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Abstract
To maintain a robust catalog of resident space objects (RSOs), space situational 
awareness (SSA) mission operators depend on ground- and space-based sensors 
to repeatedly detect, characterize, and track objects in orbit. Although some space 
sensors are capable of monitoring large swaths of the sky with wide fields of view 
(FOVs), others—such as maneuverable optical telescopes, narrow-band imaging 
radars, or satellite laser-ranging systems—are restricted to relatively narrow FOVs 
and must slew at a finite rate from object to object during observation. Since there 
are many objects that a narrow FOV sensor could choose to observe within its field 
of regard (FOR), it must schedule its pointing direction and duration using some 
algorithm. This combinatorial optimization problem is known as the sensor-tasking 
problem. In this paper, we developed a deep reinforcement learning agent to task a 
space-based narrow-FOV sensor in low Earth orbit (LEO) using the proximal policy 
optimization algorithm. The sensor’s performance—both as a singular sensor act-
ing alone, but also as a complement to a network of taskable, narrow-FOV ground-
based sensors—is compared to the greedy scheduler across several figures of merit, 
including the cumulative number of RSOs observed and the mean trace of the covar-
iance matrix of all of the observable objects in the scenario. The results of several 
simulations are presented and discussed. Additionally, the results from an LEO SSA 
sensor in different orbits are evaluated and discussed, as well as various combina-
tions of space-based sensors.
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1 Introduction

As more resident space objects (RSOs) are added to the United States Space 
Command’s (USSPACECOM) RSO catalog with the advent of proliferated satel-
lite constellations and the deployment of more accurate sensors that can detect 
smaller objects, the need for exquisite space situational awareness (SSA)—the 
capabilities of detecting, cataloging, and tracking RSOs—grows more critical for 
sustaining long-term space operations. There are currently more than 4500 active 
satellites in low Earth orbit (LEO) [1] and it is estimated that by 2025 over 1000 
satellites could be launched each year [2]. The number of satellites will likely 
greatly outpace any increased capacity of SSA sensors, making efficient tasking 
of existing and future sensors—including both ground- and space-based narrow 
field of view (FOV) sensors—extremely valuable.

The SSA sensor-tasking problem suffers from the curse of dimensionality, a 
challenging aspect of the problem wherein the complexity of the object-tracking 
problem grows exponentially as the number of targets and length of the obser-
vation window grows linearly. Scheduling agents trained using reinforcement 
learning methods have been shown in the literature [3–5]. More recently the 
authors have developed and trained a scheduler for ground-based narrow-FOV 
sensors to efficiently observe RSOs orbiting overhead using deep reinforcement 
learning with the proximal policy optimization (PPO) algorithm and population-
based training (PBT) [6–8]. In this paper, the scheduler is adapted for a con-
stantly moving space-based sensor situated in LEO. The adapted scheduler out-
performs myopic policies—those in which only the benefits of a small number 
of estimated, future observations are considered—across several figures of merit, 
including RSO covariance and the number of unique RSOs observed during the 
study period.

The problem becomes much more untenable using traditional methods when 
we realize that owners of SSA sensors typically own multiple sensors across a 
geographical area, if not world-wide. Governmental organizations such as the US 
Space Surveillance Network, Russian Academy of Sciences’s International Sci-
entific Optical Network (ISON) and ILRS [9], and commercial companies such 
as ExoAnalytic Solutions, LeoLabs, and Numerica all operate multiple sensors 
across a wide area. A mix of sensor modalities may be used as well within an 
organization with wildly varying performance and figures of merits. Optimally 
tasking all of these sensors as a networked system for a particular performance 
metric (e.g. minimizing covariance of all space objects or for a subset of objects, 
or keeping custody of particular objects) is an even more difficult problem.

In reinforcement learning, an agent is trained to complete a task. During the 
training phase, the agent receives observations from the environment (state) and 
submits an action at each time step according to its policy. The action results in 
some reward from the environment as a measure of the success from that state in 
completing a goal, and the policy is updated guided by the received rewards. The 
actor-critic network comprises of two function approximators, called Critics and 
Actors. A Critic returns the predicted discounted value of the long-term reward, 
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whereas an actor returns as output the action that maximizes the predicted dis-
counted long-term reward. Agents that use only critics to select their actions are 
also referred to as value-based, while agents that only use actors are referred to 
as policy-based, whereas agents that use both an actor and a critic are referred 
to as actor-critic agents. In these agents, the actor learns the best action to take 
using feedback from the critic instead of using the reward directly. At the same 
time, the critic learns the value function from the rewards so that it can properly 
criticize the actor. In general, these agents can handle both discrete and continu-
ous action spaces. Some notable Actor-Critic methods include Advantage Actor-
Critic (A2C) and Asynchronous Advantage Actor-Critic (A3C) [10], Proximal 
Policy Optimization (PPO) [11], Trust Region Policy Optimization [12], Deep 
Deterministic Policy Gradient (DDPG) [13], Twin-Delayed Deep Deterministic 
Policy Gradient (TD3) [14], and Soft Actor-Critic (SAC) [15].

For multiple-agent and ensemble problems, Multi Agent Reinforcement Learning 
(MARL) techniques have recently been researched. The multi-agent formulations 
can have agents that cooperate with one another, or be put in an adversarial role with 
one another, with varying levels of information being shared between them. Agents 
playing a game of teamed hide-and-seek in a 3D environment has been shown [16], 
as well as in adversarial multiplayer video game environments [17, 18].

2  Space‑Based Sensors

Although most of the sensors in the U.S. Space Surveillance Network (SSN)—
including dedicated and contributing optical, radar, and radiofrequency sensors—
are fixed to the Earth’s surface, a growing number of the Network’s space object 
observations are being collected by relatively new space-based sensors. Currently, 
the U.S. Space Force (USSF) publicly acknowledges four space-based sensor sys-
tems that contribute observations to the SSN: the U.S. military’s Space Based Space 
Surveillance (SBSS) and Geosynchronous Space Situational Awareness Program 
(GSSAP) systems, the Canadian military’s Sapphire system, and MIT Lincoln 
Laboratory’s SensorSat. A number of other space-based sensor systems have been 
demonstrated on orbit, but do not actively contribute observations to the SSN. See 
Table  1 for a summary of operational space-based sensors and Appendix A for a 
brief history of their development and use.

Regardless of whether they work in conjunction or independently of the SSN, 
space-based sensors offer unique advantages over their ground-based counterparts. 
Space-based sensors in any orbital regime offer clearer, more frequent, and more 
diverse space object observations than ground-based sensors.

Ground-based optical sensors, in particular—which are perhaps most akin to the 
narrow-FOV, taskable space-based sensors evaluated as part of this study—are lim-
ited to observing space objects at night, when the sky is dark and illuminated space 
objects can be more easily observed against the cosmic background. Additionally, 
ground-based sensors are limited in their field of regard (FOR)—the fraction of 
the sky observable from their location on the Earth’s surface. Ground-based opti-
cal sensors also must collect observations through the Earth’s atmosphere, which 
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abberates optimal measurements, requiring adaptive methodologies and other data-
cleaning efforts. This issue is exacerbated at low elevation angles, further constrict-
ing ground-based sensors’ FOR. Lastly, ground-based sensors are subject to local 
weather conditions, including cloud cover and precipitation, as well as other envi-
ronmental effects, such as light and air pollution.

When a sensor is in orbit, its instantaneous FOR is larger than that of a ground-
based sensor, as it can observe objects with negative elevation angles, as shown in 
Fig. 2. Due to its position above the densest portion of the Earth’s atmosphere, most 
portions of the sky can be observed such that the line of sight does not intersect the 
Earth or the lower reaches of its atmosphere. Due to its orbital velocity, a space-
based sensor’s aggregate FOR over the course of one orbital period is the entire sky.

With these advantages at play, space-based sensors allow SSA operators to col-
lect more observations of more space objects at shorter timescales.

2.1  Sensor Tasking

There is a spectrum of SSA data collection methodology spanning from tasked sen-
sors tracking one object exquisitely, to fence-mode surveillance methods where the 
sensor is collecting data on all objects within its FOR or FOV. An imaging radar 
sensor, for example, will track one object for some duration, whereas an optical or 
radar “fence” will acquire data on objects that come into its wide FOR or FOV. Sen-
sorSat is a space-based optical sensor that “sweeps” the GEO belt from an equato-
rial orbit and is not tasked.

For event-based SSA and high-interest object tracking, narrow FOV sensors will 
need to be tasked to gather observation data. SSA sensors today are often tasked to 
gather data on specific objects, though the list of objects is not prohibitive and thus 
scheduling is often done manually. As the number of objects grows rapidly, gather-
ing data with these narrow-FOV sensors will become more important.

3  Space Situational Awareness Environment

In this section, details about the space-based SSA environment are provided. The 
space-based SSA environment shares a similar architecture to the SSA environment 
used in past literature [6–8]. An example scenario of the SSA environment is shown 
in Fig. 1, where a single space-based sensor located in LEO is tasked to keep track 
of near-GEO-altitude RSOs.

3.1  Sensor Model

The space-based sensor is modeled to have a 4 ◦ × 4 ◦ FOV that can be accurately 
pointed to any arbitrary direction with a finite slew and settle time. The settle 
time consists of the exposure and data readout time. An action slew rate of 2 ◦ /s 
and a settle time of 4 s are used. The space-based sensor is equipped with a posi-
tion measuring payload such as a laser ranging device to provide a noisy position 
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measurement for each RSO within the sensor’s current FOV. Note that while 
there are a number of ground-based laser ranging sensors: however, space-based 
laser ranging sensors are still in their infancy stage. For a simplified sensor meas-
urement model, a 3-D position observation data is assumed in our environment. 
The assumptions of the sensor model are as follows: 

1. The sensor has a Gaussian measurement noise;
2. The sensor can perfectly assign each measurement to the correct target; and
3. The RSOs’ detection probability is unity, i.e. RSOs within the FOV are always 

observed regardless of viewing conditions such as illumination condition or rela-
tive distance.

Range-based acquisition difficulties for sensor modalities such as SLR or radars 
(range ambiguity and range gate selection) are not modeled and all RSOs within 
the FOV is considered to be observable.

The orbit of the space-based sensor is modeled based on Sapphire’s orbit with 
the orbital elements (OEs) described in Table 2. The space-based sensor is prop-
agated using the Simplified General Perturbation 4 (SGP4) propagation model 
[31] with the assumption that it can carry out daily station-keeping maneuvers to 
reject any external perturbations without compromising its mission capabilities.

Fig. 1  Example scenario with a single LEO space-sensor and 20 near-GEO-altitude RSOs over a 7-h 
observation period
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3.2  Field of Regard and Pointing Direction Discretization

Throughout the paper, we will be using the horizontal coordinate system, where the 
observer’s local horizon will be used as the fundamental plane to describe the azi-
muth and elevation angle. The local horizon is defined as the plane which is tangent 
to a reference spheroid centered at Earth’s origin and extending out to the current 
position of the observer.

We assume that the sensor payload is fully gimballed and omnidirectional in its 
pointing, i.e., continuous over the complete 4-� steradian solid angle surrounding 
the spacecraft. However, we limit the elevation due to Earth limb exclusion, such 
that the FOR for the space-based sensor evaluated as part of this study spans the 
full range of possible azimuth angles (0◦ to 360◦ ), but only a fraction of all possible 
elevation angles (−14◦ to 90◦ as opposed to −90◦ to 90◦ ). The −14◦ elevation limit 
means a sensor in a circular orbit at 500 km altitude can point 14◦ away from its 
velocity vector in the radial direction, towards Earth. The FOR is discretized into 
non-overlapping FOVs, such that each FOV spans 4 ◦ in both azimuth and elevation. 
This discretization simplifies the continuous action space, by representing it as a dis-
crete space, resulting in a finite number of pointing directions. This also results in a 
fixed observation space regardless of the number of RSOs in the SSA environment. 
Under this discretization, the FOR is fully covered by a spatial grid with 90 discrete 
azimuth angles and 26 discrete elevation angles for a total of 2340 possible point-
ing directions. The simplified illustration of the sensor’s FOR geometry is shown in 
Fig. 2.

However, the effective FOV of the sensor changes with the elevation angle, 
whereas the effective azimuth viewing angle increases with elevation angle. That 
is, at high elevation angles, the effective FOV of the sensor starts to overlap one 
another as shown in Fig. 3. This variation in the effective FOV is taken into account 
when identifying RSOs that are within the agent’s current FOV.

3.3  SSA Environment Formulation

The SSA environment is developed using OpenAI’s Gym environment framework 
[32]. The SSA environment consists of 5 major modules as shown in Fig. 4: environ-
ment initialization, observations generation, Unscented Kalman Filter (UKF) propa-
gation, measurement generation, and UKF update.

Table 2  Orbital elements of the 
Sapphire space-based sensor on 
August 4, 2021

Orbital element Value

Inclination (°) 98.4446
Right ascension of ascending node (°) 55.3814
Argument of perigee (°) 133.3296
Eccentricity 0.0012220
Mean motion (revolutions/day) 14.34248711
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Fig. 2  Simplified geometry of the nominal field of regard for the space-based sensor, which is used to 
generate the observational array for the trained agent

Fig. 3  Field of view of the sensor at different pointing direction projected onto the observation array

Fig. 4  Architecture of the space-based SSA environment
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Here, a distinction is made between observation and measurement. Observation 
is used to represent the state of the environment that is accessible to the agent during 
the decision-making (sensor-tasking) process, whereas measurement corresponds to 
the Cartesian position measurement generated from a successful detection of a RSO.

3.3.1  Environment Initialization

The environment initialization module first initializes the sensor parameters as well 
as the RSOs’ OEs and covariance. During training, the environment initialization 
module randomly initializes the RSO population in the SSA environment from a 
uniform distribution to ensure diversity in the training scenario. This randomiza-
tion prevents the solution from over-fitting to a particular subset of scenarios and 
improves the robustness of the solution. The RSOs are uniformly sampled to be 
within the near-GEO-altitude orbital regime (semi-major axis a of 37,000 to 45,000 
km) with low to moderate eccentricities ( e < 0.6 ) and no restrictions to the RSOs’ 
right ascension of ascending node (RAAN) Ω , inclination i, argument of perigee � , 
or mean anomaly M. The RSOs’ covariance is randomly initialized as a diagonal 
matrix based on the Two-Line Element (TLE) uncertainties observed in [33] and 
reproduced in Table 3. The first and third quartiles of the observed TLE covariance 
are used as the lower and upper bound of the uniform sampling range, respectively. 
The uncertainties in the mean motion are inflated by a factor of 100 to introduce 
additional uncertainties.

3.3.2  Observation Generation

In the observation generation module, a grid-based observation of the environment 
is generated using the predicted states and covariance of the RSOs. The observation 
is provided in a three-dimensional array with dimensions of 90 × 26 × X . The first 
two dimensions correspond to the azimuth and elevation angles, whereas the third 
dimension, X, consists of the RSO data to describe the state of the environment for 
that grid. When there are multiple RSOs within the same grid, only the values cor-
responding to the RSO with the largest uncertainties are used. The various action 
policies will have to select an action based only on this observation array.

Table 3  Sampling bound for diagonal of RSO covariance

Orbital element TLE covariance [33] Sampling bounds

1st quartile 3rd quartile Lower Upper

Inclination (deg2) 1.6e−8 6.9e−8 1.6e−8 6.9e−8

RAAN (deg2) 1.9e−8 1.9e−7 1.9e−8 1.9e−7
Eccentricity 2.3e−14 5.0e−13 2.3e−14 5.0e−13
Argument of perigee (deg2) 3.0e−4 2.5e−2 3.0e−4 2.5e−2

Mean anomaly (deg2) 3.6e−4 2.6e−2 3.6e−4 2.6e−2

Mean motion, (rev2/day2) 2.0e−10 4.0e−8 2.0e−8 4.0e−6
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3.3.3  UKF Propagation

The UKF propagation module takes in the new pointing direction as an action input 
and computes the required action slew and settle time for the selected action. The 
RSOs states are then propagated forward in time based on the required slew and 
settle time using the Simplified General Perturbation 4 (SGP4) propagation model 
with no additional external perturbations [31]. Meanwhile, the RSOs covariance are 
propagated using a UKF formulation.

3.3.4  Measurement Generation

The measurement generation module then identifies all RSOs located within the 
sensor’s FOV and generates a noisy measurement for each of these RSOs based on 
the sensor model. The measurements are corrupted by white noise with a magnitude 
of 10 km on all axes to model imperfect measurements. The sensor is assumed to be 
able to perfectly associate each noisy measurement to the correct RSO.

3.3.5  UKF Update

The state and covariance of the observed RSOs are then updated in the UKF update 
module using a UKF formulation. The UKF uses the following parameters for the 
unscented transform: � = 0.001 , � = 2 , and � = 0 . Due to the strong nonlinearity of 
the problem, a small � value of 0.001 is used. The � value is set to 2 which is optimal 
for Gaussian distribution and the � value is set to 0 based on normal conventions.

The updated state and covariance data are then passed back to the observation 
generation module and a new observation grid is then generated. The whole process 
is repeated until a termination condition is reached. In this study, an observation 
window of 60 min is used, i.e. a termination condition is reached once 60 min has 
elapsed within the SSA environment.

4  Deep Reinforcement Learning

The objective of the SSA system is to reduce the mean covariance of the RSO 
population during each episode within a particular scenario. Two figures of merit 
are used to compare performance: (1) the number of RSOs observed and (2) the 
mean covariance of all of the RSOs at each time step during the episode. The sen-
sor’s action is determined by evaluating the deep reinforcement learning (DRL) 
agent that has been trained. The flowchart of this process for each step is shown 
in Fig. 5 and the training process is described in Sect. 4.5. The space sensor DRL 
agent that is made up of an actor-critic neural network will receive the observa-
tion array generated by the SSA environment as an input and then select a new 
pointing direction. The observation array contains the current state of the envi-
ronment. Once an action is chosen by the agent, the SSA environment uses that 
information to calculate the action slew, settle, and dwell times. The RSOs’ states 
and covariance are then propagated forward in time based on the action time. 
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RSOs that are in the agent’s FOV are identified and the environment performs 
the covariance update for those RSOs. A new observation array is then generated 
based on the new current state of the environment and the process is repeated.

The DRL agents are optimized using proximal policy optimization (PPO) [11] 
and population-based training (PBT) [34]. The optimization algorithms were 
implemented using the open-source Ray and Tune libraries [35, 36]. The PPO 
algorithm is a model-free policy gradient method that uses the actor-critic neural 
network architecture. It improves the training stability and convergence of policy 
gradient methods by using a clipped surrogate objective function that discourages 
large policy change. The readers are referred to the PPO paper for more infor-
mation [11]. The training of DRL agents is sensitive to the choices of training 
hyperparameters, such as learning rate, training batch size, and mini-batch size. 
Non-optimal training hyperparameters can lead to slow learning, and in the worst 
case, divergence of the DRL agent. The PBT algorithm is used to overcome this 
issue by concurrently optimizing the neural network and training hyperparame-
ters. The PBT algorithm has previously been shown to improve convergence and 
achieve a higher final reward for a suite of challenging DRL problems [34]. The 

Fig. 5  Evaluation process for a single-sensor DRL agent
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PBT algorithm trains a population of DRL agents in parallel with different train-
ing hyperparameters. It then uses information from all of the agents to refine the 
training hyperparameter and allocate resources to promising models. As the train-
ing of the population of DRL agents progresses, this refinement process is per-
formed periodically to consistently explore new and promising hyperparameters.

4.1  Neural Network Formulations

Instead of designing a neural network architecture from scratch, we looked into 
past successful neural network architectures and adapted them for our applica-
tion. To this end, several neural network architectures were explored as shown 
in Table 4. The actor model is responsible for generating the action policy � that 
is used to select an action for the agent, whereas the critic model estimates the 
action’s reward and provides feedback to improve the action policy. Conv2d and 
FCL correspond to a 2D convolution layer and a fully connected layer, respec-
tively. Architecture CNN_v1 was based on a neural network architecture that was 
previously successfully applied for the sensor tasking of ground-based optical 
telescope for SSA and this architecture has demonstrated great robustness and 
outperformed baseline policies [7]. In CNN_v2 and CNN_v3, we experimented 

Table 4  Comparison of explored neural network architectures

Conv2d(32,8,4) corresponds to using a kernel with 32 filters and an 8 × 8 sliding window and a 
4 × 4 stride. FCL(1024) corresponds to a fully connected layer with 1024 nodes

Architecture Input size Output size Actor model Critic model

CNN_v1 90 × 26 × 11 2340 Conv2d(32,8,4), Conv2d(32,8,4),
Conv2d(64,4,2), Conv2d(64,4,2),
Conv2d(64,3,1), Conv2d(64,3,1),
FCL(1024), FCL(512),
FCL(2340) FCL(1)

CNN_v2 90 × 26 × 11 2340 Conv2d(16,8,4), Conv2d(16,8,4),
Conv2d(32,4,2), Conv2d(32,4,2),
Conv2d(32,3,1), Conv2d(32,3,1),
FCL(700), FCL(350),
FCL(2340) FCL(1)

CNN_v3 90 × 26 × 11 2340 Conv2d(48,8,4), Conv2d(48,8,4),
Conv2d(80,4,2), Conv2d(80,4,2),
Conv2d(80,3,1), Conv2d(80,3,1),
FCL(2048), FCL(1024),
FCL(2340) FCL(1)

CNN_v4 90 × 26 × 11 2340 Conv2d(48,8,4), Conv2d(48,8,4),
Conv2d(80,4,2), Conv2d(80,4,2),
FCL(2048), FCL(1024),
FCL(2340) FCL(1)
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with varying the “width" of the neural network. In CNN_v2, we used a narrower 
network, where the “width" of each layer is halved compared to CNN_v1. Hav-
ing a narrower network forces greater compression onto the input data and can 
help to prevent over-fitting. On the other hand, in CNN_v3, we widen the neural 
network such that each layer contains more neurons compared to CNN_v1. Hav-
ing a wider neural network increases the amount of information/features that can 
be extracted and retained at each layer at the expense of longer training time and 
the risk of over-fitting. In CNN_v4, we experimented with a shallower network to 
study the effects of network depth on the agent’s performance.

The neural network architecture for CNN_v1 with the input and output of the 
various layers is shown in Fig. 6. For all neural network layers, zero padding is 
used to avoid losing information at the boundaries of the data. The rectified linear 
unit (ReLU) activation function is used for all layers except the last fully con-
nected layer of the actor and critic models. The actor model takes in the observa-
tion and outputs an action probability distribution at the bottom-most layer. The 
actor model consists of two parallel dataflow paths. The primary dataflow path 
is located on the left where the observation data is passed through subsequent 
neural network layers as outlined in Table 4, whereas the secondary dataflow path 
corresponds to the action masking layers (action masking function). Here, the 
action-masking function penalizes actions that select an empty field of view to 
observe. Thus, it encourages the action policy to focus on actions that can lead to 
a successful RSO measurement and hence leads to a higher final reward. On the 
other hand, the critic model takes in the observation and outputs a value function 
for the current state. The value function is then used as feedback to improve the 
action policy.

Fig. 6  Neural network architecture for CNN_v1 
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4.2  Action Space

The pointing direction is the action chosen by the agent. In order to reduce the action 
space for the agent and simplify the model, the pointing direction can be discretized 
into a grid of potential FOVs. The FOV was chosen to be 4 ◦ × 4 ◦ based on the 
Zimmerwald SMall Aperture Robotic Telescope (ZimSMART) [37]. A minimum 
elevation limit of -14◦ is used, which yields an action space that is represented by a 
90 × 26 grid for azimuth and elevation positions respectively.

4.3  Observation Space

The choice of which data to be included in the observation space is flexible; how-
ever, less-meaningful and redundant data will simply act as noise to the RL agent 
and lead to slower training. The observable data used for the SSA environment 
developed as part of this study is shown in Table 5. When there are multiple RSOs 
within the same grid, only the values corresponding to the RSO with the largest 
uncertainties are used for Layers 2 through 7.

The observation array is oriented such that the current pointing direction of the 
sensor—regardless of the particular azimuth and elevation values of that pointing 
direction—is situated at the center row of the observation array, i.e. located in the 
45th row.

Due to the large range of action slew time, the observation grid is partitioned into 23 
regions as shown in Fig. 7, where each region uses a different propagation time based 
on the approximate action slew time required by the sensor. The observation grid is 
populated using RSO states with propagation times that offset by 3 s for the first inter-
val and 4 s for the subsequent intervals (4 s, 7 s, 11 s, ⋯ , 87 s, and 91 s), with increasing 
propagation time as we move farther away from the current pointing direction. This 

Table 5  Observation 
information for each grid in the 
observation

The term “fraction location” refers to the remainder value associated 
with dividing an RSO’s azimuth or elevation by the FOV’s azimuth 
or elevation range, respectively. In this study, the FOV’s azimuth and 
elevation range is 4 ◦ ; thus, an RSO with an elevation of 13.5◦ would 
have an elevation fraction location of 1.5◦

Layer Data

1 Number of RSOs in grid
2 Elevation fraction location of RSO in grid
3 Azimuth fraction location of RSO in grid
4 Range of RSO in grid
5 Rate of change in elevation of RSO in grid
6 Rate of change in azimuth of RSO in grid
7 Rate of change in range of RSO in grid
8 Max of RSO’s trace of covariance in grid
9 Sum of RSO’s trace of covariance in grid
10 Mean of RSO’s trace of covariance in grid
11 Current pointing direction (boolean)
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propagation time corresponds to the average slew time to reach that region. Different 
propagation times are used to better capture the true expected relative position of the 
RSOs and more accurately reflect what the agent is expected to observe.

Note that the projection of the spherical pointing direction to a fixed-size Cartesian 
grid observation space means that the higher elevation FOVs will overlap one another. 
If an RSO is located within multiple FOVs—as they are prone to do in higher eleva-
tions—those observation grids are all marked as having a visible line of sight to the 
RSO.

4.4  Reward

DRL agent training is inherently sensitive to the reward function used. Reward shap-
ing can be used to guide some desired behavior from the trained agent. In the sensor-
tasking problem, there can be a multitude of objectives. For example, maximizing the 
number of RSOs observed may be preferable, or in other situations, the maximum 
uncertainty of any RSO may need to be below a certain threshold. For all of these per-
formance metrics, the reward defined by the environment can be tweaked such that 
the trained agent performs well for the particular metric that the user emphasizes. In 
this paper, minimizing the total uncertainty over all RSOs is the principal goal, i.e., 
minimizing the mean trace covariance across all RSOs at the end of our observation 
window.

Two reward functions are explored in this paper and we did not utilize a different 
final reward at the end of the observation run or episode. The first reward function 
rew1 is based on the time-discounted maximum trace reduction as shown in [6, 7]. 
The second reward function rew2 is simply the first reward without the time-discount 
factor. These rewards R[t] at timestep k are shown in Eqs. 1 and 2, respectively.
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Fig. 7  Field of regard demarcated with graduated propagation times
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where tr
(
P
(a

k
)

k|k−1

)
 is the trace of the covariance for RSOs within the FOV selected by 

action a
k
 and T[k] is the time at timestep k.

4.5  Training

Training and evaluation were done on the MIT Lincoln Laboratory Supercomputing 
Center (LLSC) [38]. At each timestep, the DRL agent collects the state, action, and 
reward pair which are then used to update the agent’s weights and biases in a mini-
batch fashion.

The hyperparameter initialization and mutation sampling range used for the pop-
ulation-based training of the DRL agents are shown in Table 6.

Seven DRL agents are trained concurrently using the PBT framework. After 
every 100 training iterations, the trained agents are ranked according to their mean 
episodic reward. The training hyperparameters and neural network parameters of the 
relatively poorly performing DRL agents (those with mean episodic rewards that 
rank in the bottom 30% ) are replaced by those of the top-performing DRL agents 
(those with mean episodic rewards that rank in the top 30% ). The training hyper-
parameters of these duplicated top-performing agents are then varied with a 25% 
probability to be re-sampled from the mutation range provided in Table 6 or to be 
perturbed from their current values.

The evolution of the mean reward for agent CNN_v1 through training is shown in 
Fig. 8. The means reward 1, rew1_100 term, was the mean reward obtained from 
agent CNN_v1 with 100 RSOs in the training environment. Due to the nature of the 
PBT algorithm, where better-performing agents are copied over to replace the least 
performing agent, we can sometimes observe that the plots jump back in time. When 
a least performing agent is replaced, the training metadata (i.e training iterations) of 
the better performing agent is copied over together with the training hyperparam-
eters and network weights. The real-time training duration was between 36 seconds 
per iteration for the environment with 100 satellites and 67 and 77 seconds per itera-
tion for 400 satellites.
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Table 6  Initialization and mutation range of hyperparameters for hyperparameter optimization with PBT 
for the DRL agents

emphRandint and Uniform indicates random integer sampling and random uniform sampling within the 
provided range, respectively

Hyperparameter Initialization Mutation Sampling Range

Learning rate [3.75e−4, 5e−3] Uniform(1e−6, 1e−2)
Minibatch size Randint (128, 768) Randint (128, 768)
Batch size Randint (1024, 3072) Randint (1024, 3072)
Entropy coefficient [1e−1, 1e−2] Uniform (1e−5, 1e−1)
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Figure  9 shows the evolution of the hyperparameters for the CNN_v1 DRL 
agent trained on an SSA environment with 400 near-GEO-altitude RSOs using 
the (rew1) reward function over 3400 training iterations. The DRL agent started 
with a highly negative mean episodic reward and the value slowly increases 
with the number of training iterations before converging to a value of 20. The 
increase in the mean episodic reward indicates that the DRL agent was able 
to learn from its past experiences and slowly converge toward a more optimal 
action policy. The same trend was observed in the agent’s policy loss where the 
value gradually decreases with training iterations from a policy loss value of 
−0.07 to approximately −0.035. The decrease in policy loss followed by the 
oscillatory behavior with additional training iterations hinted at the DRL agent 
converging towards a local minimum. On the other hand, the DRL agent started 
with a high value function loss, which indicates that initially the critic network 
is doing a poor job in estimating the correct value function. After more training 
iterations, the value function loss converges to a small steady-state value. This 
indicates that there is still room for improvement on the critic network architec-
ture. The total loss is simply the summation of the policy loss and value func-
tion loss. The total loss plot shows that the loss function is dominated by the 
value function loss, which can indicate that the architecture of the critic network 
can still be further improved. Figure  9e–h shows the mutation of the training 
hyperparameters. The training hyperparameters of this DRL agent were mutated 
twice; once at approximately 300 training iterations and the other at approxi-
mately 700 training iterations. Additional training statistics and evolution of 
the hyperparameters with training iterations for the other CNN architectures are 
included in Appendix B.

Fig. 8  Training statistics for the three different reward functions
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4.6  Baseline Myopic Methods

Two baseline myopic algorithms are used to provide a baseline comparison to evalu-
ate the performance of the trained agents. The myopic algorithms are computation-
ally efficient and easy to implement; however, they only consider the instantaneous 
reward and are incapable of long-term action planning. The first myopic algorithm 
is a greedy algorithm which selects the RSO with the highest covariance within the 

Fig. 9  Training statistics (a–d) and evolution of hyperparameters (e–h) for the Best Performing CNN_v1 
DRL Agent trained using 400 near-GEO-altitude RSOs and rew1 over 3400 training iterations
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sensor’s FOR regardless of action slew duration. The action policy for this agent is 
given by Eq. 3.

where tr[Px

i,k
] is the trace of the a posteriori state covariance for RSO i at time step k.

However, the time spent on slewing the sensor greatly affects the performance of 
the policy due to the limited observation window and the fast-moving RSOs. The 
second myopic algorithm (the advanced greedy algorithm) takes the required action 
slew duration into account when deciding which RSO to be observed. It first penal-
izes the covariance of each RSO within the FOR by the required action slew dura-
tion. The advanced greedy algorithm then uses a greedy policy to select which RSO 
to be observed based on the scaled covariance. The action policy for the advanced 
greedy algorithm is given by Eq. 4.

where tr[Px

i,k
] is the trace of the a posteriori state covariance for RSO i at time step 

k, �t
i
 is the action slew time to move from the current pointing direction to observe 

RSO i, and D is a time discount factor. The advanced greedy algorithm is evaluated 
with different values of D (ranging from 1 to 10) over 100 Monte Carlo runs to iden-
tify the best time discount factor. The performance statistics of the advanced greedy 
algorithm with different time discount factors are shown in Fig. 10. The best perfor-
mance is obtained when a time discount factor of 3 is used, where the lowest average 
RSO uncertainties and the highest average number of unique RSOs observed are 
achieved.

4.7  Multi‑agent Formulation

There are many methods of implementing a multi-agent formulation, in which more 
than one sensor is collaboratively observing the RSOs in the environment and con-
tributing to the same space object catalog with instantly updated covariance records. 
A scheduling agent could be created to oversee multiple sensors. The action and 
observation space for such a scheduler would grow rapidly with each sensor and the 
number of sensors as well as the placement of each sensor may require a distinct 
trained agent suited for that setup.

Another method of implementing a multi-agent formulation is to use multiple 
single-agents in parallel, with the environment tasked with querying the agents at 
the appropriate times. The environment will propagate all orbits until the next agent 
is available at which point the agent will be queried for its selected action.

This method of using multiple instances of the same trained agent in the same 
environment is explored in this paper. In this method, a number of instances of the 
same agent, each with their own identical copy of the trained neural network, inform 
the pointing direction for the same number of independent sensors, placed in dif-
ferent locations on the Earth’s surface or in Earth orbit. A scheduler is in charge 
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of keeping track of which agent has completed which actions. The flowchart of the 
process is shown in Fig. 11. This method allows the user to evaluate the agents for 
various scenarios, including those in which the number of sensors and their loca-
tions varies. An environment with three distributed agents is used for performance 
evaluation.

5  Results and Discussion

The trained and myopic agents were evaluated in several different environments, 
including those in which the observer sensor was placed in a polar, inclined, and 
equatorial orbit—corresponding to the inclinations of the Sapphire, STSS, and Sen-
sorSat space-based sensors, as described in Table 1—for 100, 400, and 800 RSOs at 

Fig. 10  Performance of the advanced greedy algorithm with different time discount factors D over 100 
Monte Carlo runs; a statistics of the final mean trace covariance over 100 Monte Carlo episodes, where 
lower y-axis values correspond to better performance; b statistics of final cumulative number of unique 
RSO observed over 100 Monte Carlo episodes, where higher y-axis values correspond to better perfor-
mance

Fig. 11  Evaluation process for a 
multi-sensor approach
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near-GEO altitudes. For each of these environments, a statistical comparison is done 
via 100 Monte Carlo runs with randomized RSO locations and covariance within 
the specified bounds.

Figure 13, which shows a typical pointing history for an episode, reveals sev-
eral interesting details of how the DRL agent instructs sensors to observe RSOs. 
The saw-tooth pattern visible in the pointing direction’s azimuth angle shows that 
the agent is rotating around the Earth-sensor axis—the axis connecting the sen-
sor to the center of the Earth—to point in a systematic manner. Some runs show 
a clockwise rotation while others show a counterclockwise rotation; no prefer-
ential direction is shown for the trained agents. However, this pattern does show 
that the agents learn some efficient methods to search over the FOR, as jump-
ing around in azimuth would require more slew time and therefore less observa-
tion time. Another interesting characteristic is the fact that most of the observa-
tion happens near 0 ◦ elevation, which corresponds to pointing directions in the 

Fig. 12  An example of an instantaneous RSO distribution in an agent’s observation array; light gray 
squares correspond to azimuth-elevation coordinate pairs at which one RSO could be observed, whereas 
dark gray squares correspond to azimuth-elevation coordinate pairs at which two RSOs could be 
observed

Fig. 13  An example of pointing directions chosen by the DRL agent over a 60-min observation window
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space-based sensor’s local horizontal plane. This may be so such that the most 
number of RSOs may be gathered within the FOV, which would maximize the 
reward. For each of the observations, the agents chose a FOV that often contained 
RSOs, demarcated with dark gray squares in the example observation array in 
Fig. 12.

5.1  Training Results Using Different Reward Functions

Two different DRL agents were trained using the reward function rew1 and rew2, 
respectively, as described in Sect. 4.4. Both agents were trained on an SSA envi-
ronment containing 400 near-GEO-altitude RSOs until convergence, i.e plateau-
ing in the episodic mean reward. The performance of the trained DRL agents and 
myopic policies were then evaluated over 100 Monte Carlo runs. Results showing 
the final mean trace covariance of all RSOs as well as the cumulative number of 
unique RSOs observed over the observation window are shown in Fig.14.

As expected, the performance of the trained DRL agents is strongly influ-
enced by the reward function. The DRL agent trained using rew1 performed 
the best out of all policies with the lowest final uncertainties and highest number 
of unique RSOs observed. The time-discount factor in rew1 penalizes actions 
that require relatively long slew times and motivates the DRL agent to look for 
rewarding actions within the proximity instead of spending large time resources 
on slewing. The DRL agent trained using rew2 was able to outperform the 
greedy policy but not the advanced greedy policy. The rew2 reward function 
encourages the DRL agent to select actions that strongly minimize the mean trace 
covariance regardless of action slew time. Unsurprisingly, the DRL agent trained 
using rew2 ended up spending more time slewing compared to the agent trained 
using rew1, which resulted in a lower number of observations and consequently 
a lower cumulative number of unique RSOs observed.

Fig. 14  Comparison of results for agents trained with various reward functions; a statistics of final mean 
trace covariance over 100 Monte Carlo episodes; b statistics of final cumulative number of unique RSO 
observed over 100 Monte Carlo episodes; note: CNN_v1_rew1 3400 represents a CNN-based DRL 
agent (CNN_v1) that has undergone 3400 training iterations using the rew1 reward function
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5.2  Training Results Using Different Neural Network Architectures

The neural network architectures outlined in Sect.  4.1 were trained on an SSA 
environment with 400 near-GEO-altitude RSOs using reward function rew1. 
The trained DRL agents were then evaluated over 100 Monte Carlo simulations. 
Their performances are shown in Fig. 15. The DRL agent CNN_v1 outperformed 
all other DRL agents and both myopic policies across both figures of merit. The 
DRL agent CNN_v2 has a smaller, narrower network than that of CNN_v1 which 
limits its expressiveness. Thus it is not able to fully capture the physics behind 
the high-dimensional environment.

The DRL agent CNN_v3 has a larger, wider network than that of CNN_v1 
but is more susceptible to over-fitting and convergence to local minima or saddle 
points and thus resulting in a sub-par performance. The performance of the DRL 
agent CNN_v3 could be further improved by introducing additional regulariza-
tion into the neural network architecture and training using a larger population.

The DRL agent CNN_v4 has a shallower network than CNN_v3 in order to 
reduce the effects of data over-fitting; however, the issue was not fully eliminated 
and the agent would benefit from additional regularization.

5.3  Robustness Analysis of Trained DRL Agent

For any trained DRL agent, it is important to note its performance in an envi-
ronment that is different from the one in which it was trained. These robustness 
studies will help analysts better identify possible modes of failure as well as shed 
light on the agent’s limitations.

With a good understanding of the limits of the DRL agent’s flexibility and 
robustness, a single trained agent can be used for multiple different scenarios. The 
knowledge gained from the robustness studies can also be used to better inform 
future training of DRL agents and the design of neural network architectures.

Fig. 15  Comparison of results for agents trained with different neural network architectures; a statistics 
of final mean trace covariance over 100 Monte Carlo episodes; b statistics of the final cumulative number 
of unique RSO observed over 100 Monte Carlo episodes
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5.3.1  Robustness to Changes in the Number of RSOs in the SSA Environment

As part of this work, the robustness of the trained DRL agent to variation in the 
number of RSOs within the environment was studied. An additional CNN_v1 
DRL agent was trained independently on an SSA environment with only 100 
near-GEO-altitude RSOs using reward function rew1. The trained DRL agents 
and myopic policies were then evaluated on environments with 100, 400, and 800 
RSOs. The aggregate results over 100 Monte Carlo runs are shown in Figs. 16, 
17, and 18 for an SSA environment with 100, 400, and 800 RSOs, respectively.

Interestingly, the DRL agent trained in an SSA environment with 400 RSOs 
always performed better than the agent trained with 100 RSOs, despite the fact 
that the agents trained with 100 RSOs were trained with more episodes. This may 
be due to the fact that with fewer RSOs, the agent has such a sparse set of possi-
ble rewarding actions (RSOs) to choose from. This results in an environment with 
sparse rewards that poses a significant challenge to DRL algorithms.

In the SSA environment with 400 RSOs, there are a higher number of reward-
ing options to choose from; the DRL agent receives useful feedback information 

Fig. 16  Performance of DRL agents trained with different numbers of RSOs on an environment with 100 
RSOs; a statistics of final mean trace covariance over 100 Monte Carlo episodes; b statistics of the final 
cumulative number of unique RSO observed over 100 Monte Carlo episodes

Fig. 17  Performance of DRL agents trained with different numbers of RSOs on an environment with 400 
RSOs; a statistics of final mean trace covariance over 100 Monte Carlo episodes; b statistics of the final 
cumulative number of unique RSO observed over 100 Monte Carlo episodes
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more frequently from the environment, leading to more efficient learning of an 
optimal policy.

5.3.2  Robustness to Changes in Action Slew and Sttle Times

The action slew and settle times for space-based sensors can vary depending on the 
platform’s actuator, size, and weight. Furthermore, the action slew and settle times 
of a space-based sensor can also vary throughout the sensor’s operational lifetime 
due to component degradation and changes in the sensor’s weight and moment of 
inertia. Hence, it is important to characterize the effects of changes in the sensor’s 
slew and settle times on the performance of the DRL agent.

To explore this problem, the DRL agent that was trained using an optical sensor 
with a slew rate of 2 ◦ /s and a settle time of 4 s is applied to another optical sensor 
with a slower slew rate but a faster settle time. The slew rate of the space-based sen-
sor is reduced by a factor of 10 to 0.2◦ /s and the settle time is increased by a factor 
of 10 to 0.4 s. The propagation time used to generate the observation grid in Fig. 7 is 
varied to match the changes in slew and settle times. The advanced greedy algorithm 
is also adjusted to use the new slew and settle times when deciding which RSO to 
observe.

Like previous evaluations, 100 Monte Carlo runs were then simulated; their 
aggregate performance is shown in Fig. 19.

Although the DRL agent was not specifically trained for this faster-moving space-
based sensor scenario, it was still able to outperform both of the myopic policies. 
The DRL agent achieved an average final mean trace covariance of 0.01023 over 
100 Monte Carlo runs, which represents a 6.4% improvement over the advanced 
greedy algorithm—the stronger of the two myopic policies—which achieved an 
average final mean trace covariance of 0.01093 over its 100 Monte Carlos runs.

5.3.3  Robustness to Changes in the Orbital Plane

In order to offer continuous coverage for the entire GEO regime—that is, enclose 
all near-GEO-altitude RSOs in the network’s field of regard at every time step in 

Fig. 18  Performance of DRL agents trained with different numbers of RSOs on an environment with 800 
RSOs; a statistics of final mean trace covariance over 100 Monte Carlo episodes; b statistics of the final 
cumulative number of unique RSO observed over 100 Monte Carlo episodes
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the observations period—multiple space-based sensors with different OEs, such as 
different inclinations, are required. Thus, it is useful to benchmark how the trained 
DRL agent will respond to changes in the orbital plane. Although the DRL agent 
was trained on a particular orbit, it might be able to generalize to different orbits 
due to the observation formulation where the SSA environment converts the obser-
vations into the agent’s local frame, describing RSO positions using azimuth and 
elevation angles.

To explore this problem, the CNN_v1 DRL agent that was trained in a Sapphire-
like orbit (786 km altitude, 98.6◦ inclination) with 400 near-GEO-altitude RSOs and 
placed in other LEO space-sensor orbits such as STSS (1350 km altitude, 58◦ incli-
nation) and SensorSat (600 km altitude, 0 ◦ inclination). Figure 20 shows a compari-
son of several agents’ performance after 100 Monte Carlo runs.

Though the DRL agent was trained in a sun-synchronous orbit and performed 
well compared to the myopic policies, it also performed well in two different 
inclined orbits. This shows the robustness of the agent to be used in different orbits. 
This flexibility allows one such agent to be extended for use in other orbits, eliminat-
ing the need to train an agent that is specific to each orbital regime. This may be due 
to the fact that the observation data provided by the environment to the agent dur-
ing training is consistent and independent of the orbit in which the sensor resides. 
For example, the same coordinate space is used for the observation grid with the 
center column always corresponding to the current pointing direction. This shows 
that clever ways to formulate the problem may allow a more robust agent for vary-
ing use cases. In future work, the limits of this robustness can be explored, with the 
agent placed in eccentric or much higher altitudes. Extending the RSO population 
from near-GEO-altitude to LEO orbital regime could also be investigated.

5.4  Multi‑agent Environments

Two different multi-agent formulations with three space-based sensors were 
explored in this work. For the first formulation, all three sensors are evenly spaced 

Fig. 19  Aggregate performance of trained DRL agent on an environment with slew and settle times 
reduced by a factor of 10 over 100 Monte Carlo runs; a statistics of final mean trace covariance over 
100 Monte Carlo episodes; b statistics of the final cumulative number of unique RSO observed over 100 
Monte Carlo episodes
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along the Sapphire orbit. Each of these sensors is controlled by a distributed action 
policy that only has information about RSOs within its FOR.

The second formulation consists of three sensors, each in a different orbit. The 
space-based sensors are each placed using OEs similar to those of Sapphire, STSS, 
and SensorSat as shown in Table 7. Again, each sensor is controlled by a distributed 
action policy.

As shown in Figs. 21 and 22, CNN_v1 outperforms the myopic policies in both 
scenarios, ending the episode with both a lower mean trace covariance and a higher 
number of unique RSOs observed. Further investigation into these multi-agent for-
mulations and other formulations will be explored in future work, though it is clearly 
seen that this type of decentralized multi-agent method shows promise and is robust.

Fig. 20  Mean trace covariance (a–c) and number of unique RSOs observed (d–f) at the end of the epi-
sode using a DRL agent trained in a Sapphire-like orbit and evaluated in different orbits

Table 7  Orbital elements used for the multi-agent scenario

Orbital element Orbit 1 Orbit 2 Orbit 3
(Sapphire) (STSS) (SensorSAT)

Inclination (°) 98.4446 57.9875 0.0478
Mean anomaly (°) 0.0000 120.0000 240.0000
Right ascension of ascending node (°) 55.3814 199.4871 150.1446
Argument of perigee (°) 133.3296 66.9503 36.1935
Eccentricity 0.0012220 0.0014224 0.0012465
Mean motion (revolutions/day) 14.34248711 12.79405388 14.91467230
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6  Conclusion

Previous work shows that terrestrial sensor tasking for SSA is possible using DRL. 
Space-based SSA sensors are being used today, and their relatively high perfor-
mance and high cost mean that efficient tasking is likely an important area of inter-
est for SSA network operators.

In this paper, we showed that a DRL-enabled solution to the sensor-tasking prob-
lem for a space-based SSA can be trained to perform well compared to baseline 
myopic policies. We also show that a set of space-based sensors can also perform 
well using the single-sensor agent in a parallel manner, allowing for flexibility in the 
multi-agent formulation. The agent can be also trained in one LEO orbit and then 
placed in another without loss of performance—this robustness allows for ease of 
use in varying scenarios for simulations as well as live sensor-tasking of multiple 
space-based sensors.

Future work may include exploration of recurrent neural networks (RNNs) such 
as long short-term memory (LSTM) for this problem as it is naturally highly time-
series dependent. For the multi-agent scheduler, training a multi-agent scheduler as 
opposed to the parallel single-agent method that has been used in this paper may 

Fig. 21  Aggregate performance of trained DRL agents with multiple sensors on a single orbital plane; a 
statistics of final mean trace covariance over 100 Monte Carlo episodes; b statistics of the final cumula-
tive number of unique RSO observed over 100 Monte Carlo episodes

Fig. 22  Aggregate performance of trained DRL agents with multiple sensors on different orbital planes; 
a statistics of final mean trace covariance over 100 Monte Carlo episodes; b statistics of the final cumula-
tive number of unique RSO observed over 100 Monte Carlo episodes
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be of interest. Higher fidelity sensor modeling can be used to differentiate between 
optical, radar, and satellite laser-ranging sensors. A combination of space-based and 
ground-based sensors can also be used for a higher-fidelity simulation of the SSA 
architectures used today.

A: History of Space Sensor Development and Operation

With only a handful of public-record space-based sensors launched to orbit thus 
far, the history of space-based sensor deployment and operation is short when com-
pared to ground-based space object sensing. While most of the systems described in 
this appendix operate in low-Earth orbit (LEO), some of them can be used to detect 
and track objects in other orbital regimes, including the high-value geosynchronous 
orbital regime (GEO).

An early example of such a system was the Space-Based Visible (SBV) sensor 
developed by MIT Lincoln Laboratory and launched onboard the Midcourse Space 
Experiment (MSX) in 1996 to an 898 km altitude, nearly sun-synchronous orbit 
[19]. The sensor used an electro-optical camera to collect space object observa-
tions—with a focus on objects in GEO—in the visible and near-infrared spectrum 
and became the first space-based contributor to the SSN in 1997. After more than 12 
years of operation, MSX was decommissioned in 2008 [39].

Space-based sensors are not always dedicated to orbital space object observation, 
and instead can be commissioned for a different primary purpose. In 2009, two sat-
ellites were launched as part of the U.S. Missile Defense Agency’s Space Tracking 
and Surveillance System (STSS) to a 1350  km altitude orbit with 58◦ inclination 
[40]. Although the satellites were designed to detect and track sub-orbital ballistic 
missiles during flight, their narrow-FOV sensors are capable of detecting small, 
high-velocity objects against the cold background of space—the same capabilities 
required to track Earth-orbiting space objects. The follow-on program to STSS, 
which was designed to replicate the first two demonstrator satellites’ capabilities 
across many more orbital planes, was canceled in 2013 [41]. Although the demon-
strator satellites were designed for only four years of operation, their prime contrac-
tor stated in 2019 that they are both still operational [42].

Two years after MSX was decommissioned, the first satellite from its follow-on 
system SBSS was launched to a 630 km altitude, sun-synchronous orbit [22]. The 
satellite reached operational status in 2012. Like STSS, SBSS was intended to be the 
first of many similar satellites that work to track space objects in tandem. Although 
the U.S. Air Force (USAF) predicted that the next portion of the SBSS system 
would be launched in 2021, the first satellite remains the only portion of the system 
currently in orbit [43].

The U.S. government is not alone in its investment in space-based sensor devel-
opment and operations. In 2013, two Canadian space-based sensors were simulta-
neously launched to approximately 785 km altitude, sun-synchronous orbits: the 
Canadian Department of National Defence’s (DND) Sapphire sensor system and 
Near-Earth Orbit Surveillance Satellite (NEOSSat). Unlike SBSS, Sapphire uses a 
body-fixed sensor, where the satellite body is slewed to point the telescope toward 
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its targets [23]. Sapphire is the only non-U.S. satellite that contributes observations 
to the SSN. Unlike Sapphire, NEOSSat is also tasked with a second mission objec-
tive—to discover natural near-Earth objects (NEOs), such as comets and asteroids—
in addition to its SSA mission, and spends only 50% of its operations on observing 
artificial space objects [25]. NEOSSat is a joint project of Defence Research and 
Development Canada and the Canadian Space Agency [24].

One of the most recent examples of space-based sensor operations in LEO is the 
USSF’s Operationally Responsive Space 5, better known as SensorSat. Launched 
in 2017 to a 600 km altitude, equatorial orbit, SensorSat was developed by MIT 
Lincoln Laboratory to observe the GEO belt. Similar to Sapphire, SensorSat has no 
mechanical gimbal and plans to operate for a shorter time than previously launched 
space-based sensors. SensorSat reached operational capacity in 2018 and later 
became the largest contributor of space object observations to the SSN [44].

The only publicly acknowledged space-based sensor system with satellites 
in GEO is the USSF’s GSSAP system. The USSF currently operates two pairs of 
GSSAP satellites—the first launched in 2014 and the second in 2016—which 
observe GEO objects from both above and below GEO altitude [26]. Prior to public 
remarks made just months before the first GSSAP launch by Gen. William Shelton, 
the Commander of the USAF Space Command at the time, the program was classi-
fied [45].

Table 1 features a list of operational space-based sensors for SSA, including their 
operator, launch year, mass, orbit, and FOV, when available.

B: Training Statistics and Evolution of Hyperparameters for the Best 
Performing Agent

Figure 23 shows the evolution of the hyperparameters for the best performing CNN_
v1 DRL agent trained on an SSA environment with 400 near-GEO-altitude RSOs 
using the rew2 reward function over 6200 training iterations.

Figure  24 shows the evolution of the hyperparameters for the best-performing 
CNN_v1 DRL agent trained on an SSA environment with 100 near-GEO-altitude 
RSOs using the rew1 reward function over 4,800 training iterations.

Figure  25 shows the evolution of the hyperparameters for the best-performing 
CNN_v2 DRL agent trained on an SSA environment with 400 near-GEO-altitude 
RSOs using the rew1 reward function over 6600 training iterations.

Figure  26 shows the evolution of the hyperparameters for the best-performing 
CNN_v3 DRL agent trained on an SSA environment with 400 near-GEO-altitude 
RSOs using rew1 over 3000 training iterations.

Figure  27 shows the evolution of the hyperparameters for the best-performing 
CNN_v4 DRL agent trained on an SSA environment with 400 near-GEO-altitude 
RSOs using rew1 over 3200 training iterations.
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Fig. 23  Training statistics (a–d) and evolution of hyperparameters (e–h) for the best-performing CNN_
v1 DRL agent trained using 400 near-GEO-altitude RSOs and the rew2 reward function over 6200 
training iterations
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Fig. 24  Training statistics (a–d) and evolution of hyperparameters (e–h) for the best-performing CNN_
v1 DRL agent trained using 100 near-GEO-altitude RSOs and rew1 over 4,800 training iterations
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Fig. 25  Training statistics (a–d) and the evolution of hyperparameters (e–h) for the best-performing 
CNN_v2 DRL agent trained using 400 near-GEO-altitude RSOs and rew1 over 6600 training iterations
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Fig. 26  Training statistics (a–d) and the evolution of hyperparameters (e–h) for the best-performing 
CNN_v3 DRL agent trained using 400 near-GEO-altitude RSOs and rew1 over 3000 training iterations
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Fig. 27  Training statistics (a–d) and evolution of hyperparameters (e–h) for the best-performing CNN_
v4 DRL agent trained using 400 near-GEO-altitude RSOs and rew1 over 3200 training iterations
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