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Abstract
Purpose of Review This review aims to better understand the utility of machine learning algorithms for predicting spatial 
patterns of contaminants in the United States (U.S.) drinking water.
Recent Findings We found 27 U.S. drinking water studies in the past ten years that used machine learning algorithms to predict water 
quality. Most studies (42%) developed random forest classification models for groundwater. Continuous models show low predictive 
power, suggesting that larger datasets and additional predictors are needed. Categorical/classification models for arsenic and nitrate that 
predict exceedances of pollution thresholds are most common in the literature because of good national scale data coverage and priority 
as environmental health concerns. Most groundwater data used to develop models were obtained from the United States Geological 
Survey (USGS) National Water Information System (NWIS). Predictors were similar across contaminants but challenges are posed 
by the lack of a standard methodology for imputation, pre-processing, and differing availability of data across regions.
Summary We reviewed 27 articles that focused on seven drinking water contaminants. Good performance metrics were reported for 
binary models that classified chemical concentrations above a threshold value by finding significant predictors. Classification models 
are especially useful for assisting in the design of sampling efforts by identifying high-risk areas. Only a few studies have developed 
continuous models and obtaining good predictive performance for such models is still challenging. Improving continuous models 
is important for potential future use in epidemiological studies to supplement data gaps in exposure assessments for drinking water 
contaminants. While significant progress has been made over the past decade, methodological advances are still needed for selecting 
appropriate model performance metrics and accounting for spatial autocorrelations in data. Finally, improved infrastructure for code 
and data sharing would spearhead more rapid advances in machine-learning models for drinking water quality.

Keywords Heavy metals · Drinking water · Health-based standards · Risk prediction · Machine learning

Introduction

Water is essential for life, yet the future of safe drinking 
water faces multifaceted challenges: climate change, aging 
infrastructure, lack of comprehensive monitoring data, and 

limited time and resources available to local utilities. The 
United States (U.S.) federal law that aims to ensure the 
safety of drinking water for the public is the Safe Drinking 
Water Act (SDWA). Regulatory standards are in place for 
more than 90 chemicals, but this represents only a small 
fraction of the chemicals used in commerce (> 80,000) [1]. 
U.S. water quality standards are derived from risk-based 
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health thresholds or by considering best-available technol-
ogy [1]. For many drinking water contaminants, there are 
insufficient data to characterize risk-based standards. More 
than 40 million Americans rely on private wells rather than 
public water supplies to obtain their drinking water [2]. 
Private wells are not subject to the same monitoring and 
reporting requirements as public water supplies, and these 
populations often live in rural and under-resourced areas [3].

The availability of drinking water quality data is key to 
better understanding the human health impacts of drinking 
water contaminants. Unfortunately, the current monitoring 
system has significant gaps: it has low coverage for certain 
segments of the population like private well owners, it is 
tested infrequently, and monitoring results are often delayed. 
Universal screening of chemical drinking water contami-
nants is costly and logistically challenging. In recent years, 
an increasing number of studies have focused on developing 
predictive models for drinking water contamination. Such 
models may eventually allow a more proactive approach in 
protecting consumers from potential contaminants of health 
concern.

Spatial modeling approaches have been successfully used 
to predict inorganic contaminant concentrations (especially 
arsenic and nitrate) in well water at the local, regional, and 
national scales [4•, 5–7, 8••]. Modeling efforts have been 
motivated by concerns that private well users are not pro-
tected by current federal and state regulations. These efforts 
have been enabled by decades of monitoring data collected 
by the states to ensure compliance with the SDWA. Recently, 
modeling efforts have focused on supporting federal regula-
tions for poly- and perfluoroalkyl substances (PFAS) given 
their priority as drinking water contaminants. For example, 
predictive models using Bayesian networks and random for-
est models have been developed to predict PFAS concentra-
tions in private wells in North Carolina and New Hampshire 
[9•, 10•]. These studies have identified potentially important 
predictors based on the sources and transport of chemical 
contaminants in groundwater. Beyond private wells, a simi-
lar approach has been developed for community water sup-
plies with expanded predictor lists that consider both natural 
processes governing the fate and transport of pollution and 
infrastructure related to the facilities [11, 12•].

Predictive models for water quality can help to prioritize 
testing in regions that are most likely to have elevated levels 
of contamination and to better understand factors driving 
spatial patterns in water quality. As these models improve 
with expanding monitoring data and refined machine-learn-
ing algorithms, they may also be useful for providing expo-
sure predictions for contaminants from drinking water (con-
tinuous models). Such predictive exposure surfaces would 
enable a stronger link between water quality and human 
health, which would strengthen the impetus for new and 
stronger water quality regulations where needed. Because 

the SDWA is a federal law, modeling studies that synthesize 
regional data to provide national perspectives on the occur-
rence and magnitude of drinking water contaminants are 
especially useful.

This review synthesizes studies published in the past ten 
years that employ predictive analytics and machine learn-
ing to model drinking water contamination in the U.S. We 
conducted a systematic review to search and select studies 
to be included in this review. Based on this analysis, we 
summarize the strengths and limitations of existing studies, 
identify best practices that could accelerate research in this 
field, and discuss how to better leverage predictive analytics 
to improve drinking water safety and public health.

Methods

We searched for all English articles in three databases: 
National Library of Medicine’s PubMed/MedLine, Elsevi-
er’s EMBASE, and Web of Science Core Collection (includ-
ing the Science Citation Index and Conference Proceedings 
Citation Index- Science). We conducted a title and abstract 
search of the databases on January 20, 2022 for all articles 
published between January 1, 2012 and January 20, 2022 to 
capture a 10-year window. We constructed the search terms 
to capture three main concepts related to machine learning, 
drinking water, and chemicals. To ensure that search terms 
were appropriate, we iteratively refined them until we were 
able to retrieve 20 pre-identified key articles returned by 
the PubMed search to ensure that all relevant articles would 
be captured. We excluded articles that were not relevant to 
our topic of interest through an exclusion (NOT) term to 
limit the number of total articles returned by each database 
(Supplementary Information [SI] Table S1). For example, 
we included in the NOT term “review” to exclude studies 
that are reviews themselves, “air pollut*” to exclude studies 
about other environmental media, and “male/female/child” 
to exclude epidemiological studies. In total, our search 
returned 1261 articles. After removing over 200 duplicates, 
we added seven key articles that had not been returned from 
the original search strategy. We then manually screened titles 
and abstracts before reading full articles to determine which 
articles were most relevant for this review (SI Figure S1).

This review includes articles that used machine learn-
ing techniques to model chemical water pollutants that 
occur naturally and/or from anthropogenic sources. 
We considered articles based on their publication date 
rather than when data analysis occurred. We excluded 
articles that did not use a machine learning technique or 
focused on outcomes other than chemical contaminants 
(for instance, dissolved oxygen, dissolved organic car-
bon, and biological contaminants). We also excluded arti-
cles that were not in English, analyzed data from outside 
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of the U.S., were an existing literature review (did not 
report original results), or focused on temporal (seasonal) 
rather than spatial analysis of chemical concentrations. 
The selection criteria resulted in a total of 27 articles 
in our literature review. We extracted and synthesized 
information from these papers on the machine learning 
techniques used, predictor categories, model outcomes, 
and data characteristics (SI Table S2.xlsx).

Results and Discussion

We synthesized our findings around four common steps 
used in predictive modeling studies: (1) data sources, (2) 
feature engineering, (3) model training, and (4) presenta-
tion of model results (Fig. 1).

Data Sources

Almost half (44%) of the 27 papers reviewed focused on 
nitrate as a drinking water contaminant and almost 30% were 
focused on arsenic (Fig. 2). Most studies (67%) used water 
quality data to develop models at the local scale (at the state-
level or smaller). California, in particular the Central Valley, 

was the most studied locations, considered by six papers in 
our review.

Large datasets on chemicals in drinking water are publicly 
available and have utility for machine learning analyses at 
varying geographic scales (Fig. 2). Most (81%) of the papers 
included in this review used data from public sources, most 
commonly from the United States Geologic Survey (USGS) 
National Water Information System (NWIS) for groundwa-
ter concentrations [13]. Other state repositories such as Cali-
fornia’s Groundwater Ambient Monitoring and Assessment 
(GAMA) Program were also frequently cited [15]. Most mon-
itoring databases focused on groundwater rather than public 
water supplies. Only two of the reviewed studies used the 
US EPA’s Safe Drinking Water Information System (SDWIS) 
that contains information on public water supplies [8••, 16]. 
It is essential that these common data repositories on drink-
ing water are regularly maintained and updated. Table 1 pro-
vides examples of popular datasets for groundwater wells 
and drinking water supplies. Curation of state-level datasets 
into national datasets would allow for better understanding 
of national rather than regional scale drinking water qual-
ity and would better support federal regulatory efforts. For 
example, the Water Quality Portal (WQP) (i.e., Fig. 2) was 
established in 2017 to integrate data from multiple federal, 
state, tribal, and local agencies into one online database with 
over 290 million records [17]. The WQP is one of the largest 

Fig. 1  Schematic of a typical 
workflow used to develop a 
statistical model for predicting 
drinking water quality
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Fig. 2  Sampling sites for arsenic, nitrate, and hexavalent chromium well sites downloaded from the Water Quality Portal [13, 14], illustrating 
differences in data availability across chemicals
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data repositories, combining data from the frequently used 
USGS NWIS with other datasets to improve public access 
[17]. Public datasets enable transparency and access for the 
general public to engage with scientific information. While 
some datasets are kept private for security reasons, providing 
aggregated datasets would be useful for future assessments. 
Other nonprofit organizations such as the Environmental 
Working Group have curated their own historical databases 
to explore drinking water contamination [18].

Some large datasets on drinking water quality such as 
the Water Quality Portal span a temporal range between 
the 1960s and present [17]. Metadata on when and where 
measurements were taken are therefore important in these 
databases. Most water samples were obtained from the water 
source (groundwater well) rather than at the point of use. 
More sample collection at the household level would be use-
ful for understanding contamination at the tap from distribu-
tion systems.

Most papers (70%) reviewed in this work developed 
binary classification models for predicting chemical concen-
trations beyond a predetermined threshold. By contrast, con-
tinuous regression models that could create more detailed 
prediction maps of areas with poor water quality are lacking. 
Continuous models were developed for nitrate, tetrachlo-
roethylene (PCE), fluoride, and PFAS and primarily relied 
on tree-based, neural network, and spatial methods. It is 
interesting to note that all eight papers that modeled arsenic 
contamination used binary rather than continuous outcomes. 
This is an important gap given the substantial public health 
implications of arsenic contamination in drinking water. 
Highly censored data (high frequency of non-detect values) 
makes it challenging for researchers to develop continuous 
regression models for many drinking water contaminants. 
Multiple techniques were employed to correct for values 
below the limit of detection but there was a lack of con-
sistency across studies. Methods included simple imputa-
tion, sampling from a modeled distribution, or re-balancing 
classes using techniques such as oversampling.

Pre-processing of data varied across the studies reviewed 
and depended on the data source as well as on suitability to 
the model. Most groundwater studies assigned predictors 
by well location. Mair and El-Kadi [70] aggregated predic-
tors within a capture zone (spanning multiple wells) due to 
military sensitivity. Hu et al. [9•] quantified the impact of 
point sources on private wells using an exponential decay 
function of hydrological distance between the source and 
the well location. For atmospheric deposition of PFAS, the 
authors considered a 10-km buffer radius for estimating 
source attribution [9•].

Several methods were used across studies to aggregate 
data if a well was sampled more than once. Most commonly, 
authors chose to report observed chemical measurements 

using summary statistics. For example, Ayotte et al. [4•] 
reported maximum concentration, George and Dixit [71•] 
reported an average, and Hu et al. [9•] reported median con-
centrations. Only one paper by Hino et al. [12•] selected ran-
domly among repeated samples. Anning et al. [72] selected 
a single sample with the greatest ancillary data collected 
simultaneously. Studies by Rosecrans et al. [16, 73] and 
Tesoriero et al. [74] selected for samples with known well 
depth. Erickson et al. [8••] chose to report only the most 
recent measurements.

These strategies work for each article within the bounds 
of their data availability. However, what if well locations are 
unknown or measured predictor values do not exactly match 
the geographic location of measured outcomes? Aggregating 
data over an area appears reasonable but requires critical 
thinking regarding the spatial unit to which the data should 
be aggregated [70]. The resulting relationships between pre-
dictors and outcomes may be different depending on the spa-
tial unit, an issue known as the modifiable areal unit problem 
(MAUP) [75]. Depending on the research question and data 
availability, authors should choose the most relevant spatial 
units depending on the necessary level of detail. Exploring 
multiple spatial units, such as drawing buffers at multiple 
radii or focusing on various hydrological unit code (HUC) 
levels during exploratory analysis of the datasets, can help 
to decide the best unit of analysis.

Feature Engineering

Predictor categories were largely consistent among the 27 
reviewed papers. While the actual number of factors and spe-
cific quantities included in models varied greatly, all models 
focused primarily on natural factors falling into at least one 
of the following categories: bedrock geology, hydrology, 
soil chemistry, and climate. Well construction and ground-
water characteristics were also frequently included in most 
models, along with anthropogenic factors such as land use. 
These factors have all been previously well-established in 
the literature and therefore readily accepted as predictors 
related to chemical contamination of drinking water. The 
predictor categories overlapped for multiple chemicals. For 
papers focused on policy or procedural failures (SDWA or 
inspection violations, for example), the models included 
characteristics related to community water systems or con-
tamination sources [11, 12•]. The three PFAS papers in this 
literature review also considered possible point sources in 
their modeling [9•, 10•, 71•]. In other papers, more discrete 
model parameters were included. The tetrachloroethylene 
model by Messier et al. [76] focused only on anthropogenic 
sources in its land use regression model. The lead (Pb) paper 
by Fasaee et al. [77] and the PFAS paper by Roostaei et al. 
[10•] considered household characteristics.
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ŷ
i� �

R
an

ge
s f

ro
m

 0
 to

 ∞
N

o 
pe

na
lty

 fo
r l

ar
ge

 e
rr

or
s i

n 
pr

ed
ic

tio
n

0.
13

–3
.0

6
[8

0]

53Current Environmental Health Reports (2023) 10:45–60



1 3

The consistency of these categories demonstrates the 
availability of these parameters at multiple spatial scales, 
even for local groundwater flow conditions. However, a more 
challenging direction may be to expand these parameters 
from small spatial coverage to large (for instance, national) 
areas. Most papers (89%) reported variable importance 
scores and listed top predictors, although the individual 
predictors were not consistent across the models. For the 
purpose of making comparisons, it would be helpful if 
papers reported what broad predictor categories appeared 
most important rather than the individual predictors them-
selves. By stating both broad predictor categories as well as 
specific predictors, variable importance is more easily com-
parable among papers utilizing similar data characteristics 
and sources. This may be difficult to quantify because almost 
all predictor classes were listed among the top predictors for 
at least one model. Inconsistencies existed among papers in 
defining and highlighting the top predictors reported by their 
models. A few papers focused on data availability in choos-
ing wells for their analyses. Poorly described feature maps of 
environmental factors affecting groundwater quality would 
impede the ability to credit the predictability of regional 
models outside their present areas of interest.

Model Training, Tuning, and Performance

Most models included in these papers performed well 
(Table 2). Specifically, the accuracy range for binary clas-
sification models was between 0.67 and 0.94 (AUC-ROC/C-
statistic between 0.72 and 0.92), with over 70% of papers 
reporting accuracy scores above 0.8. In addition, most 
papers reported specificity scores greater than sensitivity 
scores, favoring the correct classification of true negatives. 
The reported strong model performances (especially for 
nitrate and arsenic) indicate the potential for machine learn-
ing models to similarly execute well for other chemicals that 
have yet to be explored. Multiclass classification models per-
formed poorer, with the best model from Anning et al. [72] 
classifying nitrate concentrations correctly 48.6% of the time 
(although the accuracy increased to 80.4% if the classifi-
cation was only one category off). For continuous models, 
large ranges were observed for the most reported metrics: 
the coefficient of determination  (R2 = 0.12–0.85) and mean 
squared error (MSE = 0.05–5.18). However, the most appro-
priate performance metrics should be carefully considered 
based on the purpose of the research and characteristics of 
the input dataset. Some example metrics and their purposes 
are shown in the table below (Table 2).

Most papers reported similar metrics to help compare 
model performance. Most commonly, prediction metrics 
were reported for hold-out datasets determined either by 
applying tenfold cross-validation or from pre-specifying a 
proportion of the total dataset as a randomly chosen test 

dataset. While some papers (35%) reported both accuracy 
and AUC-ROC scores, most papers (65%) reported only 
accuracy scores. Considering only accuracy scores may 
lead to a biased conclusion regarding model utility, espe-
cially when datasets of drinking water contamination are 
often highly imbalanced. For instance, if data falls into just 
one bin, the model will replicate the same distribution as 
the observations regardless of how chemical concentrations 
are truly distributed. Although the machine learning model 
will recall the predicted data precisely, these results may 
not reflect the true distribution of chemical concentrations 
accurately. In our review, three papers corrected for class 
imbalance using oversampling techniques: two employed 
the synthetic minority oversampling technique (SMOTE), 
and the third article used a spatial declustering method [4•, 
80, 82].

Presentation of Model Results

About two-thirds of the studies (67%) included in this review 
created surface maps to visualize either the probability of 
exceeding a threshold with respect to a chemical of inter-
est or for the predicted chemical concentration. Only three 
papers looked beyond predicting chemical concentrations 
and calculated additional health and/or policy metrics. Hino 
et al. [12•] calculated a risk score for community water sys-
tems failing inspection. Similarly, Ransom et al. [87] esti-
mated 1.4 million Americans depend on groundwater with 
nitrate levels exceeding 10 mg/L and Ayotte et al. [4•] esti-
mated that 2.1 million Americans use domestic well water 
with arsenic values exceeding 10 µg/L. The 18 total papers 
presenting predicted surface maps may be useful when over-
laid with maps related to demographics or national disease 
burdens. Spatially linking groundwater contamination data 
with other datasets is critical for connecting drinking water 
quality concerns to health, environmental restoration, and 
environmental justice issues. Overlaying this information by 
zip code or county information would also help to make this 
information more accessible by the general public since indi-
viduals may be more familiar with their residential locations 
than the physical location of their drinking water supply. 
However, such an effort would need to take into considera-
tion the MAUP, as discussed above. The MAUP is a source 
of bias that can present inconsistent statistical results based 
on the size and shape of the spatial unit analyzed and is 
especially relevant when aggregating data [75]. To enhance 
accessibility for a wider audience, a single public reposi-
tory of downloadable drinking water contamination data 
accompanied by maps would improve public understanding 
and transparency of water quality issues. A user-friendly 
website (for instance, story maps) that walks visitors through 
general findings in their area of interest would better serve 
the science communication aspect of these results so that 
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individuals beyond just researchers or water managers can 
engage with the data. Several efforts in this direction set 
good examples for how they can be useful for communicat-
ing drinking water exposure information to the public but 
have either been discontinued or limited in scope chemi-
cally or spatially [88–91]. Additional work in this area has 
the potential to inform both communities and research-
ers interested in managing risks posed by drinking water 
contaminants.

Conclusions and Future Research Directions

Big data and machine learning models have been used to 
predict drinking water contamination for both regulated 
contaminants such as arsenic and nitrate, as well as emerg-
ing chemicals of concern such as PFAS. They show great 
promise as an alternative and complementary way of assess-
ing drinking water quality compared to traditional grab 
sample monitoring, which is time and resource intensive 
and places a considerable burden on regulatory bodies (for 
community water supplies) and private property owners (for 
domestic wells). Many existing studies show good model 
performance for predicting whether drinking water quality 
exceeds a certain threshold (binary prediction) but models 
perform more poorly when predicting absolute contamina-
tion levels (continuous prediction). Categorical models are 
best used to enhance traditional sampling schemes for moni-
toring drinking water quality. Model results are most useful 
when they are interpreted with the expert knowledge of local 
conditions, such as verifying susceptible emission sources.

Improving models with continuous outcomes is an impor-
tant future area for improvement in this field, and is needed 
to bridge the gap between environmental and human expo-
sures. Better mechanistic understanding of sources of drink-
ing water contaminants, transport, and distribution could be 
used to develop a comprehensive list of factors influenc-
ing these processes that could be included as predictors in 
such models. A future application of such models includes 
improved exposure assessment for drinking water contami-
nants in epidemiologic studies to better understand impacts 
on human health, following examples for nitrate and arsenic 
[7, 82].

Other future priorities for research that would aid in 
establishing drinking water standards at the federal level 
include developing national scale models that follow the 
examples created for arsenic and nitrate [4•, 7, 12•, 87]. 
Availability of monitoring data across the entire country for 
arsenic and nitrate has made it possible to develop predic-
tion models at the national scale. For emerging contami-
nants such as PFAS, state-level monitoring datasets exist 
but additional efforts are needed to synthesize such data 
into a national scale monitoring data repository. However, 

when combining datasets of contaminants in drinking water 
from multiple sources, different reporting limits and detec-
tion limits can pose a challenge to data interoperability and 
needs to be given special considerations. Remaining chal-
lenges toward addressing these goals include data availabil-
ity and interoperability at the national scale, methodologi-
cal advances in training and evaluating models including 
choosing the appropriate model performance metrics and 
accounting for spatial autocorrelation in model training, and 
better incentives for code sharing to facilitate model averag-
ing for better predictive results.

Future Research Directions

Improving public data sharing is essential for advancing this 
field. Inorganic contaminants are the focus of publicly avail-
able databases such as the USGS NWIS [13]. For emerging 
organic contaminants such as PFAS and other unregulated 
chemicals, most data used to train predictive models are 
still owned by individual investigators or state agencies. 
Improved data sharing would enhance collaboration and 
allow for training better models. Confidentiality concerns 
represent a barrier toward these goals (i.e., preserving the 
privacy of private well samples). However, approaches 
drawn from the health care machine learning literature could 
provide a potential solution. In the health care field, several 
methods such as resampling, probabilistic graphical mod-
eling, latent variable identification, and outlier analysis have 
been proposed to develop synthetic data to preserve patient 
privacy [92, 93].

Data interoperability that allows available data on con-
taminant occurrence to be related to environmental and 
sociodemographic factors is essential. Presently, there are 
incongruent spatial scales and coverages of training data for 
different predictors (Table 1). For example, training data and 
model predictors may be available as vector files with clearly 
defined boundaries such as public water supply service areas 
or county boundaries but can be challenging to combine due 
to differing spatial boundaries. High-resolution raster files 
such as temperature data from the PRISM climate group [94] 
and sociodemographic data from the Socioeconomic Data 
and Applications Center [59] show promise for facilitating 
spatial data linkages. Another strength of these data sources 
is that they provide information for broad categories, such 
as multiple socioeconomic (education attainment, income, 
poverty level) or climate (precipitation, relative humidity, 
temperature) variables. Sharing these common input vari-
able sources facilitates easier comparison among papers.

Several methodological improvements would improve 
the performance of machine-learning models for drinking 
water quality. First, there is a need for improved techniques 
for handling imbalanced (highly censored) data during the 
model training process. If one class of the outcome is rare, 
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the overall accuracy will be biased. Imagine a sample with 
98% negatives and 2% positives; a “dumb” classifier that 
blindly predicts negatives would generate a 98% accuracy 
score but would be far from a strong model. Instead, focus-
ing on the accuracy per class in the confusion matrix can 
still be useful for assessing the frequency of the true posi-
tive rate and true negative rate. As these predictive models 
are treated as a type of decision support tool, the exact 
choice of evaluation metrics will also depend on the use 
case, such as weighting sensitivity more if the decision 
makers are worried about false negatives. Other techniques 
to handle imbalanced data such as downsampling (training 
on a low subset of the majority class) and upweighting 
(adding weight to the downsampled class) are also useful 
and could be more frequently applied. While these are 
often used in the machine learning literature [95, 96], their 
appearance in environmental predictive modeling is still 
rare. Another methodological gap includes how to incor-
porate spatial autocorrelation into drinking water quality 
prediction. Failure to account for spatial autocorrelation 
may result in higher bias in prediction especially when 
the spatial autocorrelation is very strong, or the predictors 
included in the model fail to account for the underlying 
spatial structure. This is an active area of research with 
different solutions being proposed and no dominant solu-
tions yet [97–99].

Better incentives for code sharing are needed to pro-
mote reproducible science and facilitate model averaging. 
Several journals, such as PLos ONE and Nature, have set 
expectations that author-generated code underpinning the 
findings in a manuscript needs to be made publicly avail-
able. Model averaging is a technique to reduce modeling 
uncertainty by making predictions using multiple models 
that could have promise in this area. Several air pollution 
and watershed modeling studies have utilized Bayesian 
Model Averaging and reported that it serves as a strong 
alternative to model selection as it improved the predic-
tion performance of models in a logical and meaningful 
way [100, 101].

Safe drinking water is essential for protecting public 
health. Presently, predictive models are helpful for identify-
ing high-risk areas to prioritize sampling efforts. Although 
many advances in this field have occurred over the past 
decade, additional progress is needed for widespread use. 
Priorities for the future include methodological advances for 
measuring model performance appropriately and account-
ing for spatial autocorrelation, and better infrastructure and 
more resources devoted to data and code sharing.
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