Skip to main content

Advertisement

Log in

Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Aquaporins are channel proteins reported to play multiple functions in plants ranging from water, solutes, metalloids (arsenic, boron, silicon) transport, and tolerance to abiotic stresses including drought, salinity and cold. Based on their localization and sequence similarities, aquaporins have been classified into seven major subfamilies: plasma membrane intrinsic proteins (PIPs), nodulin 26-like intrinsic proteins, tonoplast intrinsic proteins, small basic intrinsic proteins, GlpF-like intrinsic protein, hybrid intrinsic proteins and the uncategorized (X) intrinsic proteins. PIP subfamily is one of the biggest subfamilies of aquaporin superfamily and they are localized to plasma membrane. Members of PIPs are involved in water and small neutral solute transport and play an important role in maintaining water homeostasis under environmental stress and are known to provide tolerance to various abiotic stresses. Recently, members of PIP subfamily have been shown to be involved in the bidirectional transport of metalloids, arsenic and boron in plants. This review highlights the involvement of various PIP homologs in plant stress responses against a variety of environmental stresses and metalloid transport and tolerance. Molecular insights and biotechnological approaches for developing climate resilient crops by modulating PIPs will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Hove and Bhave (2011)

Fig. 2

Similar content being viewed by others

References

  • Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulink, Y., & Galili, G. (2003). Overexpression of plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought and salt stress. The Plant Cell, 15(2), 439–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandersson, E., Fraysse, L., Sjovall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., et al. (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology, 59(3), 469–484.

    CAS  PubMed  Google Scholar 

  • Anderberg, H. I., Kjellbom, P., & Johanson, U. (2012). Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Frontiers in Plant Science, 3, 33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayadi, M., Cavez, D., Miled, N., Chaumont, F., & Masmoudi, K. (2011). Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiology and Biochemistry, 49(9), 1029–1039.

    CAS  PubMed  Google Scholar 

  • Bienert, M. D., Diehn, T. A., Richet, N., Chaumont, F., & Bienert, G. P. (2018). Heterotetramerization of plant PIP1 and PIP2 aquaporins is an evolutionary ancient feature to guide PIP1 plasma membrane localization and function. Frontiers in Plant Science, 9, 382.

    PubMed  PubMed Central  Google Scholar 

  • Bienert, G. P., Thorsen, M., Schüssler, M. D., Nilsson, H. R., Wagner, A., Tamás, M. J., et al. (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology, 6(1), 26.

    PubMed  PubMed Central  Google Scholar 

  • Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiology, 139(2), 790–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrt, C. S., Zhao, M., Kourghi, M., Bose, J., Henderson, S. W., Qiu, J., et al. (2017). Non-selective cation channel activity of aquaporin AtPIP2; 1 regulated by Ca2 + and pH. Plant, Cell and Environment, 40(6), 802–815.

    CAS  PubMed  Google Scholar 

  • Chaumont, F., Barrieu, F., Jung, R., & Chrispeels, M. J. (2000). Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiology, 122(4), 1025–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 125(3), 1206–1215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont, F., & Tyerman, S. F. (2014). Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiology, 164(4), 1600–1618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Yang, S., Kong, X., Wang, C., Xiang, N., Yang, Y., et al. (2018). Molecular cloning of plasma membrane aquaporin in Stipa purpurea, and exploration of its role in drought stress tolerance. Gene, 665, 41–48.

    CAS  PubMed  Google Scholar 

  • Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A., Bohlman, M. C., et al. (2007). Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7(2), 111–134.

    CAS  Google Scholar 

  • Danielson, J. Å., & Johanson, U. (2008). Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biology, 8(1), 45.

    PubMed  PubMed Central  Google Scholar 

  • Deshmukh, R. K., Sonah, H., & Bélanger, R. R. (2016). Plant Aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Frontiers in Plant Science, 7, 1896.

    PubMed  PubMed Central  Google Scholar 

  • Deshmukh, R. K., Vivancos, J., Ramakrishnan, G., Guérin, V., Carpentier, G., Sonah, H., et al. (2015). A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. The Plant Journal, 83(3), 489–500.

    CAS  PubMed  Google Scholar 

  • Fetter, K., Van Wilder, V., Moshelion, M., & Chaumont, F. (2004). Interactions between plasma membrane aquaporins modulate their water channel activity. The Plant Cell, 16(1), 215–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick, K. L., & Reid, R. J. (2009). The involvement of aquaglyceroporins in transport of boron in barley roots. Plant, Cell and Environment, 32(10), 1357–1365.

    CAS  PubMed  Google Scholar 

  • Forrest, K. L., & Bhave, M. (2007). Major intrinsic proteins (MIPs) in plants: A complex gene family with major impacts on plant phenotype. Functional & Integrative Genomics, 7(4), 263.

    CAS  Google Scholar 

  • Friso, G., & van Wijk, K. J. (2015). Posttranslational protein modifications in plant metabolism. Plant Physiology, 169(3), 1469–1487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, A. B., & Sankararamakrishnan, R. (2009). Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biology, 9(1), 134.

    PubMed  PubMed Central  Google Scholar 

  • Hove, R. M., & Bhave, M. (2011). Plant aquaporins with non-aqua functions: Deciphering the signature sequences. Plant Molecular Biology, 75(4–5), 413–430.

    CAS  PubMed  Google Scholar 

  • Hu, W., Yuan, Q., Wang, Y., Cai, R., Deng, X., Wang, J., et al. (2012). Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant and Cell Physiology, 53(12), 2127–2141.

    CAS  PubMed  Google Scholar 

  • Isayenkov, S. V., & Maathuis, F. J. (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. FEBS Letters, 582(11), 1625–1628.

    CAS  PubMed  Google Scholar 

  • Jang, J. Y., Kim, D. G., Kim, Y. O., Kim, J. S., & Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology, 54(5), 713–725.

    CAS  PubMed  Google Scholar 

  • Jang, J. Y., Lee, S. H., Rhee, J. Y., Chung, G. C., Ahn, S. J., & Kang, H. (2007). Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Molecular Biology, 64(6), 621–632.

    CAS  PubMed  Google Scholar 

  • Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güçlü, J., Vinh, J., et al. (2003). Role of a single aquaporin isoform in root water uptake. The Plant Cell, 15(2), 509–522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., et al. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 126(4), 1358–1369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, I., Karlsson, M., Johanson, U., Larsson, C., & Kjellbom, P. (2000). The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta, 1465(1–2), 324–342.

    CAS  PubMed  Google Scholar 

  • Jozefkowicz, C., Berny, M. C., Chaumont, F., & Alleva, K. (2017). Heteromerization of plant aquaporins. In Plant Aquaporins (pp. 29–46). Cham: Springer.

    Google Scholar 

  • Kaldenhoff, R., Grote, K., Zhu, J. J., & Zimmermann, U. (1998). Significance of plasmalemma aquaporins for water- transport in Arabidopsis thaliana. The Plant Journal, 14(1), 121–128.

    CAS  PubMed  Google Scholar 

  • Kamiya, T., & Fujiwara, T. (2009). Arabidopsis NIP1; 1 transports antimonite and determines antimonite sensitivity. Plant and Cell Physiology, 50(11), 1977–1981.

    CAS  PubMed  Google Scholar 

  • Katsuhara, M., Koshio, K., Shibasaka, M., Hayashi, Y., Hayakawa, T., & Kasamo, K. (2003). Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant and Cell Physiology, 44(12), 1378–1383.

    CAS  PubMed  Google Scholar 

  • Katsuhara, M., Sasano, S., Horie, T., Matsumoto, T., Rhee, J., & Shibasaka, M. (2014). Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnology, 31(3), 213–219.

    CAS  Google Scholar 

  • Katsuhara, M., & Shibasaka, M. (2007). Barley root hydraulic conductivity and aquaporins expression in relation to salt tolerance. Soil Science and Plant Nutrition, 53(4), 466–470.

    CAS  Google Scholar 

  • Kayum, M. A., Park, J. I., Nath, U. K., Biswas, M. K., Kim, H. T., & Nou, I. S. (2017). Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biology, 17(1), 23.

    PubMed  PubMed Central  Google Scholar 

  • Kelly, G., Sade, N., Attia, Z., Secchi, F., Zwieniecki, M., Holbrook, N. M., et al. (2014). Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS ONE, 9(2), e87888.

    PubMed  PubMed Central  Google Scholar 

  • Kong, W., Yang, S., Wang, Y., Bendahmane, M., & Fu, X. (2017). Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ, 5, e3747.

    PubMed  PubMed Central  Google Scholar 

  • Kumar, R. S., Ji, G., Guo, H., Zhao, L., & Zheng, B. (2018). Over-expression of a grafting-responsive gene from hickory increases abiotic stress tolerance in Arabidopsis. The Plant Cell Reports, 37(3), 541–552.

    CAS  PubMed  Google Scholar 

  • Kumar, K., Mosa, K. A., Chhikara, S., Musante, C., White, J. C., & Dhankher, O. P. (2014). Two rice plasma membrane intrinsic proteins, OsPIP2; 4 and OsPIP2; 7, are involved in transport and providing tolerance to boron toxicity. Planta, 239(1), 187–198.

    CAS  PubMed  Google Scholar 

  • Li, R., Wang, J., Li, S., Zhang, L., Qi, C., Weeda, S., et al. (2016). Plasma membrane intrinsic proteins SlPIP2; 1, SlPIP2; 7 and SlPIP2; 5 conferring enhanced drought stress tolerance in tomato. Scientific Reports, 6, 31814.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay, E. R., & Maathuis, F. J. (2016). Arabidopsis thaliana NIP 7; 1 is involved in tissue arsenic distribution and tolerance in response to arsenate. FEBS Letters, 590(6), 779–786.

    CAS  PubMed  Google Scholar 

  • Liu, Z., Shen, J., Carbrey, J. M., Mukhopadhyay, R., Agre, P., & Rosen, B. (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proceedings of the National Academy of Sciences, 99(9), 6053–6058.

    CAS  Google Scholar 

  • Lombi, E., & Holm, P. E. (2010). Metalloids, soil chemistry and the environment. In MIPs and Their Role in the Exchange of Metalloids (pp. 33–44). New York: Springer.

    Google Scholar 

  • Lu, L., Dong, C., Liu, R., Zhou, B., Wang, C., & Shou, H. (2018). Roles of soybean plasma membrane intrinsic protein GmPIP2; 9 in drought tolerance and seed development. Frontiers in Plant Science, 9, 530.

    PubMed  PubMed Central  Google Scholar 

  • Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435–442.

    CAS  PubMed  Google Scholar 

  • Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., et al. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29), 9931–9935.

    CAS  Google Scholar 

  • Martins, C. D. P. S., Pedrosa, A. M., Du, D., Gonçalves, L. P., Yu, Q., Gmitter, F. G., Jr., et al. (2015). Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS one, 10(9), e0138786.

    Google Scholar 

  • Matsumoto, T., Lian, H. L., Su, W. A., Tanaka, D., Liu, C. W., Iwasaki, I., et al. (2008). Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant and Cell Physiology, 50(2), 216–229.

    PubMed  Google Scholar 

  • Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological Reviews, 95(4), 1321–1358.

    CAS  PubMed  Google Scholar 

  • Meharg, A. A., & Jardine, L. (2003). Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist, 157(1), 39–44.

    CAS  Google Scholar 

  • Mosa, K. A., Kumar, K., Chhikara, S., McDermott, J., Liu, Z., Musante, C., et al. (2012). Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Research, 21, 1265–1277.

    CAS  PubMed  Google Scholar 

  • Mosa, K. A., Kumar, K., Chhikara, S., Musante, C., White, J. C., & Dhankher, O. P. (2016a). Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Scientific Reports, 6, 21640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M., & Dhankher, O. P. (2016b). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers in Plant Science, 7, 303.

    PubMed  PubMed Central  Google Scholar 

  • Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., et al. (2000). Structural determinants of water permeation through aquaporin-1. Nature, 407(6804), 599.

    CAS  PubMed  Google Scholar 

  • Nakata, Y., Ueno, M., Kihara, J., Ichii, M., Taketa, S., & Arase, S. (2008). Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice. Crop Protection, 27(3–5), 865–868.

    CAS  Google Scholar 

  • Nouri, M. Z., & Komatsu, S. (2013). Subcellular protein overexpression to develop abiotic stress tolerant plants. Frontiers in Plant Science, 4, 2.

    PubMed  PubMed Central  Google Scholar 

  • Pawłowicz, I., Rapacz, M., Perlikowski, D., Gondek, K., & Kosmala, A. (2017). Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. Journal of Applied Genetics, 58(4), 421–435.

    PubMed  PubMed Central  Google Scholar 

  • Pommerrenig, B., Diehn, T. A., & Bienert, G. P. (2015). Metalloido-porins: Essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Science, 238(2015), 212–227.

    CAS  PubMed  Google Scholar 

  • Pou, A., Jeanguenin, L., Milhiet, T., Batoko, H., Chaumont, F., & Hachez, C. (2016). Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. Plant Molecular Biology, 92(6), 731–744.

    CAS  PubMed  Google Scholar 

  • Prak, S., Hem, S., Boudet, J., Viennois, G., Sommerer, N., Rossignol, M., et al. (2008). Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins role in subcellular trafficking of AtPIP2; 1 in response to salt stress. Molecular and Cellular Proteomics, 7(6), 1019–1030.

    CAS  PubMed  Google Scholar 

  • Qian, Z. J., Song, J. J., Chaumont, F., & Ye, Q. (2015). Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant, Cell and Environment, 38(3), 461–473.

    CAS  PubMed  Google Scholar 

  • Reddy, P. S., Rao, T. S. R. B., Sharma, K. K., & Vadez, V. (2015). Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene, 1, 18–28.

    CAS  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683–1696.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saddhe, A. A., Shweta, S., Mosa, K. A., Kumar, K., Prasad, M., & Dhankher, O. P. (2018). Genome-wide characterization of major intrinsic protein (MIP) gene family in Brachypodium distachyon. Current Bioinformatics, 13(5), 536–552.

    CAS  Google Scholar 

  • Secchi, F., Pagliarani, C., & Zwieniecki, M. A. (2017). The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell and Environment, 40(6), 858–871.

    CAS  PubMed  Google Scholar 

  • Secchi, F., & Zwieniecki, M. A. (2010). Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant, Cell and Environment, 33(8), 1285–1297.

    CAS  PubMed  Google Scholar 

  • Sreedharan, S., Shekhawat, U. K., & Ganapathi, T. R. (2013). Transgenic banana plants overexpressing a native plasma membrane aquaporin M usa PIP 1; 2 display high tolerance levels to different abiotic stresses. Plant Biotechnology Journal, 11(8), 942–952.

    CAS  PubMed  Google Scholar 

  • Sreedharan, S., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2; 6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology, 88(1–2), 41–52.

    CAS  PubMed  Google Scholar 

  • Srivastava, A. K., Penna, S., Nguyen, D. V., & Tran, L. S. P. (2016). Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Critical Reviews in Biotechnology, 36(3), 389–398.

    CAS  PubMed  Google Scholar 

  • Suga, S., Komatsu, S., & Maeshima, M. (2002). Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant and Cell Physiology, 43(10), 1229–1237.

    CAS  PubMed  Google Scholar 

  • Tao, P., Zhong, X., Li, B., Wang, W., Yue, Z., Lei, J., et al. (2014). Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis). Molecular Genetics and Genomics, 289(6), 1131–1145.

    CAS  PubMed  Google Scholar 

  • Ueda, M., Tsutsumi, N., & Fujimoto, M. (2016). Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 474(4), 742–746.

    CAS  PubMed  Google Scholar 

  • Wang, L., Liu, Y., Feng, S., Yang, J., Li, D., & Zhang, J. (2017). Roles of plasmalemma aquaporin gene StPIP1 in enhancing drought tolerance in potato. Frontiers in Plant Science, 8, 616.

    PubMed  PubMed Central  Google Scholar 

  • Wei, W., Alexandersson, E., Golldack, D., Miller, A. J., Kjellbom, P. O., & Fricke, W. (2007). HvPIP1; 6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues. Plant and Cell Physiology, 48(8), 1132–1147.

    CAS  PubMed  Google Scholar 

  • Whiteman, S. A., Nühse, T. S., Ashford, D. A., Sanders, D., & Maathuis, F. J. (2008). A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. The Plant Journal, 56(1), 146–156.

    CAS  PubMed  Google Scholar 

  • Xu, Y., Hu, W., Liu, J., Zhang, J., Jia, C., Miao, H., et al. (2014). A banana aquaporin gene, MaPIP1; 1, is involved in tolerance to drought and salt stresses. BMC Plant Biology, 14(1), 59.

    PubMed  PubMed Central  Google Scholar 

  • Yaneff, A., Sigaut, L., Marquez, M., Alleva, K., Pietrasanta, L. I., & Amodeo, G. (2014). Heteromerization of PIP aquaporins affects their intrinsic permeability. Proceedings of the National Academy of Sciences, 111(1), 231–236.

    CAS  Google Scholar 

  • Zangi, R., & Filella, M. (2012). Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chemico-Biology Interaction, 197(1), 47–57.

    CAS  Google Scholar 

  • Zardoya, R. (2005). Phylogeny and evolution of the major intrinsic protein family. Biology of the Cell, 97(6), 397–414.

    CAS  PubMed  Google Scholar 

  • Zhang, D. Y., Ali, Z., Wang, C. B., Xu, L., Yi, J. X., Xu, Z. L., et al. (2013). Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE, 8(2), e56312.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. Y., Yan, F., Hu, L. P., Zhou, X. T., Zou, Z. R., & Cui, L. R. (2015). Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress. Genetics and Molecular Research, 14(2), 6401–6412.

    CAS  PubMed  Google Scholar 

  • Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., et al. (2012). Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE, 7(12), e52439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, C., Wang, T., Guo, Z., & Lu, S. (2016). Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3− deficiency in transgenic tobacco plants. BMC Plant Biology, 16(1), 138.

    Google Scholar 

  • Zhou, L., Wang, C., Liu, R., Han, Q., Vandeleur, R. K., Du, J., et al. (2014). Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1; 6 confers salt tolerance. BMC Plant Biology, 14(1), 181.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Zhou, J., Xiong, Y., Liu, C., Wang, J., Wang, G., et al. (2018). Overexpression of a maize plasma membrane intrinsic protein ZmPIP1; 1 confers drought and salt tolerance in Arabidopsis. PLoS ONE, 13(6), e0198639.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, C., Schraut, D., Hartung, W., & Schaffner, A. R. (2005). Differential responses of maize MIP genes to salt stress and ABA. Journal of Experimental Botany, 56(421), 2971–2981.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

OPD acknowledge the funding support from the USDA NIFA (#2017-67013-26165) and funding support from the grant #S16000000000036 from the Ministry of Higher Education and Scientific Research in Egypt through the Egyptian Cultural and Educational Bureau, Washington, DC to OPD and AGM (GM # 1054). KK acknowledge the financial assistance from Board of Research in Nuclear Sciences (37(1)/14/28/2016-BRNS), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Mosa, K.A., Meselhy, A.G. et al. Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. Ind J Plant Physiol. 23, 721–730 (2018). https://doi.org/10.1007/s40502-018-0425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0425-1

Keywords

Navigation