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Abstract 
Purpose of Review This review serves to highlight the cross-kingdom interactions that can occur within the human oral cavity 
between fungus Candida albicans and oral bacteria, and their impact on the delicate balance between oral health and disease.
Recent Findings A growing number of physical, chemical, and metabolic networks have been identified that underpin these 
cross-kingdom interactions. Moreover, these partnerships are often synergistic and can modulate microbial burden or viru-
lence. This, in turn, can drive the onset or progression of oral diseases such as dental caries, periodontitis, denture-associated 
stomatitis, and oral cancer.
Summary The impact of cross-kingdom interactions on the cellular, biochemical, and communal composition of oral micro-
bial biofilms is increasingly clear. With growing insight into these processes at the molecular level, so this knowledge can 
be used to better inform the development of novel strategies to manipulate the oral microbiota to promote oral health and 
combat oral disease.
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Introduction 

The oral cavity is defined as the three-dimensional space 
that extends anteroposteriorly from the lips to the faucial 
pillars, from the hard palate to the floor of the mouth dors-
oventrally, and is bounded by the cheeks laterally. The oral 
cavity connects the external environment with the digestive 
and respiratory tracts and performs a wide spectrum of func-
tions, ranging from mastication and deglutition through to 
taste sensation and speech. Important anatomical structures 
found within the oral cavity include the teeth, tongue, and 
hard and soft palates. Together with other foreign materials 
(e.g. dentures, fillings, orthodontic appliances, crowns, and 
bridges), these surfaces provide a range of sites that, in turn, 
support colonisation by diverse communities of microor-
ganisms known collectively as the oral microbiome [1•]. 
As the second most diverse microbiome within the human 
body, members of the kingdoms Monera, Protista, and Fungi 
are represented in various oral habitats. To date, over 700 

different species of bacteria, together with fungi, viruses, 
archaea, and protozoa, have been found within the oral cav-
ity [2].

To optimise their existence within the distinct and unique 
micro-niches of the oral cavity, oral microbes have prin-
cipally evolved a communal lifestyle in which they form 
complex, three-dimensional, and hierarchical bio-communal 
units called ‘biofilms’. These biofilms are complex micro-
ecosystems of surface-attached microorganisms that are 
embedded within a self-produced exopolymeric matrix [3]. 
Biofilms serve to provide a protective niche for their micro-
bial inhabitants, and the role of oral biofilms in promoting 
both oral health and disease is well established [4]. In addi-
tion, strong evidence of the correlations between dysbiosis 
of the oral microbiome and various systemic diseases is 
emerging [5•]. Within oral biofilms, the microbial inhabit-
ants develop complex and unique physical, chemical, and 
metabolic interactions. These can occur between microbes 
of the same species (intraspecies interactions), different spe-
cies (interspecies interactions), or different kingdoms (cross-
kingdom interactions). Extensive crosstalk also occurs 
between the oral microbiota and the host [3]. This review 
highlights our current understanding of cross-kingdom inter-
actions within the human oral cavity between oral bacteria 
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and the predominant fungus, Candida albicans, and their 
impact on oral disease (Table 1).

Candida albicans and Oral Disease

Alongside the 700 + species of bacteria that can inhabit 
the human oral cavity, over 100 species of fungi have also 
been reported [6]. It is perhaps unsurprising, therefore, that 
complex interactions between these two kingdoms are evi-
dent. Whilst the associations of various bacterial species 
with oral disease are well established, the role of fungi in 
oral infections has been best studied in relation to Candida 
species. Other fungal genera such as Saccharomycetales, 
Cladosporium, Aureobasidium, Aspergillus, Fusarium, 
and Cryptococcus can also comprise the oral mycobiome; 
however, their association with oral disease or interactions 
with resident oral bacteria are less well known [6]. C. albi-
cans is a dimorphic, opportunistic fungus that colonises the 

oral cavities of over half the human population [7]. Cross-
kingdom interactions of this fungus with several bacterial 
species have been associated with the onset or progression 
of various oral diseases, prominent examples of which are 
outlined below.

Cross‑kingdom Interactions and Oral 
Disease

Dental Caries

C. albicans is considered a major cariogenic fungal patho-
gen and evidence suggests that, together with Streptococcus 
mutans, C. albicans can synergistically promote the onset and 
progression of dental caries of varying severity [8, 9]. Extra-
cellular polymeric substances (EPS) synthesised by the bac-
terium promote fungal growth and metabolism, which in turn 
creates a vicious cycle by stimulating further bacterial growth 

Table 1  Overview of cross-kingdom interactions between fungus Candida albicans and oral bacteria

*Ca, produced/expressed by C. albicans

Mechanism Bacteria Mediator(s)* Outcome(s) References

Physical interactions Enterococcus faecalis Unknown Coaggregation/coadhesion [8]
Porphyromonas gingivalis (Ca) Als3 – InlJ [15]
Streptococcus gordonii (Ca) Als3 – SspB [33]
Streptococcus mutans (Ca) Mannoproteins – α-glucans [39•]
Streptococcus oralis (Ca) Als1 [57]

Chemical signalling Aggregatibacter actinomycetem-
comitans

AI-2 Inhibits candidal hyphae forma-
tion

[46]

Enterococcus faecalis Gelatinase biosynthesis-activating 
pheromone (GBAP)

Inhibits candidal hyphae forma-
tion

[43]

Streptococcus gordonii Competence stimulating peptide 
(CSP)

Inhibits candidal hyphae forma-
tion

[40]

Autoinducer-2 (AI-2) Stimulates candidal hyphae 
formation

[44]

Streptococcus mutans CSP Inhibits candidal hyphae forma-
tion

[41]

Trans-2-decenoic acid (SDSF) Inhibits candidal hyphae forma-
tion

[47]

(Ca) Farnesol Promotes (< 100 µM) or impairs 
(> 100 µM) S. mutans growth

[48, 49]

Metabolic interactions Fusobacterium, Prevotella, P. 
gingivalis, Tannerella forsythia, 
Veillonella

(Ca) Aerobic metabolism Promotes bacterial growth/viabil-
ity

[54]

S. gordonii + other Streptococcus 
species

H2O2 (aerobic metabolism) Stimulates candidal hyphae 
formation

[52]
Muropeptides [51]
Nutrient by-products [10]

S. mutans Mutanobactin A Inhibits candidal hyphae forma-
tion

[53]

α-Glucan synthesis by glucosyl-
transferase B (GtfB)

Coaggregation/coadhesion; 
enhanced growth; increased 
survival in acidic microenviron-
ment

[55]
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and EPS production [10]. By associating with S. mutans, C. 
albicans benefits from the colonisation advantage conferred by 
the low pH conditions that result from S. mutans acid synthe-
sis. It is the maintenance of these acidic conditions that also 
causes severe enamel demineralisation and hence caries pro-
gression [9]. There is a substantial body of evidence to indicate 
a correlation between biofilms of C. albicans and cariogenic 
bacteria and the severity of root caries. In particular, candidal 
hyphae have been found to aid colonisation of cariogenic bac-
teria by forming filamentous networks or corncob configura-
tions with other non-mutans streptococci [11]. C. albicans is 
also frequently co-isolated with other key bacterial pathogens 
of root caries such as Actinomyces viscosus. These two micro-
organisms appear to form robust dual-species biofilms that are 
acidogenic and cause severe damage to hydroxyapatite in vitro. 
Again, this suggests a synergistic partnership that can exacer-
bate the initiation and progression of dental caries [12].

Periodontal Disease

The link between fungal and bacterial interactions and the 
pathogenesis of periodontal diseases is well established. 
C. albicans has been co-located with periodontopathogens 
such as Porphyromonas gingivalis, Tannerella forsythia and 
Treponema denticola in sites of periodontitis. Importantly, 
periodontal sites from which the fungus was co-isolated 
with either T. forsythia or T. denticola appeared to display a 
greater surface area of inflammation, suggesting a synergism 
between the bacteria and fungus triggering periodontal tissue 
damage [13]. Of all the periodontal bacterial pathogens, the 
interactions between P. gingivalis and C. albicans have been 
explored in most depth. These two microbes can engage via 
direct physical contact [14, 15], whilst host-derived heme, 
a key source of iron for both microorganisms, enhances the 
pathogenic potential of P. gingivalis in the presence of C. 
albicans. This leads to increased invasion of the gingival tis-
sues, greater destruction of periodontal tissues, and a delay 
in wound healing [16, 17]. This interplay likely also explains 
the co-isolation of P. gingivalis and C. albicans from deep 
periodontal pockets in mouse models and their association 
with active bleeding and chronic infection [17, 18].

Denture‑Associated Stomatitis

Candida species are the principal pathogens that cause den-
ture-associated stomatitis. However, various bacteria have 
been shown to modulate Candida pathogenicity as part of 
the disease process. An early in vitro study noted a synergism 
between C. albicans and oral bacteria Actinomyces oris and 
S. oralis grown on denture material, in which the bacteria 
stimulated C. albicans hyphae formation and coaggregated 
with them, whilst C. albicans enhanced bacterial cell num-
bers [19]. Similarly, a recent study has identified a potential 

synergism between C. albicans and three acidogenic bac-
terial genera — Lactobacillus, Scardovia, and Bifidobacte-
rium — in dental plaque samples isolated from dentures. A 
negative correlation was also noted for C. albicans and some 
periodontal pathogens (Porphyromonas, Catonella, Capno-
cytophaga, Bulleidia), highlighting the complexity of cross-
kingdom interactions occurring on the denture surface [20].

Oral Cancer

C. albicans is considered a potential major contributor to oral 
cancer development through its ability to trigger inflamma-
tion and induce Th17 responses, and to produce hydrolytic 
enzymes and carcinogenic acetaldehyde [21, 22]. An in vitro 
biofilm study noted that the interactions of C. albicans with 
Actinomyces naeslundii and S. mutans modulated cancer cell 
phenotype by increasing the adhesion of oral squamous cell 
carcinoma cells to the tissue extracellular matrix. This was 
accompanied by the elevated expression of proinflammatory 
cytokines, potentially generating a tumour-promoting effect 
[23]. Likewise, secretory components from C. albicans and S. 
aureus dual-species biofilms were shown to alter the expres-
sion of proto-oncogenes in normal and neoplastic oral epithelial 
cells, thus disturbing the cell cycle and potentially promoting 
oral carcinogenesis [24]. Using animal models, dysbiosis as a 
result of chemotherapy has been associated with overgrowth 
of C. albicans in the presence of Enterococcus faecalis. Again, 
this has been linked with an increase in fungal virulence that 
may enhance disruption of the mucosal barrier by the release of 
proteolytic enzymes [25]. Candida species and various bacte-
ria (e.g. P. gingivalis, Fusobacterium nucleatum, Streptococcus 
species) have also been frequently co-detected in oral squamous 
cell carcinomas [26•]. In this instance, however, strong clinical 
evidence for a causative effect has yet to emerge.

Mechanistic Basis of Cross‑kingdom 
Interactions

Physical Interactions

Early (or primary) colonisers initiate the accretion of pol-
ymicrobial biofilms on oral surfaces. These bacteria are 
mainly streptococci (e.g. S. sanguinis, S. mitis, S. oralis) 
and Actinomyces species, and are capable of directly bind-
ing to components of the salivary pellicle that coats the soft 
and hard tissues of the oral cavity. These early colonisers 
can then support the acquisition of late (or secondary) colo-
nisers, which bind to protein or polysaccharide receptors 
on the surface of primary colonisers in a process known as 
coadhesion [27]. As a late coloniser, C. albicans can physi-
cally interact with several oral bacteria, thereby enabling C. 
albicans to be retained within the oral cavity and evade the 
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flushing forces of saliva [28, 29]. This can be visualised in 
dental plaque with the formation of corncob structures, in 
which the hyphal filaments of C. albicans are decorated by 
bound bacteria including mitis group streptococci and P. 
gingivalis [11, 30–32]. At the molecular level, C. albicans 
hypha-specific cell wall adhesins, Als3 and Hwp1, have 
been shown to facilitate binding to S. gordonii and S. oralis. 
Moreover, for S. gordonii, antigen I/II family polypeptide 
SspB has been identified as the cognate ligand for Als3 [30, 
33]. Given the widespread expression of this adhesin fam-
ily among streptococci and the proposed capacity for Als3 
to bind a broad range of peptide ligands, this likely repre-
sents a common mechanism by which biofilms between oral 
streptococci and C. albicans are supported [32, 34]. Als3 
also facilitates candidal interactions with periodontopatho-
gen P. gingivalis by specifically binding InlJ [15]. In both 
instances, these cross-kingdom interactions have implica-
tions for oral disease outcome. For example, S. oralis and 
C. albicans synergise in dual-species biofilms to exacerbate 
mucosal tissue invasion and disruption of epithelial barriers 
to promote the development of oral thrush lesions [35]. Like-
wise, C. albicans enhances the expression of key virulence 
factors and tissue invasion by P. gingivalis [36], effects that 
could elevate the risk of periodontal disease progression. 
Physical interactions between C. albicans and E. faecalis 
have also been noted in recurrent endodontic infections, and 
co-infection has been shown to augment bone resorption and 
inflammation, resulting in more extensive periapical lesions. 
Again. E. faecalis has been shown to adhere to C. albicans 
hyphae as well as yeast cells within infected tooth root 
canals and dentinal tubules but in this instance, the precise 
ligand-receptor interactions have yet to be defined [37, 38].

Recently, it has also been revealed that cross-kingdom phys-
ical interactions that occur within saliva can influence subse-
quent colonisation of the tooth surface and dental caries risk. 
Specifically, clusters of S. mutans have been shown to attach to 
networks of C. albicans hyphae and glucan EPS within saliva 
to form a structured unit that displays enhanced attachment to 
the tooth surface and proliferation [39•]. Furthermore, these 
assemblages promote microbial motility and spreading, ulti-
mately resulting in the formation of a biofilm super-structure, 
the synergistic effects of which are elevated demineralisation 
of the tooth surface and progression of carious lesions.

Chemical Signalling

Complementing direct physical contact between microbes, a 
second major mechanism that underpins cross-kingdom inter-
actions within the oral cavity is chemical crosstalk. In many 
instances, it is the quorum-sensing (QS) systems that direct co-
ordinated population responses that are exploited for this pur-
pose. For oral streptococci, despite differences in the precise 
amino acid sequence, competence stimulating peptide (CSP) 

from several species, including S. mutans and S. gordonii, has 
been shown to impair candidal hyphae formation [40, 41]. Like-
wise, gelatinase biosynthesis-activating pheromone (GBAP), a 
QS molecule (QSM) associated with the Fsr QS system of E. 
faecalis, inhibited C. albicans filamentation in a Caenorhabdi-
tis elegans infection model [42, 43]. Autoinducer-2 (AI-2), the 
‘universal’ QSM, has also been shown to influence candidal 
morphogenesis but in this instance, divergent outcomes have 
been reported. AI-2 from S. gordonii was found to stimulate 
hyphae formation by C. albicans by activating mitogen-acti-
vated protein kinase Cek1p, inhibiting Mkc1p and activating 
Hog1p [42, 44]. By contrast, the inverse effect was mediated 
by AI-2 from Aggregatibacter actinomycetemcomitans [45, 46]. 
Other, non-QS signals, can also impact C. albicans, including 
trans-2-decenoic acid from S. mutans that, again, has capacity 
to impair hyphae formation [47]. Such interactions are not, how-
ever, unidirectional and chemical signals released by C. albicans 
can also modulate oral bacteria. For example, farnesol has been 
shown to promote growth of S. mutans, although when concen-
trations exceed 100 µM, this effect is reversed [48, 49]. From 
the examples provided here, it is clear that the manipulation of 
C. albicans hyphae development is a key outcome of chemical 
crosstalk within the oral cavity. This may represent a common 
strategy via which the resident microbiota functions to keep C. 
albicans levels in check and thereby benefit from the presence 
of hyphae as attachment sites, whilst avoiding possible exclusion 
due to candidal outgrowth. Given the associations of C. albi-
cans filamentation with tissue penetration and invasive disease, 
these also represent key mechanisms via which oral bacteria 
may influence the balance between oral health and disease.

Metabolic Interactions

Alongside crosstalk via the exchange of chemical signals, the 
oral microbiota has been shown to use metabolite-mediated 
cooperation (MMC) strategies to optimise their persistence 
within oral niches. MMC is based on the concept of the pro-
duction and secretion of primary or secondary metabolites 
for use by the surrounding microbial community. These 
metabolic partnerships can be broadly divided into two 
categories: (i) cross-feeding, in which one microbial spe-
cies synthesises and secretes metabolites for the benefit of 
their partner microorganism(s); or (ii) syntrophic strategy, a 
process by which one species partially catabolises complex 
molecules for energy synthesis, with the resultant partially 
degraded compounds then further catalysed by other micro-
organisms [50]. Again, within the oral cavity, many such met-
abolic interactions impact C. albicans morphogenesis. For 
example, peptidoglycan fragments (muropeptides) derived 
from the bacterial cell wall, the release of hydrogen peroxide 
as a result of aerobic metabolism and excreted nutrient by-
products from oral streptococci such as S. gordonii have all 
been shown to promote hyphae formation [44, 51, 52]. By 
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contrast, S. mutans produces a secondary metabolite known 
as mutanobactin A that impairs filamentation [53].

There are also changes within the local environment that 
occur as a result of microbial metabolism that can signifi-
cantly impact the composition of the polymicrobial commu-
nity within that ecological niche. A key example is oxygen 
availability. Aerobes utilise oxygen from their immediate 
environment, thereby establishing a low oxygen tension that 
favours the persistence of obligate anaerobes [50]. Conse-
quently, the reduction in oxygen tension in the microen-
vironment due to aerobic metabolism by C. albicans has 
been shown to allow strict anaerobes such as Veillonella, 
Prevotella, and Fusobacterium to thrive in the otherwise 
oxygen-rich environment of the oral cavity [54]. Likewise, 
periodontal pathogens P. gingivalis and T. forsythia benefit 
from oxygen depletion in biofilms with C. albicans, with 
P. gingivalis exhibiting a 20% increase in viability under 
normoxic conditions in the presence of C. albicans [14].

One further key partnership that derives from the metabo-
lism of dietary sugars and has strong links with the progression 
of early childhood caries is seen between C. albicans and S. 
mutans. As mentioned, these two microbes can form biofilm 
super-structures on the tooth surface that derive from their 
capacity to form complex aggregates. This is primarily driven 
by the synthesis of α-glucans from sucrose by glucosyltrans-
ferase B (GtfB), which is secreted by S. mutans and then bound 
to mannoproteins on the surface of C. albicans whilst remain-
ing enzymatically active. The large quantities of α-glucan that 
are subsequently produced provide binding sites for S. mutans 
and effectively ‘glue’ the microbes together, with these aggre-
gates then attaching more efficiently to the tooth surface [10, 
55]. RNA-Seq analysis further highlights the importance of 
the metabolic interaction to this cross-kingdom partnership. 
In dual-species biofilms, the presence of C. albicans signifi-
cantly modulates the expression of 393 S. mutans genes, the 
majority of which are associated with carbohydrate transport 
and metabolism [56]. For example, these dual-species biofilms 
exhibit upregulation of S. mutans genes associated with acid 
synthesis (ldh), aciduricity (fabM and atpD), acid-tolerance, 
bacterial adherence, and biofilm formation (e.g. ciaR and 
ciaH). C. albicans PHR2 is considered critical for this regula-
tory effect [8, 10, 56]. Again, maintenance of the highly acidic 
microenvironment because of this cross-kingdom interaction 
is what drives the progression of carious lesions.

Conclusion

Second only to the gut with regard to diversity, the oral 
microbiota comprises a complex polymicrobial community 
with members across several kingdoms. This inevitably leads 
to the development of a multitude of dynamic intermicrobial 
interactions, beneficial and antagonistic, as the microbial 

inhabitants strive to optimise their persistence within their 
specific oral niche(s). For C. albicans, the predominant fun-
gus within the oral cavity, this has led to the evolution of 
specific partnerships with a range of oral bacteria, based 
on physical, chemical, and metabolic interactions. In many 
instances, these interactions facilitate C. albicans retention 
at the tooth or mucosal surface and through modulation of 
candidal morphogenesis, may even serve to maintain home-
ostasis within the community such that oral health is pro-
moted. Often, however, synergistic effects promote microbial 
outgrowth or pathogenicity, generating a dysbiotic environ-
ment that exacerbates disease initiation and progression. Our 
understanding of the molecular mechanisms that underpin 
these cross-kingdom interactions continues to broaden. This 
new knowledge of oral ecology can be exploited to inform the 
design of interventions that can manipulate the microbiota 
for the benefit of oral health, and the development of novel 
therapeutics to combat oral disease.
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