Skip to main content

Advertisement

Log in

Efficient root systems for enhancing tolerance of crops to water and phosphorus limitation

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Development of future crop varieties with efficient root systems for enhanced water and phosphorus uptake is essential for improving crop adaptation and hence food security. Root system architecture (RSA) traits that overcome low-water and low-phosphorus stresses are critical to maintaining structural and functional properties, and are considered the first-order targets in breeding programmes for rainfed environments. Modification of root system architecture could contribute to improvements of desirable agronomic and physiological traits such as biomass, yield, drought resistance, and tolerance to nutrient deficiencies. Advanced phenotyping, imaging, modelling and molecular biotechnologies offer promise in identifying RSA traits for efficient resource acquisition and adaptation to abiotic stresses. This review highlights the complexity and regulation of RSA in response to water and P stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bates, T. R., & Lynch, J. P. (2001). Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil, 236(2), 243–250.

    CAS  Google Scholar 

  • Burton, A. L., Johnson, J. M., Foerster, J. M., Hirsch, C. N., Buell, C., Hanlon, M. T., et al. (2014). QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics, 127(11), 2293–2311.

    PubMed  Google Scholar 

  • Cai, H., Chen, F., Mi, G., Zhang, F., Maurer, H. P., Liu, W., et al. (2012). Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theoretical and Applied Genetics, 125(6), 1313–1324.

    PubMed  Google Scholar 

  • Camacho-Cristóbal, J. J., Rexach, J., Conéjéro, G., Al-Ghazi, Y., Nacry, P., & Doumas, P. (2008). PRD, an Arabidopsis AINTEGUMENTA-like gene, is involved in root architectural changes in response to phosphate starvation. Planta, 228(3), 511–522.

    PubMed  Google Scholar 

  • Chen, Y., Djalovic, I., & Rengel, Z. (2015). Phenotyping for root traits. In J. Kumar, A. Pratap, & S. Kumar (Eds.), Phenomics in crop plants: Trends, options and limitations (pp. 101–128). New Delhi: Springer India.

    Google Scholar 

  • Chen, Y., Dunbabin, V., Diggle, A., Siddique, K., & Rengel, Z. (2011). Development of a novel semi-hydroponic phenotyping system for studying root architecture. Functional Plant Biology, 38(5), 355–363.

    Google Scholar 

  • Chen, Y., Dunbabin, V., Diggle, A., Siddique, K., & Rengel, Z. (2013a). Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop & Pasture Science, 64(6), 588–599.

    CAS  Google Scholar 

  • Chen, Y., Dunbabin, V., Postma, J., Diggle, A., Siddique, K., & Rengel, Z. (2013b). Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant and Soil, 1–19.

  • Chen, Y. L., Dunbabin, V. M., Postma, J. A., Diggle, A. J., Siddique, K. H., & Rengel, Z. (2013c). Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant and Soil, 372(1–2), 319–337.

    CAS  Google Scholar 

  • Chen, Y., Ghanem, M., & Siddique, K. (2017). Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68(8), 1987–1999.

    CAS  PubMed  Google Scholar 

  • Chen, Z. H., Jenkins, G. I., & Nimmo, H. G. (2008). Identification of an F-Box protein that negatively regulates Pi starvation responses. Plant and Cell Physiology, 49(12), 1902–1906.

    CAS  PubMed  Google Scholar 

  • Chen, Z., Nimmo, G., Jenkins, G., & Nimmo, H. (2007). BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochemical Journal, 405, 191–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. L., Palta, J., Clements, J., Buirchell, B., Siddique, K. H., & Rengel, Z. (2014). Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crops Research, 165, 61–70.

    Google Scholar 

  • Chen, Y., Shan, F., Nelson, M., Siddique, K., & Rengel, Z. (2016). Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius. Journal of Experimental Botany, 67(12), 3683–3697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chimungu, J. G., Loades, K. W., & Lynch, J. P. (2015a). Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays). Journal of Experimental Botany, erv121.

  • Chimungu, J. G., Maliro, M. F., Nalivata, P. C., Kanyama-Phiri, G., Brown, K. M., & Lynch, J. P. (2015b). Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). Field Crops Research, 171, 86–98.

    Google Scholar 

  • Christopher, J., Christopher, M., Jennings, R., Jones, S., Fletcher, S., Borrell, A., et al. (2013). QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theoretical and Applied Genetics, 126(6), 1563–1574.

    CAS  PubMed  Google Scholar 

  • Comas, L., Becker, S., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 442.

    PubMed  PubMed Central  Google Scholar 

  • Dai, X., Wang, Y., Yang, A., & Zhang, W. H. (2012). OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiology, 159(1), 169–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Dorlodot, S., Forster, B., Pages, L., Price, A., Tuberosa, R., & Draye, X. (2007). Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 12(10), 474–481.

    PubMed  Google Scholar 

  • Devaiah, B. N., Karthikeyan, A. S., & Raghothama, K. G. (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143(4), 1789–1801.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbabin, V., Rengel, Z., & Diggle, A. (2004). Simulating form and function of root systems: Efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Functional Ecology, 18(2), 204–211.

    Google Scholar 

  • FAOSTAT. (2017). Statistics database of the Food and Agriculture Organization of the United Nations. Rome: FAOSTAT.

    Google Scholar 

  • Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology, 64, 267–291.

    CAS  PubMed  Google Scholar 

  • Flavel, R. J., Guppy, C. N., Tighe, M. K., Watt, M., & Young, I. M. (2014). Quantifying the response of wheat (Triticum aestivum L.) root system architecture to phosphorus in an Oxisol. Plant and Soil, 385(1–2), 303–310.

    CAS  Google Scholar 

  • Foyer, C. H., Lam, H. M., Nguyen, H. T., Siddique, K. H., Varshney, R. K., Colmer, T. D., et al. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2(8), 16112.

    PubMed  Google Scholar 

  • Funayama-Noguchi, S., Noguchi, K., & Terashima, I. (2015). Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant, Cell and Environment, 38(3), 399–410.

    CAS  PubMed  Google Scholar 

  • Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., et al. (2012). The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 488(7412), 535–539.

    CAS  PubMed  Google Scholar 

  • Gregory, P. J., Bengough, A. G., Grinev, D., Schmidt, S., Thomas, W. B. T., Wojciechowski, T., et al. (2009). Root phenomics of crops: Opportunities and challenges. Functional Plant Biology, 36(11), 922–929.

    Google Scholar 

  • Guo, W., Zhao, J., Li, X., Qin, L., Yan, X., & Liao, H. (2011). A soybean β—expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. The Plant Journal, 66(3), 541–552.

    CAS  PubMed  Google Scholar 

  • Hamelin, C., Sempere, G., Jouffe, V., & Ruiz, M. (2013). TropGeneDB, the multi-tropical crop information system updated and extended. Nucleic Acids Research, 41(D1), D1172–D1175.

    CAS  PubMed  Google Scholar 

  • Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J. P., et al. (2011). Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant and Soil, 348(1–2), 29–61.

    CAS  Google Scholar 

  • Jackson, R., Manwaring, J., & Caldwell, M. (1990). Rapid physiological adjustment of roots to localized soil enrichment. Nature, 344(6261), 58–60.

    CAS  PubMed  Google Scholar 

  • Jaillais, Y., & Chory, J. (2010). Unraveling the paradoxes of plant hormone signaling integration. Nature Structural & Molecular Biology, 17(6), 642–645.

    CAS  Google Scholar 

  • Jaramillo, R. E., Nord, E. A., Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2013). Root cortical burden influences drought tolerance in maize. Annals of Botany, mct069.

  • Jing, J., Rui, Y., Zhang, F., Rengel, Z., & Shen, J. (2010). Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Research, 119(2), 355–364.

    Google Scholar 

  • Kleine-Vehn, J., Ding, Z., Jones, A. R., Tasaka, M., Morita, M. T., & Friml, J. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences, 107(51), 22344–22349.

    CAS  Google Scholar 

  • Lambers, H., Finnegan, P. M., Laliberté, E., Pearse, S. J., Ryan, M. H., Shane, M. W., et al. (2011). Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: Are there lessons to be learned for future crops? Plant Physiology, 156(3), 1058–1066.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers, H., Martinoia, E., & Renton, M. (2015). Plant adaptations to severely phosphorus-impoverished soils. Current Opinion in Plant Biology, 25, 23–31.

    CAS  PubMed  Google Scholar 

  • Lei, M., Zhu, C., Liu, Y., Karthikeyan, A. S., Bressan, R. A., Raghothama, K. G., et al. (2011). Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytologist, 189(4), 1084–1095.

    CAS  PubMed  Google Scholar 

  • Li, Z., Gao, Q., Liu, Y., He, C., Zhang, X., & Zhang, J. (2011). Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta, 233(6), 1129–1143.

    CAS  PubMed  Google Scholar 

  • Li, H., Ma, Q., Li, H., Zhang, F., Rengel, Z., & Shen, J. (2014). Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant and Soil, 376(1–2), 151–163.

    CAS  Google Scholar 

  • Li, X., Zeng, R., & Liao, H. (2015). Improving crop nutrient efficiency through root architecture modifications. Journal of Integrative Plant Biology, 58(3), 193–202.

    PubMed  Google Scholar 

  • Liao, H., Yan, X., Rubio, G., Beebe, S. E., Blair, M. W., & Lynch, J. P. (2004). Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Functional Plant Biology, 31(10), 959–970.

    CAS  Google Scholar 

  • Liu, Z., Gao, K., Shan, S., Gu, R., Wang, Z., Craft, E. J., et al. (2017). Comparative analysis of root traits and the associated QTLs for maize seedlings grown in paper roll, hydroponics and vermiculite culture system. Frontiers in Plant Science, 8, 436.

    PubMed  PubMed Central  Google Scholar 

  • Lynch, J. (1995). Root architecture and plant productivity. Plant Physiology, 109(1), 7–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch, J. P. (2007). Turner review no. 14. Roots of the second green revolution. Australian Journal of Botany, 55(5), 493–512.

    Google Scholar 

  • Lynch, J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals Botany, 112(2), 347–357.

    CAS  Google Scholar 

  • Lynch, J. P., & Beebe, S. E. (1995). Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortScience, 30, 1165–1171.

    CAS  Google Scholar 

  • Lynch, J. P., & Brown, K. M. (2001). Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 237(2), 225–237.

    CAS  Google Scholar 

  • Lynch, J. P., & Brown, K. M. (2012). New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society of London. Series B, 367(1595), 1598–1604.

    PubMed  Google Scholar 

  • Lynch, J. P., Chimungu, J. G., & Brown, K. M. (2014). Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement. Journal of Experimental Botany, 65(21), 6155–6166.

    CAS  PubMed  Google Scholar 

  • Lynch, J. P., & Wojciechowski, T. (2015). Opportunities and challenges in the subsoil: Pathways to deeper rooted crops. Journal of Experimental Botany, 66(8), 2199–2210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyzenga, W. J., & Stone, S. L. (2012). Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 63(2), 599–616.

    CAS  PubMed  Google Scholar 

  • Ma, Q., Zhang, F., Rengel, Z., & Shen, J. (2013). Localized application of NH4+–N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant and Soil, 372(1–2), 65–80.

    CAS  Google Scholar 

  • Mace, E., Singh, V., Van Oosterom, E., Hammer, G., Hunt, C., & Jordan, D. (2012). QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics, 124(1), 97–109.

    CAS  PubMed  Google Scholar 

  • Malamy, J. (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment, 28(1), 67–77.

    CAS  PubMed  Google Scholar 

  • Manschadi, A. M., Hammer, G. L., & Christopher, J. T. (2008). Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303(1–2), 115–129.

    CAS  Google Scholar 

  • Manschadi, A., Manske, G., & Vlek, P. (2013). Root architecture and resource acquisition—wheat as a model plant. Plant roots—the hidden half (4th ed.). London: CRC Press.

    Google Scholar 

  • Marchive, C., Yehudai-Resheff, S., Germain, A., Fei, Z., Jiang, X., Judkins, J., et al. (2009). Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. Plant Physiology, 151(2), 905–924.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, G., Taylor, J., Verbyla, A., & Kuchel, H. (2013). Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop and Pasture Science, 63(12), 1043–1065.

    Google Scholar 

  • Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16(4), 237.

    CAS  PubMed  Google Scholar 

  • Miura, K., Lee, J., Gong, Q., Ma, S., Jin, J. B., Yoo, C. Y., et al. (2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiology, 155(2), 1000–1012.

    CAS  PubMed  Google Scholar 

  • Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A. S., Raghothama, K. G., et al. (2005). The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7760–7765.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naz, A. A., Arifuzzaman, M., Muzammil, S., Pillen, K., & Léon, J. (2014). Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genetics, 15(1), 107.

    PubMed  PubMed Central  Google Scholar 

  • Neumann, G., & Martinoia, E. (2002). Cluster roots—an underground adaptation for survival in extreme environments. Trends in Plant Science, 7(4), 162–167.

    CAS  PubMed  Google Scholar 

  • Niones, J. M., Inukai, Y., Suralta, R. R., & Yamauchi, A. (2015). QTL associated with lateral root plasticity in response to soil moisture fluctuation stress in rice. Plant and Soil, 391(1–2), 63–75.

    CAS  Google Scholar 

  • Pang, J., Bansal, R., Zhao, H., Bohuon, E., Lambers, H., Ryan, M. H., et al. (2018). The carboxylate‐releasing phosphorus–mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytologist (in press).

  • Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290–295.

    CAS  PubMed  Google Scholar 

  • Placido, D. F., Campbell, M. T., Folsom, J. J., Cui, X., Kruger, G. R., Baenziger, P. S., et al. (2013). Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiology, 161(4), 1806–1819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi, S., Giuliani, S., Ricciolini, C., Carraro, N., Maccaferri, M., Presterl, T., et al. (2016). Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. Journal of Experimental Botany, 67, 1149–1159.

    PubMed  PubMed Central  Google Scholar 

  • Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071–1078.

    CAS  PubMed  Google Scholar 

  • Shabala, S., Bose, J., Fuglsang, A. T., & Pottosin, I. (2015). On a quest for stress tolerance genes: Membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany, 67(4), 1015–1031.

    PubMed  Google Scholar 

  • Shu, L. Z., Shen, J. B., Rengel, Z., Tang, C. X., & Zhang, F. S. (2007). Cluster root formation by Lupinus albus is modified by stratified application of phosphorus in a split-root system. Journal of Plant Nutrition, 30(2), 271–288.

    CAS  Google Scholar 

  • Smith, S., & De Smet, I. (2012). Root system architecture: Insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society of London. Series B, 367(1595), 1441–1452.

    CAS  PubMed  Google Scholar 

  • Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. New York: Academic Press.

    Google Scholar 

  • Stevenson-Paulik, J., Bastidas, R. J., Chiou, S. T., Frye, R. A., & York, J. D. (2005). Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12612–12617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., et al. (2007). Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics, 39(6), 792–796.

    CAS  PubMed  Google Scholar 

  • Tang, C., Asseng, S., Diatloff, E., & Rengel, Z. (2003). Modelling yield losses of aluminium-resistant and aluminium-sensitive wheat due to subsurface soil acidity: Effects of rainfall, liming and nitrogen application. Plant and Soil, 254(2), 349–360.

    CAS  Google Scholar 

  • Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63(1), 25–31.

    CAS  PubMed  Google Scholar 

  • Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818–822.

    CAS  PubMed  Google Scholar 

  • Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8), 2485–2494.

    CAS  PubMed  Google Scholar 

  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., et al. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102.

    CAS  PubMed  Google Scholar 

  • Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3), 423–447.

    CAS  Google Scholar 

  • Varshney, R. K., Gaur, P. M., Chamarthi, S. K., Krishnamurthy, L., Tripathi, S., Kashiwagi, J., et al. (2013). Fast-track introgression of “for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. The Plant Genome, 6(3).

  • Wada, Y., Kusano, H., Tsuge, T., & Aoyama, T. (2015). Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana. The Plant Journal, 81(3), 426–437.

    CAS  PubMed  Google Scholar 

  • Wang, H. Z., Yang, K. Z., Zou, J. J., Zhu, L. L., Xie, Z. D., Morita, M. T., et al. (2015). Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications, 6.

  • Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V., Rebetzke, G. J., et al. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485–3498.

    CAS  PubMed  Google Scholar 

  • Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell and Environment, 33(4), 510–525.

    CAS  PubMed  Google Scholar 

  • Wiśniewska, J., Xu, J., Seifertová, D., Brewer, P. B., Růžička, K., Blilou, I., et al. (2006). Polar PIN localization directs auxin flow in plants. Science, 312(5775), 883.

    PubMed  Google Scholar 

  • Wu, P., & Wang, X. (2008). Role of OsPHR2 on phosphorus homoestasis and root hairs development in rice (Oryza sativa L.). Plant Signaling & Behavior, 3(9), 674–675.

    Google Scholar 

  • Yao, Z. F., Liang, C. Y., Zhang, Q., Chen, Z. J., Xiao, B. X., Tian, J., et al. (2014). SPX1 is an important component in the phosphorus signalling network of common bean regulating root growth and phosphorus homeostasis. Journal of Experimental Botany, 65(12), 3299–3310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, K., Menand, B., Bell, E., & Dolan, L. (2010). A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics, 42(3), 264–267.

    CAS  PubMed  Google Scholar 

  • Zhan, A., Schneider, H., & Lynch, J. P. (2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 168(4), 1603–1615.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Zhang, X., Lin, Z., Wang, J., Xu, M., Lai, J., et al. (2018). The genetic architecture of nodal root number in maize. Plant Journal, 93, 1032–1044.

    CAS  PubMed  Google Scholar 

  • Zhao, F. Y., Cai, F. X., Gao, H. J., Zhang, S. Y., Wang, K., Liu, T., et al. (2015). ABA plays essential roles in regulating root growth by interacting with auxin and MAPK signaling pathways and cell-cycle machinery in rice seedlings. Plant Growth Regulation, 75(2), 535–547.

    CAS  Google Scholar 

  • Zheng, Z., Zou, J., Li, H., Xue, S., Le, J., & Wang, Y. (2015). Dynamical and microrheological analysis of amyloplasts in the plant root gravity-sensing cells. Microgravity Science and Technology, 1–9.

  • Zhu, J., Ingram, P. A., Benfey, P. N., & Elich, T. (2011). From lab to field, new approaches to phenotyping root system architecture. Current Opinions in Plant Biology, 14(3), 310–317.

    Google Scholar 

  • Zhu, J., Mickelson, S. M., Kaeppler, S. M., & Lynch, J. P. (2006). Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics, 113(1), 1–10.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the CGIAR CRP Grain Legumes, the Australian Research Council (DP160103420), National Nature Science Foundation of China (31471946) and the Chinese Academy of Sciences “100 Talent” Program (A315021449).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinglong Chen or Kadambot H. M. Siddique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Rengel, Z., Palta, J. et al. Efficient root systems for enhancing tolerance of crops to water and phosphorus limitation. Ind J Plant Physiol. 23, 689–696 (2018). https://doi.org/10.1007/s40502-018-0415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0415-3

Keywords

Navigation