Skip to main content
Log in

Physiological, biochemical and molecular responses of lentil (Lens culinaris Medik.) genotypes under drought stress

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Lentil (Lens culinaris Medik.) is an important pulse crop in India. It is moderately tolerant to drought, however intermittent and terminal drought significantly reduce lentil productivity. Selection of appropriate parent for breeding drought resistant variety is a challenging task. Thus, in the present work drought response of eight lentil genotypes (GP3690, LL1136, GP3643, NDL908, KLS218, IC248956, PL230, L4076) has been analysed, by imposing drought stress using PEG 6000 (18% w/v) for 15 days. Various physiological (stomatal density, relative water content) and biochemical parameters (total chlorophyll, total soluble sugar, anthocyanin and proline contents, lipid peroxidation, superoxide dismutase and catalase activities) were analysed under drought stress. These eight genotypes were further evaluated by analysing expression of drought stress marker genes (DREBs and RDs) which suggested genotypes GP3690 as drought susceptible (DS) and genotypes GP3643 and IC248956 as drought tolerant (DT). Relative expression of forty-three drought responsive genes related to various molecular functions, like biosynthetic process, redox homeostasis and defence related genes were evaluated in these three genotypes, which revealed that the tolerant genotypes alters the metabolic and biosynthesis processes of plant to overcome drought. This study provides basic information on drought tolerance capacity of the genotypes which may be further ascertained at field level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aubert, Y., Vile, D., Pervent, M., Aldon, D., Ranty, B., Simonneau, T., et al. (2010). RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant and Cell Physiology, 51, 1975–1987.

    CAS  PubMed  Google Scholar 

  • Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413–428.

    Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Annals of Biochemistry, 44, 276–287.

    CAS  Google Scholar 

  • Cho, S. K., Kim, J. E., Park, J. A., Eom, T. J., & Kim, W. T. (2006). Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Letter, 580, 3136–3144.

    CAS  Google Scholar 

  • Dobra, J., Motyka, V., Dobrev, P., Malbeck, J., Prasil, I. T., Haisel, D., et al. (2010). Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content. Journal of Plant Physiology, 167, 1360–1370.

    CAS  PubMed  Google Scholar 

  • Dos Santos, T. B., de Lima, R. B., Nagashima, G. T., de Oliveira, C. L., Carpentieri-Pipolo, V., Filipe, L., et al. (2015). Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genetics and Molecular Biology, 38, 182–190.

    PubMed  PubMed Central  Google Scholar 

  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Annals of Chemistry, 28, 350–356.

    CAS  Google Scholar 

  • Ghawana, S., Paul, A., Kumar, H., Kumar, A., Singh, H., Bhardwaj, P. K., et al. (2011). An RNA isolation system for plant tissues rich in secondary metabolites. BMC Research Notes, 4, 85–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Good, A. G., & Zaplachinski, S. T. (1994). The effect of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiologia Plantarum, 90, 9–14.

    CAS  Google Scholar 

  • Grusak, M. A., & Coyne, C. J. (2009). Variation for seed minerals and protein concentration in diverse germplasm of lentil. Paper presented at North American Pulse Improvement Association, 20th Biennial Meeting (Fort Collins, CO), p. 11.

  • Gunasekera, D., & Berkowitz, G. A. (1992). Evaluation of contrasting cellular-level acclimation responses to leaf water deficits in three wheat genotypes. Plant Science, 86, 1–12.

    Google Scholar 

  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., et al. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60, 3531–3544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, L., Yang, H., Zhang, X., & Yang, S. (2013). Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. Journal of Experimental Botany, 64, 1755–1767.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, J., Ling, H., Jingjing, M., Chen, Y., Su, Y., Lin, Q., et al. (2017). A sugarcane R2R3-MYB transcription factor gene is alternatively spliced during drought stress. Scientific Reports, 7, 41922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology, 154, 1254–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, M., Kisseleva, L., Sawa, S., Furukawa, T., Komatsu, S., & Koshiba, T. (2004). A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signalling pathway. Plant and Cell Physiology, 45, 550–559.

    CAS  PubMed  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    CAS  PubMed  Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57, 1332–1334.

    CAS  Google Scholar 

  • Hu, C. A., Delauney, A. J., & Verma, D. P. S. (1992). A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences, United States of America, 89, 9354–9358.

    CAS  Google Scholar 

  • Huang, G.-T., Ma, S.-L., Bai, L.-P., Zhang, L., Ma, H., Jia, P., et al. (2011). Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 39, 969–987.

    PubMed  Google Scholar 

  • Idrissi, O., Udupa, S. M., De Keyser, E., McGee, R. J., Coyne, C. J., Saha, G. C., et al. (2016). Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population. Frontiers in Plant Science, 7, 1174.

    PubMed  PubMed Central  Google Scholar 

  • Joshi, V., Joung, J. G., Fei, Z., & Jander, G. (2010). Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39(4), 933–947.

    CAS  PubMed  Google Scholar 

  • Khedr, A. H., Abbas, M. A., Abdel Wahid, A. A., QuickGaber, W. P., & Abogadallah, M. (2003). Proline induces the expression of salt-stress-responsive proteins and may improve the adaptations of Pancratium maritimum L. to salt stress. Journal of Experimental Botany, 54, 2553–2562.

    CAS  PubMed  Google Scholar 

  • Kim, J., Yi, H., Choi, G., Shin, B., Song, P.-S., & Choi, G. (2003). Functional characterisation of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. The Plant Cell, 15, 2399–2407.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S. T., Yu, S., Kang, Y. H., Kim, S. G., Kim, J. Y., Kim, S. H., et al. (2008). The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Reports, 27, 593–603.

    CAS  PubMed  Google Scholar 

  • Koingshofer, H. L., & Oppert, H. G. (2015). Regulation of invertase activity in different root zones of wheat (Triticum aestivum L.) seedlings in the course of osmotic adjustment under water deficit conditions. Journal of Plant Physiology, 183, 130–137.

    Google Scholar 

  • Lata, C., & Prasad, M. (2011). Role of DREBs in regulating abiotic stress responses in plants. Journal of Experimental Botany, 62, 4731–4748.

    CAS  PubMed  Google Scholar 

  • Lee, B.-R., Jung, W.-J., Lee, B.-H., Avice, J.-C., Ourry, A., & Kim, T.-H. (2007). Kinetics of drought induced pathogenesis-related proteins and its physiological significance in white clover leaves. Physiologia Plantarum, 132, 329–337.

    Google Scholar 

  • Luck, H. (1974). In Bergmeyer (Ed.), Methods in enzymatic analysis 2 (p. 885). New York: Academic.

  • Martinez, J. P., Silva, H., Ledent, J. F., & Pinto, M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26, 30–38.

    Google Scholar 

  • Mishra, B. K., Srivastava, J. P., Lal, J. P., & Sheshshayee, M. S. (2016). Physiological and biochemical adaptations in lentil genotypes under drought stress. Russian Journal of Plant Physiology, 63, 695–708.

    CAS  Google Scholar 

  • Mirouze, M., Sels, J., Richard, O., Czernic, P., Loubet, S., Jacquier, A., et al. (2006). A putative role of plant defensin from the zinc hyper-accumulating plant, Arabidopsis halleri confers zinc tolerance. The Plant Journal, 47, 329–342.

    CAS  PubMed  Google Scholar 

  • Moller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.

    PubMed  Google Scholar 

  • Monakhova, O. F., & Chemyadev, I. I. (2002). Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied Biochemistry and Microbiology, 38, 373–380.

    CAS  Google Scholar 

  • Moussa, H. R., & Abdel-Aziz, S. M. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1, 31–36.

    Google Scholar 

  • Munne-Bosch, S., Jubany-Mari, T., & Alegre, L. (2001). Drought induced senescence is characterised by a loss of antioxidant defences in chloroplasts. Plant, Cell and Environment, 24, 1319–1327.

    CAS  Google Scholar 

  • Muscolo, A., Sidari, M., Anastasi, U., Santonoceto, C., & Maggio, A. (2014). Effect of drought stress on germination of four lentil genotypes. Journal of Plant Interaction, 9, 354–363.

    CAS  Google Scholar 

  • Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D., & Altmann, T. (2015). Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany, 66, 5467–5480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima, K., Kiyosue, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1997). A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant Journal, 12, 851–861.

    CAS  PubMed  Google Scholar 

  • Nath, U. K., Rani, S., Paul, M. R., Alam, M. N., & Horneburg, B. (2014). Selection of superior lentil (Lens esculenta M.) genotypes by assessing character association and genetic diversity. Scientific World Journal, 2014, 372405.

    CAS  PubMed  Google Scholar 

  • Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A., & Sopory, S. K. (2013). Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry, 66, 1–9.

    CAS  PubMed  Google Scholar 

  • Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008a). The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signalling and Behaviour, 11, 1016–1018.

    Google Scholar 

  • Nishizawa, A., Yabuta, Y., & Shigeoka, S. (2008b). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology, 147, 1251–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido, P., Llamas, E., Llorente, B., Ventura, S., Wright, L. P., & Rodriguez-Concepcion, M. (2016). Specific Hsp 100 chaperones determine the fate of the first enzymes of the plastidial isoprenoid pathway for either refolding or degradation by the stromal Clp proteases in Arabidopsis. PLoS Genetics, 12, e1005824.

    PubMed  PubMed Central  Google Scholar 

  • Oktem, H. A., Eyidodan, F., Demirba, D., Bayrac, A. T., Oz, M. T., Ozgur, E., et al. (2008). Antioxidant responses of lentil to cold and drought stress. Journal of Plant Biochemistry and Biotechnology, 17, 15–21.

    CAS  Google Scholar 

  • Reda, A. (2015). Lentil (Lens culinaris Medikus) current status and future prospect of production in Ethiopia. Advances in Plants & Agriculture Research, 2, 00040.

    Google Scholar 

  • Renault, H., El-Amrani, A., Berger, A., Mouille, G., Soubigou-Taconnat, L., Bouchereau, A., et al. (2013). γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant, Cell and Environment, 36, 1009–1018.

    CAS  PubMed  Google Scholar 

  • Rose, J. K., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 43, 1421–1435.

    CAS  PubMed  Google Scholar 

  • Saito, K., & Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology, 61, 463–489.

    CAS  PubMed  Google Scholar 

  • Sengupta, S., Mukherjee, S., Basak, P., & Majumdar, A. L. (2015). Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Frontiers in Plant Science, 6, 656.

    PubMed  PubMed Central  Google Scholar 

  • Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. M., et al. (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science, 8, 1776.

    PubMed  PubMed Central  Google Scholar 

  • Shah, Z. H., Rehman, H. M., Akhtar, T., Daur, I., Nawaz, M. A., Ahmad, M. Q., et al. (2017). Redox and ionic homeostasis regulation against oxidative, salinity and drought stress in wheat (a systems biology approach). Frontiers in Genetics, 8, 141.

    PubMed  PubMed Central  Google Scholar 

  • Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., et al. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8, 1950.

    PubMed  PubMed Central  Google Scholar 

  • Siddique, M. H., Al-Khaishany, M. Y., Al-Qutami, M. A., Al-Whaibi, M. H., Grover, A., Ali, H. M., et al. (2015). Responses of different genotypes of Faba bean plant to drought stress. International Journal of Molecular Sciences, 16, 10214–10227.

    Google Scholar 

  • Singh, A. K., Sopory, S. K., Wu, R., & Singla-Pareek, S. L. (2010). Transgenic approaches. In A. Pareek, S. K. Sopory, H. J. Bohnert, & Govindjee (Eds.), Abiotic stress adaptation in plants: Physiological molecular and genomic foundation (pp. 417–450). Dordrecht: Springer.

    Google Scholar 

  • Singh, D., Singh, C. K., Tomar, R. S. S., Taunk, J., Singh, R., Maurya, S., et al. (2016). Molecular assortment of Lens species with different adaptations to drought conditions using SSR markers. PLoS ONE, 11, e0147213.

    PubMed  PubMed Central  Google Scholar 

  • Singh, D., Singh, C. K., Taunk, J., Tomar, R. S. S., Chaturvedi, A. K., Gaikwad, K., et al. (2017a). Transcriptome analysis of lentil (Lens culinaris) in response to seedling drought stress. BMC Genomics, 18, 206.

    PubMed  PubMed Central  Google Scholar 

  • Singh, D., Singh, C. K., Kumari, S., Tomar, R. S. S., Karwa, S., Singh, R., et al. (2017b). Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. PLoS ONE, 12, e0190462.

    PubMed  PubMed Central  Google Scholar 

  • Sinha, R., Sharma, T. R., & Singh, A. K. (2018). Validation of reference genes for qRT-PCR data normalisation in lentil (Lens culinaris) under leaf developmental stages and abiotic stresses. Physiology and Molecular Biology of Plants. https://doi.org/10.1007/s12298-018-0609-1.

    Article  Google Scholar 

  • Siopongco, J. D. L. C., Yamauchi, A., Salekdeh, H., Bennet, J., & Wade, L. J. (2006). Growth and water use response of doubled-haploid rice lines to drought and rewatering during the vegetative stage. Plant Production Science, 9, 141–151.

    Google Scholar 

  • Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. M., et al. (2017). Identification of high temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Frontiers in Plant Science, 8, 744.

    PubMed  PubMed Central  Google Scholar 

  • Stolf-Moreira, R., Lemos, E., Carareto-Alves, L., Marcondes, J., Pereira, S., Rolla, A., et al. (2011). Transcriptional profiles of roots of different soybean genotypes subjected to drought stress. Plant Molecular Biology Reports, 29, 19–34.

    Google Scholar 

  • Sultan, M. A. R. F., Hui, L., Yang, L. J., & Xian, Z. H. (2012). Assessment of drought tolerance of some Triticum L. species through physiological indices. Czech Journal of Genetics and Plant Breeding, 48, 178–184.

    Google Scholar 

  • Szabadous, L., & Savoure, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    Google Scholar 

  • Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., et al. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 29, 417–426.

    CAS  PubMed  Google Scholar 

  • Thameur, A., Lachiheb, B., & Ferchichi, A. (2012). Drought effect on growth, gas exchange and yield in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia. Journal of Environmental Management, 113, 495–500.

    CAS  PubMed  Google Scholar 

  • Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108–117.

    CAS  PubMed  Google Scholar 

  • van Wijk, K. J. (2015). Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. Annual Review of Plant Biology, 66, 75–111.

    PubMed  Google Scholar 

  • Wang, Z., Zhu, Y., Wang, L., Liu, X., Liu, Y., Phillips, J., et al. (2009). A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta, 230, 1155–1166.

    CAS  PubMed  Google Scholar 

  • Wang, L., Liu, Y., Feng, S., Yang, J., Li, D., & Zhang, J. (2017). Roles of plasmalemma aquaporin gene StPiP1 in enhancing drought tolerance in potato. Frontiers in Plant Science, 8, 616.

    PubMed  PubMed Central  Google Scholar 

  • Wehner, G., Balko, C., Humbeck, K., Zyprian, E., & Ordon, F. (2016). Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC Plant Biology, 16, 3.

    PubMed  PubMed Central  Google Scholar 

  • Wei, T., Deng, K., Zhang, Q., Gao, Y., Liu, Y., Yang, M., et al. (2017). Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Frontiers in Plant Science, 8, 52.

    PubMed  PubMed Central  Google Scholar 

  • Wheeler, M. C., Tronconi, M. A., Drincovich, M. F., Andreo, C. S., Flugge, U. I., & Maurino, V. G. (2005). A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiology, 139, 39–51.

    CAS  PubMed  Google Scholar 

  • Wu, Q. S., & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and water stress conditions. Journal of Plant Physiology, 163, 417–425.

    CAS  PubMed  Google Scholar 

  • Xiu, Y., Iqbal, A., Zhu, C., Wu, G., Chang, Y., Li, N., et al. (2015). Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. ‘Idaho’. Plant Biotechnology Journal, 14, 1456–1469.

    Google Scholar 

  • Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59, 3317–3325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781–803.

    CAS  PubMed  Google Scholar 

  • Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., et al. (1995). Correlation between the induction of a gene for δ 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. The Plant Journal, 7, 751–760.

    CAS  PubMed  Google Scholar 

  • Yoshiba, Y., Nanjo, T., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Stress-responsive and developmental regulation of Δ 1-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochemical and Biophysical Research Communication, 261, 766–772.

    CAS  Google Scholar 

  • Yusuf, M., Singh, N. P., & Dastane, N. G. (1979). Effect of frequency and timings of irrigation on grain yield and water use efficiency of lentil. Annals of Arid Zone, 18, 127–134.

    Google Scholar 

  • Zeigler, R. S., & Puckridge, D. W. (1995). Improving sustainable productivity in rice based rainfed lowland systems of South and Southeast Asia. Feeding four billion people: The challenge for rice research in the 21st century. GeoJournal, 35, 307324.

    Google Scholar 

  • Zhou, Q., & Yu, B. J. (2009). Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stresses vetiver grass seedlings. Russian Journal of Plant Physiology, 56, 678–685.

    CAS  Google Scholar 

  • Zinselmeier, C., Jeong, B. R., & Boyer, J. S. (1999). Starch and the control of kernel number in maize at low water potentials. Plant Physiology, 121, 25–35.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RS acknowledges Science and Engineering Research Board, Department of Science and Technology, Government of India for the National-Postdoctoral Fellowship (PDF/2016/000924). AKS acknowledges Institute projects IXX12585 and IXX12644 funded by ICAR-Indian Institute of Agricultural Biotechnology, Ranchi. We thank Dr. Madhuparna Banerjee, Associate Professor, College of Biotechnology, Birsa Agricultural Biotechnology, Ranchi for granting access to her lab facilities during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R., Pal, A.K. & Singh, A.K. Physiological, biochemical and molecular responses of lentil (Lens culinaris Medik.) genotypes under drought stress. Ind J Plant Physiol. 23, 772–784 (2018). https://doi.org/10.1007/s40502-018-0411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0411-7

Keywords

Navigation