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Opinion Statement

Hormones and neuropeptides represent biological correlates of internal homeostatic
signals detected and integrated in the hypothalamus, which establishes a robust func-
tional connection with the ventral tegmental area (VTA). The hypothalamus-VTA connec-
tion determines the ability of these signals to influence central dopaminergic neurotrans-
mission and, therefore, their ability to increase responsiveness to their reward-associated
stimuli and to establish appropriate associative learning. The hypothalamus also provides
the main source of the multiple neuropeptides that are released in the VTA. With volume
transmission of neuropeptides and hormones, extrasynaptic receptors within the VTA
provide a fine-tune mechanism, which depends on the ability of molecularly different G
protein-coupled receptors (GPCRs) to form heteromers. GPCR heteromer is defined as a
macromolecular complex composed of at least two different receptor units (protomers)
with biochemical properties that are demonstrably different from those of its individual
components. GPCR heteromers can provide unique allosteric properties to specific ligands,
which provides new avenues for drug development. We have identified specific GPCR
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heteromers in the VTA that integrate orexin and CRF neurotransmission and opioid and
galanin neurotransmission, which play a very significant role in the modulation of
dopaminergic neuronal activity and which can constitute targets for the treatment of loss
of control of food intake and substance use disorders.

Introduction: hormones and neuropeptides as interoceptive discriminative stimuli

“Drives” and “motivational states” can be operationally
approached by specific interoceptive discriminative stimuli,
correlative internal signals conveyed by identifiable bio-
logical signaling molecules, largely hormones and neu-
ropeptides. For instance, “hunger” and “satiety” can be
operationally approached by specific correlative internal
orexigenic and anorectic signaling molecules, which re-
spectively facilitate and inhibit food-oriented behavior,
eliciting approach to food-related stimuli and consum-
matory eating behavior or withdrawal from those stim-
uli. Alterations in the capacity of these biological mole-
cules to signal through their specific receptors lead to
pathological implications, such as obesity and anorexia.

Definitions of hormone and neuropeptide
A hormone is defined as a signaling molecule produced by

an endocrine cell that is transported by the circulatory system
to target distant organs. A neuropeptide is defined as a small
proteinaceous substance produced by neurons, released in a
regulated fashion and acting on neural substrates, e.g., neu-
rons, glial cells, or non-neuronal target cells, e.g., a gland or
muscle [1].

The hypothalamus represents a key center of integra-
tion of homeostatic, threat, and reproductive signals.
First, it acts like an internal sensory organ that detects
internal signals conveyed by hormones and neuropep-
tides. Second, the hypothalamus “valuates” among the
constantly detected internal signals, playing a decision-
maker role on the elicitation of the highest priority
homeostatic- or reproductive-oriented response.

Several hormones and neuropeptides, such as ghre-
lin, leptin, insulin, melanocyte-stimulating hormones
(α-MSH, β-MSH and γ-MSH), neuropeptide Y, agouti-
gene-related protein (AgRP), neurotensin, melanin-
concentrating hormone (MCH), orexin, and galanin,
provide orexigenic or anorectic signals that are integrat-
ed in the hypothalamus to modulate food-oriented be-
havior. This multiplicity of signals allows an exhaustive
control of the internal metabolic environment andmore
specifically of energy homeostasis [2, 3•, 4•].

Some of the biological signals, particularly ghrelin,
leptin, and insulin, are released to the blood circulation
and reach the hypothalamic arcuate nucleus (ARC) by

way of its proximity to the median eminence [5–7]
(Fig. 1). Median eminence is a circumventricular organ
with fenestrated capillaries and modified glial cells
called tanycytes that play an important part in the neu-
roendocrine system by providing the connection of hy-
pothalamic neurons to the pituitary, through the pitui-
tary portal circulation [8, 9]. Nerve terminals from the
paraventricular nucleus of the hypothalamus (PV) re-
lease corticotropin-releasing factor (CRF) within theme-
dian eminence, as part of the initial stress response of the
hypothalamo-pituitary-adrenocortical axis. CRF then
travels to the anterior and intermediate pituitary lobes
and promotes the synthesis and systemic release of pro-
opiomelanocortin (POMC)-derived peptides, which in-
clude the melanocortins adrenocorticotropic hormone
(ACTH) and α-, β-, and γ-MSH, as well as the endoge-
nous opioid β-endorphin [3•, 10]. The median emi-
nence acts therefore as a two-way gate for hormones of
central and peripheral origin.

Ghrelin is an orexigenic hormone mostly produced
by the stomach oxyntic cells, which provide plasma
levels that fluctuate diurnally with a peak in the day
and through at night [11, 12]. Insulin and glucose inde-
pendently increases and decreases, respectively, the se-
cretion and circulating concentration of ghrelin [13].
Notably, oxyntic cells qualify as food-entrained oscilla-
tors, and ghrelin plasma levels increase during anticipat-
ed mealtimes and decrease after meals [11].

Leptin is produced by adipocytes in proportion to
triglyceride stores, serving as a signal of repletion of
long-term energy stores [14]. The central signals provid-
ed by peripheral ghrelin and leptin largely contribute to
energy homeostasis, which is achieved when the
amount of energy consumed (from food intake) equals
energy expended (from basal metabolic rate and physi-
cal activity). These signals are initially processed in the
hypothalamus, within the ARC, by the two phenotypi-
cally different POMC- and AgRP-expressing neurons,
which project to the PVN and lateral hypothalamus
(LH) (Fig. 1). POMC-derived peptides are therefore not
only pituitary-derived hormones, but also neuropepti-
des synthesized within the hypothalamus. Activation of
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the POMC-expressing neuron inhibits food intake and
food-oriented behaviors, while activation of the AgRP-
expressing neuron promotes food intake [4, 15–18].

The orexigenic AgRP-expressing neuron contains
high levels of ghrelin receptors. Therefore, ghrelin direct-
ly activates AgRP-expressing neurons, which by inhibi-
tory collaterals inhibit the activity of POMC-expressing
neurons. On the other hand, both AgRP- and POMC-
expressing neurons contain leptin receptors, which stim-
ulate and inhibit the activity of POMC- and AgRP-
expressing neurons, respectively [19, 20]. Another level
of integration of orexigenic and anorectic signals pro-
cessed by AgRP- and POMC-expressing neurons takes
place at the verymelanocortin receptor level. Thus, AgRP
is an endogenous orthosteric antagonist of the targets of
hypothalamic melanocortins, MC3 and MC4 receptors
[3•, 10].

Pathological alterations in the capacity of ghrelin,
leptin, and melanocortins to signal through their specif-
ic receptors lead to their incapacity to act as appropriate
internal homeostatic signals, leading to pathological

loss of control of food intake, both in the experimental
animal and in human beings. Leptin deficiency and
mutations of leptin receptors and MC4 receptors are
common monogenic causes of obesity [3•]. Prader-
Willi syndrome (PWS), a condition associated with high
ghrelin serum levels, is the most common cause of
syndromic obesity [21]. PWS patients are incapable of
making appropriate food-related decisions and their hy-
perphagia can be life-threatening. Thus, the voracious
feeding habits seen in PWS include intense food forag-
ing, stealing of food and even consumption of inedible
foods, which may lead to chocking and gastric rupture
[22, 23]. The loss of control of food-related behaviors
observed in hyperghrelinemic PWS is a strong and per-
sistent food-oriented psychomotor activation equivalent
to that induced by food deprivation, but without satiety.
It is therefore equivalent to the psychostimulant effects
of addictive drugs, which depend largely on activation of
the central dopaminergic system [24]. The question is then
how ghrelin and other food-related internal signals can influ-
ence the central dopaminergic system.

The hypothalamus-VTA connection

Ascending dopamine systems originate in the substantia nigra pars compacta
(SNc) and the ventral tegmental area (VTA), and their differential functional

Fig. 1. Scheme of intrahypothalamic and hypothalamic-VTA connections. Green, red and blue circles represent glutamate, GABA and
dopamine neurons, respectively. AgRP, DA, CRF, NT/Gal, POMC, and OX represent neurons expressing aguti-related protein,
dopamine, corticotropin-releasing hormone, neurotensin or galanin, pro-opiomelanocortin and orexin, respectively. ARC arcuate
nucleus, LH lateral hypothalamus, ME median eminence, PVN paraventricular nucleus, VTA ventral tegmental area.
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roles depend on their innervation of functionally different striatal compart-
ments as well as their differential source of inputs. The hypothalamus projects
mostly to the VTA [25] and in fact constitutes one of its three main sources of
inputs, together with the ventral striatopallidal complex and the dorsal raphe
[25, 26]. LH is the main contributor of hypothalamic inputs to the VTA,
followed by the PV and with a lesser contribution from other nuclei including
ARC [25]. Pioneering studies on intracranial electrical stimulation in rodents
showed that electrical stimulation of the LH produces voracious feeding behav-
ior [27] as well as reinforcement of lever-pressing behavior to gain additional
stimulation, intracranial self-stimulation [28].

It has been classically known that electrical stimulation of the LH facilitates a
variety of species-typical, biologically primitive behavior patterns, including
eating, drinking and gnawing, in sated animals [28, 30]. Such stimulation does
not elicit specificmotor responses, but produces psychomotor activation, which
implies an increased responsiveness to a variety of environmental stimuli,
which implies a facilitation of different behavioral responses, such as feeding,
drinking, gnawing of wood, or a predatory attack [29–32]. These differences are
not a result of differences in the stimulation region [33] and the dominant
response of a given animal changes as a function of the discriminative and
rewarding stimuli present [34]. An important amount of data now indicates
that most effective intracranial electrical and optogenetic stimulation-induced
feeding and reward (intracranial self-stimulation) largely result from the direct
activation of VTA dopaminergic cells as well as the LH and the LH-VTA con-
nection, the descending medial forebrain fibers of passage that directly or
indirectly activate VTA dopaminergic cells; for review, see [35••].

It is then through the LH-VTA connection that hypothalamic activity promotes an
increased dopaminergic neurotransmission and, consequently, of the dopamine func-
tions: Dopamine release increases responsiveness to rewarding and reward-associated,
discriminative stimuli, with orienting and approaching responses to those stimuli [36];
concomitantly, dopamine is directly involved in reinforcement, in the learning (“stamp-
ing-in”) of stimulus-reward and reward-response associations that follows the receipt of
reward [36]. The reinforcement of stimulus-reward associations establishes new signals
that guide and orient to rewards (discriminative stimuli) or which become rewards
themselves (conditioned rewarding stimulus). The stamping-in of reward-response
associations promotes the learning of the optimal sequential response, the action skill
that leads to the reward [36].

The LH-VTA connection includes glutamatergic and GABAergic projecting
neurons that potentially activate and disinhibit (by inhibiting GABAergic inter-
neurons) dopaminergic neuronal activity, respectively [37–41] (Fig. 1). Al-
though it was initially believed that the excitatory input was fundamental to
the LH-mediation of dopaminergic cell activation in the VTA [37, 38], recent
optogenetic studies have demonstrated a predominant role of the GABAergic
projecting neurons in feeding-oriented behavior and reward [39–41]. However,
the picture is more complex than just the glutamate-GABA dichotomy, with the
existence of different subpopulations of cells expressing different neuropeptides
[35••, 42]. For instance, neurotensin and galanin are co-expressed in a popu-
lation ofGABAergic neurons that also express leptin receptors [43, 44] and these
neurons exert a local inhibitory control of glutamatergic neurons that co-express
orexin [43, 44]. The two orexin/hypocretin peptides, orexin-A and orexin-B, are
only produced in the brain by neurons of the lateral hypothalamic nucleus (HL)
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and to a lesser extent by neurons of the adjacent dorsomedial hypothalamic
nucleus [45]. These cells give origin to the ascending orexin arousal system
innervating most brain areas, including the VTA [45]. Still another population
expresses MCH, which seem to be predominantly GABAergic [46], but these
neurons do not connect directly with the VTA [42].

In addition to the LH, VTA receives inputs from other hypothalamic
nuclei, such as PV and ARC [25] (Fig. 1). PV provides a main source of
CRF to the VTA [47], and ARC provides the source of POMC-derived
peptides, melanocortins and β-endorphin [48, 49]. The factors that
determine the differential synthesis of POMC-derived peptides are tis-
sue-specific, and the precursor is cleaved in a differential manner. Thus,
the processing of POMC in the anterior pituitary is less extensive than in
the hypothalamus, where ACTH is all cleaved to produce α-MSH and β-
lipotropin is all cleaved to yield β-endorphin [50]. Surprisingly, al-
though the cleavage of POMC to produce α-MSH and β-endorphin
depends on the activity of the same enzyme (protein convertase PC2;
50), a recent study showed a cannabinoid CB1 receptor-dependent dif-
ferential synthesis of both neuropeptides by the hypothalamic POMC-
expressing neurons [51]. Under normal conditions, activation of POMC-
expressing neurons promotes melanocortin synthesis and release, inhib-
iting food-oriented behavior (see above). However, activation of CB1

receptors on POMC-expressing neurons promotes β-endorphin synthesis
and the opposite behavioral effect, facilitation of feeding [51]. Two
additional opioids, the tetra-peptides endomorphin-1 and endomor-
phin-2, which are the most potent and selective endogenous agonists
for the μ-opioid receptor [52], are also synthesized in hypothalamic
neurons which project to the VTA and are localized in an area close to
the periventricular nucleus and the ARC [53]. Finally, although still a
matter of debate [7], there are data suggesting that ghrelin qualifies as a
neuropeptide synthesized in the ARC [54], which could provide an
additional ligand source for ghrelin receptors localized in the VTA (see
below).

Hormone and neuropeptide transmission within the VTA

VTA hormone and neuropeptide GPCRs
NTS1 and NTS2 neurotensin receptors [55], Gal1 and Gal2 receptors [56], OX1

and OX2 orexin receptors [57], CRF1 receptors and lower expression of the CRF2
subtype; [58]; melanocortin MC3 receptors and lower expression of the MC4 subtype;
[49]; μ-and κ-opioid receptors [59] and ghrelin GHS1a receptor [60].

Neuropeptide neurotransmission plays then a key role in the hypothalamus-
VTA connection. The VTA shows a high density of receptors for neuropeptides
localized in the soma and/or dendrites of the dopaminergic cells or in the terminals
of their excitatory or inhibitory afferents. Neuropeptide receptors are mostly G
protein-coupled receptors (GPCRs), belonging to class A or rhodopsin family
(receptors for neurotensin, galanin, orexins, melanocortins, endogenous opioids,
and ghrelin) and class B or secretin family (receptors for CRF). Neuropeptides are
up to 50 amino acid-long polypeptide gene products, synthesized as ribosomal
pre-hormones that are cleaved and often post-translationally modified [61••].
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Neuropeptides are therefore produced in the soma and to lesser extent
dendrites and packaged in large dense core vesicles that are transported
through axons and dendrites. Cleavage and additional enzymatic modifica-
tions such as a common C-terminal α-amidation take place in the large
dense core vesicles, yielding the final bioactive peptide [61••]. Neuropep-
tides are released extrasynaptically and preferentially with high-frequency
neuronal firing. Classical neurotransmitters, on the other hand, are usually
stored in clear synaptic vesicles and released at the synapse upon low-
frequency activity. An additional fundamental difference with classical neu-
rotransmitters is that neuropeptide clearance is slower and does not depend
on efficient reuptake and intracellular metabolization mechanisms, but on
extracellular breaking down by extracellular peptidases. Neuropeptide neu-
rotransmission is therefore designed to reach larger distances than classical
neurotransmitters, to exert a modulatory role by activating extrasynaptic
receptors localized in different neuronal or non-neuronal elements within a
brain area. In general, neuropeptides demonstrate higher affinity and selec-
tivity for their respective receptors than classical neurotransmitters, which
corresponds to their ability to act as extrasynaptic modulatory signals.
Synaptic transmission, on the other hand, depends on the release of high
concentrations of the classical neurotransmitter [61••, 62].

Neuropeptide transmission within the VTA provides a local hormonal-like
effect of signaling molecules that are released in a volume-transmission mode
[62] from hypothalamic-VTA nerve terminals and invade the extracellular space
that surrounds the soma and dendrites of mesencephalic dopaminergic cells.
The same neuropeptide-mediated modulatory signal is therefore broadcasted
by the bulk of dopaminergic cells to their widespread terminal fields. However,
the VTA also contains a relatively high density of hormone receptors, for ghrelin
(also GPCRs) and for leptin and insulin (both belonging to the large tyrosine
kinase receptor family) [63]. The same as for leptin and ghrelin, insulin can
enter the brain tissue by passive diffusion through the median eminence and
activate receptors that are localized in the ARC [64], but the three hormones can
cross the blood-brain barrier and reach other hypothalamic areas and the VTA
by means of specific saturable transport systems [5, 65–67].

Numerous experiments have addressed the study of the effect of each
neuropeptide and hormone in isolation on the activity of their specific receptors
on VTA dopaminergic cell function. In this way, for instance, it has been
established that acting on receptors localized in the dopaminergic cells, ghrelin,
neurotensin, or melanocortin increase, while leptin or insulin inhibit their
activity [44, 49, 60, 68, 69]. Orexin and opioids also increase dopaminergic
cell activity, butmost probably by acting on receptors localized in glutamatergic
and GABAergic nerve terminals, respectively, increasing excitatory and decreas-
ing inhibitory neurotransmission [70–75]. Less clear has been the role of CRF,
which seems to activate dopaminergic cells under specific conditions, such as
previous psychostimulant exposure [76], and even more mysterious has been
the role of galanin in the VTA [77]. This approach, the investigation of the role
of a single neuropeptide or hormone, represents an artificial simplification
since the presence of multiple modulators diffusely released in the extracellular
space of the VTA is probably the norm, which calls for the analysis of
neurotransmitter-neurotransmitter and receptor-receptor interactions.With vol-
ume transmission of neuropeptides and hormones, extrasynaptic receptors within the
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VTA provide an additional molecular fine-tune mechanism, which depends on the
ability of GPCRs to form oligomeric complexes, GPCR heteromers.

Hormone and neuropeptide receptor heteromers in the VTA

Since their discovery, receptors have mostly been considered as single function-
al units. However, in recent years, a fast-growing list of GPCR-forming receptor
oligomers has emerged [78–80••]. Receptor heteromer is defined as a macromolec-
ular complex composed of at least two (functional) receptor units (protomers) with
biochemical properties that are demonstrably different from those of its individual
components [78]. A first important concept that arises from the new field of
GPCR oligomerization is that the pentameric structure constituted by one
GPCR homodimer and one heterotrimeric G protein provides a main function-
al unit, and oligomeric entities can be viewed as multiples of dimers [79••].
This seems to apply particularly to heteromers that include GPCR homodimers
with preferential coupling to Gs/olf (Gs for short) proteins and another molec-
ularly different homodimer with preferential coupling to Gi/o (Gi for short)
proteins. Such a “GPCR heterotetramer” would sustain a functional pre-
coupled macromolecular complex that includes two molecularly different
GPCRs, their cognate G proteins, and adenylyl cyclase and would provide the
frame for a canonical interaction at the adenylyl cyclase level, the ability of a Gi-
coupled GPCR to counteract adenylyl cyclase activation induced by a Gs-
coupled GPCR [81]. Recent studies using biophysical techniques and comput-
erized modeling have provided experimental evidence for the existence of
several GPCR heterotetramers that fulfill this scheme, such as the dopamine
D1–D3 [82] and the adenosine A2A-dopamine D2 receptor heterotetramer [83]
(Fig. 2). Using disrupting synthetic peptides with the amino acid sequence of
different transmembrane domains of the receptors, we can now determine not
only the interfaces involved in hetero- and homomerization in the heterote-
tramer [82, 83] but also the interfaces involved in the complex formation with
adenylyl cyclase. One unexpected and very significant output of these studies is
that the canonical Gs-Gi interaction at the adenylyl cyclase level is a specific
property of a heterotetramer (in preparation).

GPCR heteromers can convey allosteric modulations between orthosteric ligands
(ligands that bind to the same site as the endogenous neurotransmitter),
altering their affinity or intrinsic efficacy. A ligand binding to one GPCR unit
in the complex can lead to changes in the properties of a ligand binding to a
different GPCR unit [79••]. For instance, in the well-established A2A-D2 recep-
tor heteromer, an orthosteric A2A receptor agonist decreases the affinity and
intrinsic efficacy of dopamine or another orthosteric agonist for the D2 receptor
[83, 84]. Interestingly, the negative modulation of the intrinsic activity is
functionally selective for the G protein-independent D2 receptor-mediated
MAPK activation [84] (Fig. 2). Although this functional selectivity depends on
the existence of neuronal calcium-binding proteins that selectively bind to the
A2A-D2 receptor heteromer. In their absence, knocking down the expression of
these calcium-binding proteins, an A2A receptor agonist is also able to counter-
act the canonical interaction, in this case, the ability of a D2 receptor agonist to
counteract adenylyl cyclase activation induced by an A2A receptor agonist [84].
A common property of receptor heteromers is that, not only agonists but also
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antagonists, can act as allosteric modulators within a GPCR heteromer, a
phenomenon named cross-antagonism [79••]. Commonly, any orthosteric
ligand of one of the protomers in the heteromer can lead to changes in the
affinity or intrinsic efficacy of an orthosteric agonist of the molecularly different
protomer. This is also the case for the A2A-D2 receptor heteromer [83].

Additional considerations about the functional and pharmacological prop-
erties, which make GPCR attractive targets for drug development, are ligand-
independent allosteric modulations and probe dependence. One of the GPCR
protomers can convey a ligand-independent allosteric modulation of ligands
binding to the other molecularly different GPCR protomer and this can be
ligand specific (probe dependence). Again, the A2A-D2 receptor heteromer
provided the proof of concept, since a specific A2A receptor antagonist (SCH-
442416) was found to significantly decrease its affinity for the A2A receptor
when it heteromerizes with the D2 receptor [85].

We have demonstrated the existence of specific GPCR heteromers in the VTA
that integrate orexin and CRF neurotransmission [86••] and opioid and galanin
neurotransmission [87••], which play a very significant role in the modulation
of dopaminergic neuronal activity. Furthermore, we are obtaining experimental
evidence for an additional functionally significant GPCR heteromer that con-
trols VTA dopaminergic cell function, a ghrelin-dopamine D1/5 receptor hetero-
mer (in preparation). Our methodology includes, first, in vitro techniques in
mammalian cells that are transfected with receptors fused to biosensors that can
only interact when in close proximity. This allows finding synthetic peptides
with amino acid sequences corresponding to the interfaces of the putative
receptor heteromers. Specific disrupting peptides are then used as a tool to
identify the biochemical properties of the GPCR heteromer (which are specif-
ically disrupted with the peptides), such as an allosteric interaction between
specific ligands. Next, the specific disrupting peptides are used with in situ and
in vivo approaches to demonstrate the presence of the same GPCR heteromer
within the VTA and its functional and pharmacological significance. The
approaches include signaling in VTA slices and a modified infusion-
microdialysis technique that allows a slow-rate infusion of combinations of
neuropeptides and synthetic disruptive peptides and simultaneous measure-
ment of VTA somatodendritic dopamine release [86••]. Somatodendritic do-
pamine release by mesencephalic dopaminergic cells resembles that of the
terminal regions, possessing a similar uptake mechanism and a finite releasable

Fig. 2. The adenosine A2A-dopamine D2 receptor heteromer. The heteromer has a heterotetrameric structure, constituted by
homodimers of the Gs-coupled A2A receptor (A2AR) and the Gi-coupled D2 receptor (D2R). The canonical Gs-Gi antagonistic
interaction at the adenylyl cyclase (AC) level and functionally selective allosteric modulation occur in the frame of the A2AR-D2R
heteromer (see text). This heteromer constitutes a predominant population of striatal A2AR and D2R.
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storage pool [88]. Furthermore, previous studies have conclusively shown that
local dopamine release in the VTA is a correlate of dopaminergic cell firing [89].
This in vivo approach is therefore particularly suited to explore the role of local
neuropeptide interactions within the VTA on dopaminergic cell activity and
dependence on GPCR heteromerization.

Specifically, OX1 and not OX2 receptors form heteromers with CRF1 recep-
tors [86••] (Fig. 3). In signaling experiments in transfected cells and in the VTA,
CRF1-OX1 heteromer mediated a strong negative crosstalk between orexin-A
and CRF and a cross-antagonism, with the ability of OX1 and CRF1 receptor
antagonists to counteract the effect of CRF1 and OX1 receptor agonists, respec-
tively. In the CRF1-OX1 heteromer, CRF1 couples to Gs and OX1 to Gi, promot-
ing activation and inhibition of adenylyl cyclase, respectively [86••], and
therefore probably constituting an additional example of a GPCR heterote-
tramer [81]. Different to the A2A-D2 receptor heteromer, the negative allosteric
modulation of CRF on the intrinsic efficacy of orexin-A did not show functional
selectivity. CRF counteracted both signaling events induced by orexin-A, the G
protein-dependent ability of orexin to counteract CRF1 receptor-mediated
adenylyl cyclase activation, and the G protein-independent ability to activate
MAPK activation [86••] (Fig. 3). Orexin-A produced a significant increase in
somatodendritic dopamine release in the VTA and CRF was not effective on its
own, but significantly counteracted the effect of orexin-A. Cross-antagonism
could also be demonstrated, and a CRF receptor antagonist also counteracted
the effect of orexin-A [86••]. That these pharmacological interactions were
dependent on CRF1-OX1 heteromerization was demonstrated by the ability of
heteromer-specific peptides to disrupt the negative crosstalk in vivo [86••].
CRF-orexin-A interactions mediated by the CRF1-OX1 heteromers could be an
extension of the integrative role of internal signals by the hypothalamus. The
CRF1-OX1 heteromers integrate volume transmission signals driven by neuro-
peptides from the PV and LH, probably under conditions where the metabolic
demands that facilitate food-oriented behavior need to be inhibited in favor of
more evolutionary-significant behaviors, such as those linked to threat signals.

An additional pharmacological finding of the CRF1-OX1 heteromer was that
it complexes with sigma σ1 receptors and that σ1 receptor ligands, including
cocaine, counteract the allosteric interactions within the heteromer, both in
transfected cells and in the VTA. With the infusion-microdialysis technique, it

Fig. 3. The corticotropin-releasing factor CRF1-orexin OX1 receptor heteromer. The heteromer can have a heterotetrameric structure,
such as the A2A-dopamine D2 receptor heteromer, constituted by homodimers of a Gs-coupled CRF1 receptor (CRF1R) and a Gi-
coupled OX1 receptor (OX1R). There is no evidence for functional selectivity of the allosteric interactions within the heteromer. CRF
counteracts all signaling events induced by orexin-A, including its potential ability to inhibit CRF-induced AC activation (canonical
Gs-Gi interaction; see text).
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could also be shown that under normal conditions, the CRF1-OX1 heteromer
mediates a tonic inhibitory influence of orexin-A on CRF-induced signaling that
can be released by cocaine exposure [86••]. The counteraction of the negative
crosstalk between orexin-A and CRF in the VTA by σ1 receptor ligands provides
a mechanism by which CRF can only induce glutamate-dependent somatoden-
dritic dopamine release in animals previously exposed to cocaine [76]. Coun-
teraction of the allosteric interactions between the endogenous neuropeptides
in the CRF1-OX1 receptor heteromer can also explain the previously reported
apparent CRF-independent ability of orexin-A to release dopamine in the VTA
and to induce cocaine seeking [90]. The localization of CRF1-OX1 heteromers in
the VTA still remains to be determined, although the previously reported
glutamate dependence of the somatodendritic dopamine release in the VTA
induced by orexin-A or stress strongly suggests their localization in the gluta-
matergic terminals of PVN-VTA neurons [76, 90]. CRF1-OX1 receptor heteromer
can therefore constitute a target for the treatment of cocaine and other psychos-
timulant use disorders.

Galanin receptors have been said to provide candidates for the treatment of
opioid use disorders [91]. This is based, first, on experimental evidence for the
existence of antagonistic interactions between the galanin and opioid systems.
Second, on genetic studies that find associations of galanin gene polymor-
phisms with susceptibility to opioid use disorder [92, 93]. The most significant
association was observed for the single nucleotide polymorphism rs948854,
localized in the promoter region [93]. The experimental results indicate that
galanin receptor activation counteracts the psychomotor-activating and rein-
forcing effects of morphine [91, 94]. The behavioral effects of morphine were
enhanced in galanin knock-outmice andwere also counteracted by the systemic
administration of a non-peptidergic, non-selective galanin receptor agonist
[91]. Significantly, galanin knock-out mice showed a selective increase in
morphine-induced MAPK activation in the VTA, which was also counteracted
by the galanin receptor agonist [91].

It is well established that μ-opioid receptors localized in the striatum and in
the ventral midbrain are involved in the reinforcing effects of opioids [94–97].
In the ventral midbrain, endogenous opioids exert a strong inhibitory control of
the function of dopaminergic cells in the VTA, which depends on μ-opioid-
mediated inhibition of a tonic GABAergic neurotransmission [70], largely
mediated by afferents from the striatal patch compartment and from the
rostromedial tegmental nucleus or tail of the VTA [72, 73, 75]. We recently
demonstrated the existence of heteromers of μ-opioid and, specifically, Gal1
receptors in the VTA that can underlie the pharmacological interactions of
opioids and galanin systems [87••] (Fig. 4). These μ-opioid-Gal1 receptor
heteromers are therefore most probably localized in inhibitory inputs to the
VTA and integrate volume transmission signals driven by the hypothalamic
inputs that release β-endorphin and endomorphin-1 (ARC and periARC and
periventricular areas) and galanin (LH). A hormonal pituitary origin of β-
endorphin seems to be unlikely [98].

We first detected μ-opioid-Gal1 receptor heteromerization in mammalian
transfected cells and obtained a specific peptide that disrupted the heteromeri-
zation and a negative crosstalk, bywhich galanin counteracted endomorphin-1-
mediated MAPK activation [87••] (Fig. 4). The negative crosstalk constituted
therefore a biochemical property of μ-opioid-Gal1 heteromer, which could also

176 Substance Use Disorders (FG Moeller, Section Editor)



be identified in situ in VTA slices and in vivo with microdialysis experiments.
Thus, galanin completely counteracted somatodendritic dopamine release in-
duced by the local infusion of endomorphin-1. Both in situ and in vivo galanin-
opioid interactions were also selectively counteracted by application of the
disruptive peptide, demonstrating their dependence on μ-opioid-Gal1 hetero-
merization [87••]. These results indicate that dopaminergic cell function in the
VTA is modulated by a predominant population of μ-opioid receptors forming
heteromers with Gal1 receptors. Therefore, μ-opioid-Gal1 receptor heteromers
constitute an obvious target for the treatment of opioid use disorders.

There is also indirect evidence for the existence of ghrelin receptor hetero-
mers and neurotensin receptor heteromers localized in the dopaminergic cells,
although they do not fulfill yet the criteria for their identificationwithin the VTA
[78–19, 80••]. Ghrelin receptors are known as growth hormone secretagogue
(GHS) receptor or GHS1a receptors. Cells expressing GHS1a also express GHS1b
receptors, a truncated variant of GHS1a receptors lacking the transmembrane
domains 6 and 7. Ghrelin does not bind and therefore does not signal through
GHS1b receptors [99] and the role of this truncated “receptor” on ghrelin-
mediated signaling is just beginning to be understood. Evidence has been
provided for the ability of GHS1a to homodimerize and to heterodimerize with
GHS1a receptors, which allows GHS1b to produce a dominant negative effect on
GHS1a receptor signaling [99, 100]. Using mammalian transfected cells and
neuronal cells in culture, we found, first, a significant and complex modulatory
role of GHS1b in the trafficking and signaling of GHS1a receptors that depends
on the relative expression of both proteins [101]. An additional finding in
striatal and hippocampal neurons in culture was a predominant Gs/olf
protein-dependent signaling of ghrelin, which in striatal neurons depended
on D1-GHS1a-GHS1b receptor heteromerization [101] (Fig. 5). A D1 receptor
antagonist blocked ghrelin-induced cAMP accumulation in striatal but not
hippocampal neurons, indicating the involvement of D1 receptors in the striatal
GHS1a-Gs/olf coupling. Experiments in transfected cells demonstrated that D1

receptor co-expression promotes a switch in GHS1a-G protein coupling, from
Gi/o to Gs/olf, but only upon co-expression of GHS1b. In fact, with biophysical
techniques (resonance energy transfer experiments), it could be demonstrated
that D1 receptor interacts with GHS1a, but only in the presence of GHS1b [101].
Finally, a negative crosstalk could also be observed upon co-administration of
D1 and GHS1a receptor agonists [101] (Fig. 5). Therefore, GHS1b not only

Fig. 4. The μ-opioid-galanin Gal1 receptor heteromer. The heteromer can have a heterotetrameric structure, constituted by
homodimers of two Gi-coupled receptors, the μ-opioid (μOR) and the Gal1 receptor (Gal1R). Within the heteromer, galanin exerts
a strong negative allosteric control of μOR-mediated MAPK signaling (its G protein dependence or independence still needs to be
determined). This heteromer constitutes a predominant population of μOR localized in the VTA.
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determines the efficacy of ghrelin-induced GHS1a-mediated signaling but also
determines the ability of GHS1b to form oligomeric complexes with other
receptors promoting profound qualitative changes in ghrelin-induced
signaling.

Now, there is evidence for the localization of both GHS1a and D1-like
receptors (D1 or D5 receptor subtype) in the VTA dopaminergic cells [102]. It
is therefore very likely that these neurons will also express D1/5-GHS1a-GHS1b
receptor heteromers. In fact, using the infusion-microdialysis technique, we
have obtained evidence for a strong ghrelin-induced somatodendritic dopa-
mine release that is counteracted by co-perfusion with a D1 receptor antag-
onist (in preparation). In addition, GHS1a receptors could also oligomerize
with melanocortin receptors in the VTA, as the predominant subtype
expressed by dopaminergic neurons, MC3 receptors [49], has been reported
to form heteromers with GHS1a in the hypothalamic adenylyl cyclase (AC)
[103]. Ghrelin receptor heteromers in the VTA could specifically provide
new therapeutic targets for obesity associated with high ghrelin serum
levels, such as PWS [21]. Finally, NT1-D2 receptor heteromers [104, 105]
would also be localized in dopaminergic cells and could mediate the
activating effects of neurotensin related to disinhibition of D2 autoreceptor
function [44]. NT1-D2 receptor heteromers would therefore provide an
additional disinhibitory mechanism of dopaminergic cell activity provided
by GABA-neurotensin-expressing HL neurons.

Conclusions

The hypothalamic-VTA connection provides a link between the center of inte-
gration of internal homeostatic, threat and reproductive signals, and dopami-
nergic neurotransmission, which determines the degree of psychomotor activa-
tion and reinforcing effects elicited by those stimuli. Apart from classical neuro-
transmitters, the very heterogeneous hypothalamic-VTA connection releases a
series of neuropeptides in a volume-transmission mode which, together with
several hormones that seem to be able to cross the blood-brain barrier within
the VTA by saturable trasporters, simultaneously influences the activity of
dopaminergic cells. We introduce first the concept of targeting receptors for
hormones and neuropeptides localized in the VTA as a therapeutic approach for

Fig. 5. The ghrelin GHS1a-GHS1b-dopamine D1 receptor heteromer. Oligomerization with the truncated ghrelin GHS1b receptor
(GHS1bR) allows GHS1aR to heteromerize with dopamine D1-like receptors (D1R or D5R) and couple to Gs protein. Activation of AC
becomes therefore a main signaling pathway of the heteromer. Within the heteromer, dopamine and ghrelin receptor ligands
establish negative allosteric interactions. This heteromer has been demonstrated in striatal cells in culture, and indirect evidence
indicates that it is also functionally present in the VTA.
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the loss of control of food intake and substance use disorders. Second, we
introduce the concept that the specific targeting of those receptors can be
achieved by targeting specific VTA GPCR heteromers.
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