
this has been instrumental for the development and validation
of quality control protocols [95], it is not feasible to accompa-
ny every biogeochemical float deployment with a full cast of
discrete bottle samples. Thus, it will be important to prepare
for deployment strategies without validation samples, while
continuing to assess the performance of this quality control
protocol in different ocean basins. Furthermore, data adjust-
ment based on deep reference pH fields is not always possible,
such as for moorings, shallow water process studies, or small-
scale observatories. Integrating in situ calibration functionality
using certified reference materials such as tris buffer for pH
[139] will allow for consistent and accurate datasets across
multiple platforms and research groups. Asmore sensing tech-
nologies continue to become available, establishment of best
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practices [51] to ensure proper calibration, quality control, and
sensor intercomparability will be essential.

In addition to calibration of individual carbonate sensors, it
is essential that the uncertainties in the estimated carbonate
variables are critically assessed. For example, a careful
bottom-up uncertainty analysis yielded an estimate of ±
2.86% uncertainty in the SOCCOM float-based pCO2 esti-
mates, equating to approximately ± 11.4 μatm at 400 μatm
pCO2 [98]. This represents the absolute accuracy of a single
float, but the ability of pH-derived pCO2 to track spatiotem-
poral patterns over, e.g., a seasonal cycle is significantly better
and is estimated to be ± 5.5 μatm [140]. However, the season-
al to multi-annual long-term stability of surface pCO2 esti-
mates has not been characterized. No studies have investigat-
ed in equal detail possible biases in estimates of DIC or Ω.
Furthermore, it is important to distinguish between systematic
biases that affect the entire array in the same direction and
random uncertainties in individual observations or sensors
that are uncorrelated and will average out over the fleet.
Small systematic biases in estimated pCO2 can have a large
impact when scaled up to global air-sea flux estimates. The
average difference between shipboard underway pCO2 and
float-estimated pCO2 is 3.7 μatm pCO2 (n = 35–39) [99,
100]. However, it is unclear whether or not this represents a
real systematic bias in the float estimates, or an artifact due to
small sample size and spatiotemporal variability (± 1 day and
± 25 km) between float and ship measurements. Increased
efforts to validate float pCO2 estimates and determine the
magnitude of any bias are crucial as these biogeochemical
Argo float deployments expand.

Several issues have been identified in our current thermo-
dynamic model of the marine carbonate system. A recent
analysis demonstrated that uncertainty in carbonate system
equilibrium constants was a dominant source of error when
other parameters in the carbonate system were calculated
[141]. For example, a pH-dependent bias between directly
measured pH using spectrophotometry and pH calculated
from TA and DIC has been identified [136], though the scope
and nature of the bias is still under investigation by the com-
munity. This has implications for how to calibrate pH sensors
using deep values, and its associated uncertainty when esti-
mating surface pCO2 [98]. These thermodynamic parameters
are characterized through careful laboratory experiments and
are not as well defined for some of the less commonly sampled
waters such as in sea ice regions and coastal waters. In the case
of sea ice, where waters are routinely below 0 °C, commonly
used carbonate system constants do converge, but brackish
coastal waters may require more work [142, 143]. Coastal
waters may also contain an unknown contribution of organic
alkalinity that is not parameterized in the inorganic carbonate
model [144, 145]. These results have highlighted the need for
more research into understanding where the uncertainties in
the carbonate system may lie [146].

As introduced earlier, float pH measurements can be com-
bined with empirical algorithms of TA to calculate other car-
bonate parameters. Recently, two new algorithms have been
developed to estimate TA and other carbonate system param-
eters on a global scale based on the same global ocean discrete
bottle sample dataset [29]. The LIR (Locally Interpolated
Regression) uses a multiple linear regression approach, and
interpolates the coefficients of the regression model to any
location [136, 147], providing a smooth transition between
region-specific relationships. The second approach is
CANYON (CArbonate system and Nutrients concentration
from hYdrological properties and Oxygen using a Neural-net-
work), which uses a neural network [137, 138]. Both ap-
proaches are capable of estimating TA with uncertainties of
about ± 6–8 μmol kg−1 globally, though a detailed comparison
between these two algorithms has not been performed and
region-specific algorithms may still be necessary [98]. These
global algorithms are an enabling step for a global profiling
float array and other autonomous platforms as they provide a
framework to calibrate future sensors as the array continues to
expand.

Until widespread observations of multiple carbonate pa-
rameters are possible, the community will likely continue to
rely on algorithm and mapping approaches for carbonate sys-
tem parameters. Simultaneously measuring two carbonate pa-
rameters would alleviate the need to rely on algorithm ap-
proaches to estimate TA, but would not remove the need to
interpolate and extrapolate from available observations to pro-
vide spatially resolved maps. While improvements in map-
ping methods (e.g., [41, 138]) are an essential component in
understanding the oceanic CO2 flux on annual to decadal
timescales, these products still suffer from any biases that exist
in the underlying observational dataset and will require the on-
going addition of in situ data to maintain their utility. Just as
new profiling float-based estimates of pCO2 indicate that the
interpolation schemes used for surface observations of pCO2

cannot reproduce a signal they do not observe, it is likely that
issues will arise with the use of empirical algorithms for TA
and other carbonate system parameters. For example, in re-
gions with highly variable CaCO3 production, empirical algo-
rithms based on temperature, salinity, and oxygen alone will
not necessarily capture changes in TA associated with calcifi-
cation and dissolution. Additionally, these algorithms must be
continually updated with new training data as surface condi-
tions change due to acidification and natural interannual or
decadal variability. Therefore, high-quality ship-based obser-
vational programs such as the repeat hydrography and time
series programs are critical and will remain a fundamental
component of our autonomous future.

The expansion of autonomous observations of the carbon-
ate system should be matched with an increased ability to use
and interpret these new measurements. While the makeup of
our developing observing system is still in flux, it is clear that

214 Curr Clim Change Rep (2019) 5:207–220



the network will be a mix of stationary and mobile platforms
that produce both direct measurements and derived quantities.
Integration of these autonomous observations with conven-
tional shipboard measurements for use in data synthesis and
modeling approaches will be key to leveraging our existing
and future capabilities for maximum benefit.

Continued advancement of data management is required to
deal with the increasing volume and types of data to make it
accessible to the outside community, especially modelers.
These data must be readily available, well-documented, and
in a user-friendly format to be useful. For example, providing
data in a unified data format and stored in central locations has
been crucial to the success of the core Argo array, but addition
of biogeochemical parameters presents new challenges in
post-deployment quality control and data management. The
development of cyber infrastructure to deal with differing data
formats, recording and propagation of uncertainties, and mak-
ing data available for near-real-time assimilation into forecast
models will all make these datasets more useful. Coordination
between the observation, modeling, and data management
communities from the early stages of planning will help with
this effort.

A successful example of such coordination between com-
munities has been demonstrated by the SOCCOM project
[148]. During the planning stages of the project, Observing
System Simulation Experiments (OSSEs) were used to simu-
late an array of Southern Ocean biogeochemical profiling
floats and to examine the reconstruction skill that could be
achieved from the fleet [149, 150]. These OSSEs provided
critical information about the number of floats required to re-
produce observed patterns of oxygen, DIC, and air-sea CO2

fluxes. The development of the Biogeochemical Southern
Ocean State Estimate (B-SOSE; [151]), a data-assimilating
numerical model which seeks to minimize model-observation
differences using conserved model dynamics, now provides
observationally informed output in a gridded format useful
for prognostic model evaluation [152]. Looking ahead, the
use of observations in conjunction with models, either through
assimilating state estimate models or to validate prognostic
models, is a powerful tool for synthesizing existing observa-
tions and extrapolating our understanding into the future.

Conclusions

The past 5 years have seen the expansion of our autonomous
carbonate observing system. Existing observations by moor-
ings have become an integral part of the community’s ability
to estimate large-scale CO2 fluxes which are critical to our
understanding of the ocean’s role in climate. Float-based esti-
mates of pCO2 are supplementing these observations, adding
new information about previously poorly sampled seasonal cy-
cles. The impact of new pH sensors deployed on SOCCOM

biogeochemical profiling floats has demonstrated how basin-
scale measurements of the carbonate system can fundamentally
alter our understanding of the carbon cycle. Expansion of this
approach globally could be an invaluable addition to our car-
bonate observing system, complementing high-accuracy ship-
board observations and broadening our understanding of the
global carbonate system. These large-scale observations have
been matched by the increase in small-scale observatories in
coastal shelf ecosystems and coral reefs.

While our ability to observe the carbonate system has ex-
panded dramatically in recent years, we are often limited to
observations of only one carbonate system parameter at a
time. For now, empirical estimates of total alkalinity have
provided sufficient information to calculate the entire carbon-
ate system, greatly enhancing the value of existing observa-
tions. Looking forward, there are many new sensors in the
pipeline that will either enable observation on more autono-
mous platforms or observation of different carbonate system
parameters. Expansion of mature sensors onto glider plat-
forms and fast, mobile surface platforms are especially excit-
ing as the integration of sensors and vehicles is already under-
way. We are currently in the midst of a massive change in
observational capability for the ocean biogeochemical com-
munity and close to a future where the most important pro-
cesses impacting the ocean carbonate system will be observ-
able at high accuracy and at high-resolution spatial and tem-
poral scales.
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