Skip to main content
Log in

Transcript analysis of abscisic acid-inducible genes in response to different abiotic disturbances in two indica rice varieties

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The present study focused upon comprehensive analysis of the expression of stress-responsive genes at different time points in two indica rice varieties, IR-64 (moderately salt-sensitive) and Nonabokra (salt-tolerant), under salinity, dehydration and cold, and exogenous ABA treatment. The massively parallel signature sequencing and publicly-available microarray data indicated the physiological role of the concerned genes in different tissues. Gene expression through semi-quantitative reverse transcriptase-polymerase chain reaction followed by factorial analyses of variance identified that members of the antioxidant genes (OsCAT, OsSOD, OsGR2 and OsAPX8) showed early response and higher expression under different abiotic stresses in IR-64. The TFs and LEA family (TRAB1 and Osem), osmolyte (OsBADH1, OsP5CS) and polyamine (SAMDC) metabolic genes were more up regulated in the salt-tolerant cultivar, whereas the proline (ProDH) and polyamine (DAO and PAO) catabolic genes were significantly up regulated in the salt-sensitive one. The higher accumulation of TRAB1 transcript and protein in the tolerant cultivar during various stresses suggested it as an important component in stress signaling pathway, which participates in mediating cross-talk signaling between diverse metabolic pathways to withstand various forms of abiotic stress. Heat map data further corroborated differential transcript abundance in the two varieties, coinciding with the transcript profiling data. We envisage that the identified genes in this study, linked with tolerance against various abiotic stress factors, are the chief candidates involved in regulating the complexity of multiple stress responses in rice. The finding of the candidate genes in this study would be helpful in generating multiple abiotic stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

Financial assistance from Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India through the research grant (SR/FT/LS-65/2010) and from Council of Scientific and Industrial Research (CSIR), Government of India, through the research grant [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. The authors are thankful to University Grants Commission (UGC), Government of India, for providing Senior Research Fellowship to Saikat Paul.

Author information

Authors and Affiliations

Authors

Contributions

SP generated all the experimental data, performed all the statistical analysis and drafted the manuscript. Dr. AR critically analyzed all the experimental results as well as the final manuscript and supervised the entire work through his major research projects.

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in publishing this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Roychoudhury, A. Transcript analysis of abscisic acid-inducible genes in response to different abiotic disturbances in two indica rice varieties. Theor. Exp. Plant Physiol. 31, 249–272 (2019). https://doi.org/10.1007/s40626-018-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-018-0131-4

Keywords

Navigation