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Abstract
The reliability of the uncertainty characterization, also known as uncertainty real-
ism, is of the uttermost importance for Space Situational Awareness (SSA) services. 
Among the different sources of uncertainty related to the orbits of Resident Space 
Objects (RSOs), the uncertainty of dynamic models is one of the most relevant 
ones, although it is not always included in orbit determination processes. A classi-
cal approach to account for these sources of uncertainty is the consider parameters 
theory, which consists in including parameters in the underlying dynamical models 
whose variance aims to represent the uncertainty of the system. However, realistic 
variances of these consider parameters are not known a-priori. This work presents a 
method to infer the variance of the consider parameters, based on the distribution of 
the Mahalanobis distance of the orbital differences between predicted and estimated 
orbits, which theoretically shall follow a �2 distribution under Gaussian assumption. 
This paper presents results in a simulated scenario focusing on Geostationary (GEO) 
regimes. The effectiveness and traceability of the uncertainty sources is assessed via 
covariance realism metrics.

Keywords  Uncertainty realism · Covariance realism · Space situational awareness · 
Covariance determination · Mahalanobis distance · Chi-square distribution

1  Introduction

Orbital uncertainty plays a key role for the provision of Space Situational Aware-
ness (SSA) services, including catalogue maintenance, risk assessment or maneu-
ver detection, among others. Therefore its adequate characterization, also defined 
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as uncertainty realism, is of paramount importance. Uncertainty realism focuses 
on correctly representing the Probability Density Function (PDF) of the orbital 
state. Under Gaussian assumption, uncertainty realism can be reduced to covar-
iance realism, requiring only the two first moments of the PDF for the proper 
characterization of the system uncertainty, gathered in a state and its associated 
covariance matrix.

Many Orbit Determination (OD) processes in Space Surveillance and Tracking 
(SST) are based on weighted batch least-squares algorithms, which rely on avail-
able and sufficient measurements to produce an estimate (orbital state and covari-
ance matrix). During this process, the dynamics governing the system is usually 
assumed deterministic, with measurement noise as the only source of uncertainty. 
Thus, the obtained covariance matrix is able to account only for the measure-
ments noise, being known as the noise-only covariance [18]. However, one of the 
main sources of uncertainty during OD and subsequent propagation arises from 
the lack of knowledge in the underlying dynamical models, which is typically dis-
regarded. The impact of this uncertainty is crucial not only for the state estima-
tion but also for the time evolution of its associated uncertainty due to its inherent 
correlation with the state variables. This leads to an overly-optimistic noise-only 
covariance matrix time evolution and, eventually, the loss of covariance realism.

Therefore, it is customary for SSA and particularly for SST purposes to charac-
terize and determine such uncertainty and its effects, which is commonly known 
as Uncertainty Quantification (UQ). Two fundamental problems can be distin-
guished for UQ: the propagation of uncertainty and the inverse problem (model 
and parameter uncertainty) [19]. The former is focused on how to propagate for-
ward an initially given PDF of a state, accurately and efficiently. The inverse prob-
lem, on the contrary, consists in assessing the differences between the observed 
behavior of a system and the underlying models and parameters used to represent 
it. Regarding the uncertainty in the modelling, a common approach is to drop 
the deterministic assumption of the equations of motion, recurring to stochastic 
noise models such as Brownian motion, Ornstein–Uhlenbeck or Gauss–Markov 
processes [6, 19, 21]. The other target of the inverse problem is the parameter 
uncertainty, whose objective is to represent the uncertainty in specific terms of 
the dynamic or measurement equations. This is the core of the work at hand, spe-
cifically focusing on uncertain parameters that can be estimated during the OD 
process as dynamic parameters, not only for the quantification of its uncertainty 
but also to represent the relationship between the uncertain parameters and the 
state variance.

There are other techniques conceived to improve covariance realism without 
focusing on the sources of uncertainty and their modelling. For instance, Gauss-
ian and linear assumptions are held longer in time when the state is represented in 
mean orbital elements, allowing the covariance matrix to represent more realisti-
cally the uncertainty of Monte Carlo simulations [11, 26]. Other typical repre-
sentations of the state and covariance in non-linear reference frames that are able 
to slow down the realism degradation upon propagation are being widely stud-
ied, such as the QtW frame in [12]. However, despite the advantage of represent-
ing the state of the object in orbital elements for covariance realism, we concern 
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ourselves to Cartesian state representation. Even though the proposed methodol-
ogy is agnostic to the state representation, the operational goal of this work leads 
us to remain using Cartesian coordinates as is customary in most SST operational 
scenarios. Other approaches suggest the use of empirical covariance matrices to 
include all residuals of the estimation process in the covariance computation, 
regardless of whether the uncertainty has been specifically modelled or not [2, 
3, 8]. This proposal claims to account more accurately for noise time-variations 
rather than process noise or consider parameter analysis, at the expense of the 
physical interpretation of the uncertainty.

In an operational environment, simple and robust techniques are required to 
improve covariance realism since, as previously discussed, the nominal covariance 
determination methods tend to provide optimistic results. The most applied solu-
tions are:

•	 Kalman filters with process noise matrix to introduce the model uncertainty into 
the system. These UQ methods are gaining acceptance over stochastic accel-
eration methods in the current state of the art since they can account for both 
dynamic model and parameter uncertainty. However, a physically-based deriva-
tion of a process noise is rather challenging [22]. Other authors suggest calibra-
tion methods to estimate such process noise [4], but typical solutions lack the 
physical meaning of the applied correction and are not suitable for batch pro-
cessing, the common framework of SST.

•	 Scaling techniques which inflate the covariance by certain factors. Some authors 
propose the computation of such scaling based on increasing the initial position 
uncertainty to match the velocity error [7] whereas other options explore the 
usage of the Mahalanobis distance of the orbital differences to find the scale fac-
tor [13]. However, a common drawback of artificially increasing the covariance 
is that the physical meaning of the correction is lost, not being able to understand 
the contributions of each source of uncertainty. These sort of methods are used 
nowadays in operation centers such as Space Operations Center (CSpOC) [19].

An additional option to be discussed is the consider analysis theory, which is a 
classical approach for parameter uncertainty analysis in the equations of motion 
for OD processes [18]. It consists in extending the state space by including 
parameters in the dynamic models, such as atmospheric force, solar radiation 
pressure force or measurement models. These parameters are assumed to follow a 
Gaussian distribution with a null mean and a certain variance. A null mean allows 
to maintain an unbiased estimation, whereas the uncertainty of the parameter is 
accounted for in the state covariance matrix. The consider parameter theory is 
thus designed to tackle the parameter uncertainty of the previously described UQ 
inverse problem, inflating the estimated covariance to account for such param-
eter uncertainty. This theory is compatible with both batch and filter applications 
such as in the Schmidt-Kalman filter [10, 28] and provides the clear advantage 
of assessing the effect of specific uncertain parameters in the process, maintain-
ing the physical meaning of the covariance correction as opposed to scaling fac-
tors techniques. However, one of the main drawbacks of the consider parameter 
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theory is that realistic variances of such parameters are not normally known. This 
can lead either to overly-sized or underestimated state covariance matrices, fail-
ing to model the uncertainty of the system and thus, not achieving covariance 
realism.

This work presents a novel methodology to determine the variance of the con-
sider parameters included in the dynamical model of an RSO. It is based on the 
orbital differences (position, velocity, or both) between estimated and predicted 
orbits projected into the covariance space (i.e. Mahalanobis distance), which under 
Gaussian assumptions shall follow a �2 distribution to achieve covariance realism. 
In other words, if the orbital differences are normally distributed and correctly rep-
resented by a covariance matrix, the Mahalanobis distance distribution is equivalent 
to the squared sum of a normal distributions from each component of the orbital 
differences (i.e. a �2 distribution), provided that no correlation exists between them. 
Therefore, a minimization process can be designed to obtain the consider parameter 
variances that provide the best match between the observed Mahalanobis distance 
distribution and the expected �2 one.

A similar analysis based on the consider parameter theory to improve the covari-
ance realism is performed in [15], a precursor work for this study. There, it is pro-
posed to correct the noise-only covariance with a least squares fitting to a so-called 
observed covariance, this latter being obtained from Monte Carlo orbital differences 
aggregation. This approach has a main drawback, which is that to compute such 
observed covariance, orbital differences at distinct orbital positions are mixed from 
orbit estimates based on different observation scenarios. This issue is mitigated by 
the normalization obtained with the Mahalanobis distance concept, which is the cor-
nerstone of the methodology presented in this paper.

In the work at hand, the covariance determination methodology is applied to GEO 
RSOs, continuing the efforts of previous studies that applied the proposed method-
ology to Low Earth Orbit (LEO) RSOs for drag and range bias uncertainty [1]. The 
realism of the determined covariance matrices remains as the cornerstone of this 
study, and thus specific covariance realism metrics such as the covariance contain-
ment are analyzed. For a geostationary orbit, two of the main sources of uncertainty 
that come into play are related to the Solar Radiation Pressure (SRP) and the time 
bias of the sensors, which are analysed in the presented work.

The paper is structured as follows: in Sect. 2, the consider parameter theory in 
the context of batch least-squares estimation is revisited, as well as the linear covari-
ance propagation. In Sect. 3, the proposed models for the consider parameters and 
the covariance determination methodology is described, together with the validation 
approach. In Sect. 4, the results of the simulation campaigns carried out for valida-
tion are presented and discussed. Finally Sect. 5 contains the conclusions and future 
steps of this study.
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2 � Background

This section briefly describes the consider parameter theory in the context of the 
common batch least-squares processes in SST, as well as the linear propagation of 
the covariance.

2.1 � Consider Parameter Theory in Batch Least‑Squares Algorithm for Orbit 
Determination

The complete description of the consider parameter theory (or consider covariance 
analysis, as termed by some authors) can be found in [18, 24]. For brevity, only the 
final derivation in the nominal batch least-squares process is described next. Let us 
define the estimated state vector as

where �(t) , �(t) and ny are the position, velocity and estimated state dimension, 
respectively. �(t) represents the estimated parameters, either applied to the force or 
the measurement models. Typical examples of these parameters are the drag coeffi-
cient ( CD ) in LEO or the solar radiation pressure coefficient ( CR ) in GEO. Following 
the nominal OD process [18], the noise-only covariance is

where �y corresponds to the Jacobian of the observations with respect to the esti-
mated state, and � is the weighting matrix containing the confidence of each meas-
urement and the possible correlation among the measurements.

The consider parameters to be modelled in our system can be gathered in the con-
sider parameter vector

where nc is the number of consider parameters. They are defined to follow a normal 
distribution, i.e,

This definition allows the expected value of the orbit estimation to remain unbiased 
provided that the consider parameters have null mean and their variances are uncor-
related with the measurement noise. On the contrary, the covariance of the estima-
tion is affected. The consider covariance, which is defined as the covariance of a 
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state vector accounting for the uncertainty of both the measurements and the dynam-
ical parameters, is

where �c is the Jacobian of the observations with respect to the consider parameters 
and

contains the variances of the consider parameters, where no correlation between 
them is assumed. Eq. (5) can be simplified to obtain

where nc and ny are the number of consider parameters and the state vector dimen-
sion, respectively. Therefore, the consider covariance is obtained as the noise-only 
covariance plus a covariance correction, which depends linearly on the consider 
parameter variances.

2.2 � Linear Covariance Propagation

The consider covariance is obtained at estimation epoch and models the effect of the 
uncertainty of the consider parameters that affect the estimation, regardless whether 
their uncertainty affects the force or the measurements model. However, our inter-
est in enhancing the covariance realism extends also to the covariance propagation 
for SST purposes. In this paper, we assume linear propagation of the covariance 
matrix, as it is generally applied in most operational scenarios in SST. More com-
plex and accurate uncertainty propagation methods are out of the scope of this work 
since Gaussianity is a cornerstone assumption in the proposed methodology. In this 
respect, Michael’s normality tests can be applied to assess data linearity [17, 20]. A 
complete derivation of linear propagation theory can be found in many well-known 
references, such as [18]. In the end, to account for the effect of the main dynamic 
parameters in the propagation of the state, it is required to integrate the variational 
equations, whose solution is the Extended State Transition Matrix (ESTM)
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•	 np is the number of dynamical parameters to consider during propagation, which 
in this case corresponds to the estimated dynamical parameters, excluding position 
and velocity, hence, np = ny − 6.

•	 �
(
t, t0

)
 corresponds to the state transition matrix, which relates the position and 

velocity at any time t with respect to the initial state at time t0.
•	 �

(
t, t0

)
 is the so-called sensitivity matrix, which contains the partial derivatives of 

the state vector with respect to the model dynamical parameters, which are assumed 
to be constant.

The ESTM can be computed by solving numerically its associated partial differential 
equations as shown in [18]. Linear covariance propagation is then carried out as

By using the ESTM, the effect of the uncertainty of the dynamical model parameters 
is mapped into the position and velocity covariance not only at estimation, but also 
along the propagation.

3 � Methodology

In this section, we define first the consider parameters proposed to model the uncer-
tainty in GEO. Then, we describe the concept of the Mahalanobis distance and its con-
nection to the �2 probability distribution and develop the proposed procedure to effec-
tively calculate the consider parameter variances that define the uncertainty levels of 
the dynamic model and compute the consider covariance. Finally, the validation proce-
dure is described.

3.1 � Consider Parameter Models

As we mentioned previously, two consider parameters of interest are included in our 
analysis: in the SRP force and the time bias of the sensor. This subsection describes 
their proposed models.

3.1.1 � Solar Radiation Pressure

Following the classical definition [18], the SRP acceleration equation with the first con-
sider parameter reads

where PSRP is the solar radiation pressure, CR is the solar radiation coefficient, A is 
the cross-sectional area, m is the mass of the object, r is the distance to the Sun, AU 
expresses the magnitude of an astronomical unit and cSRP is the consider parameter 
associated to the SRP, which is devised to follow a Gaussian distribution as defined 
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in Eq. (4) with standard deviation �SRP . The aim of this parameter is to model the 
uncertainty that can be associated to most of the components of Eq. (11). The mass 
may vary for maneuverable satellites, the cross-section area is assumed constant 
along the estimation and propagation, which is not true in general; the solar radia-
tion pressure and the solar radiation coefficient are affected by the Sun’s behavior 
(solar cycles) and satellite surface variability (light reflection and absorption), which 
are not modelled for most SST applications.

3.1.2 � Sensor Clock Time Bias

The second consider parameter aims to represent the variability in the time bias pre-
sent in the sensors when time-stamping the measurements. It is characterized as

where t denotes time and cTB is the consider parameter associated to the time bias, 
also following the definition of Eq. (4) with standard deviation �TB . This con-
sider parameter is affecting the measurements model and is associated to each 
observation.

3.2 � Covariance Determination Method

This subsection describes the combination of the consider parameter theory with the 
concept of Mahalanobis distance and defines the proposed methodology to deter-
mine the consider covariance.

3.2.1 � Mahalanobis Distance and Consider Covariance Determination

The Mahalanobis distance is a well-known statistical metric that describes how far a 
state �(t) is from a certain reference �ref (t) , projected into the covariance space [16]. 
This is:

where � and �ref  are the covariance of both the state and the reference, respectively. 
However, the covariance of the reference is generally several orders of magnitude 
smaller, which enables us to neglect it many applications. For the sake of clarity, the 
reference covariance is omitted in the following equations, although it is considered 
in the computations when applicable. In order to introduce the consider parameter 
effect, we recall the definition of the state vector of Eq. (1) and combine Eq. (10) 
with Eq. (13), which yields

Thus, Eq. (14) allows the computation of the squared Mahalanobis distance at any 
propagation epoch as a function of the consider parameter variances included inside 
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matrix � . It is worth mentioning that the projection of the orbital differences in the 
covariance space allows to combine samples derived from ODs at different epochs 
and conditions, which is of paramount importance for an operational scenario.

3.2.2 � Consider Parameter Variance Determination

It remains to describe the method to compute the variance of the proposed consider 
parameters that is applied in this work following the previous line of research of 
Cano et al. [1]. Under linear and Gaussian assumptions, this is, when the differences 
between the state and the reference are normally distributed and the covariance is 
representative of such distribution (i.e. realistic), a population of squared Mahalano-
bis distances should follow a �2 distribution, whose detailed characteristics may be 
found in D’Agostino and Stephens [5]. Additionally, the �2 distribution requires the 
aggregated normal distributions to be uncorrelated. Consequently, to reduce the cor-
relation between the state variables, the Mahalanobis distance is computed in the In-
track, normal , and cross-track (TNW) local frame [25]. The in-track axis is defined 
as tangential to the orbit and parallel to the velocity. The normal axis is placed in 
the orbit plane, perpendicular to the in-track axis, and the cross-track axis is perpen-
dicular to the orbit plane. Using local frames aligned with the satellite motion allows 
to reduce the correlation of orbital differences and helps to trace the impact of the 
uncertainty sources modeled in the analysis.

Equation (14) allows us to compute such Mahalanobis distance at any desired 
epoch during the propagation arc by comparing an estimated and later propagated 
(predicted) orbit against a reference. Therefore, if a sufficient number of predicted 
orbits is available, it is possible to look for the variance of the consider parameters 
represented in matrix � so that the squared Mahalanobis distance population resem-
bles the theoretical �2 distribution. In the work presented here, this optimization 
problem is based on minimizing the differences between two Cumulative Distribu-
tion Functions (CDFs), the observed one and the theoretical �2 one. In this case, 
the theoretical �2 distribution should have as many Degrees Of Freedom (DOF) as 
components of the orbital differences are included in the Mahalanobis distance. This 
minimisation process can be adapted to any desired number of consider parameters, 
being able to combine the two proposed for our analysis (SRP and time bias). The 
cost function to minimize in order to determine the consider parameter variances is 
defined next for completion. It consists in grouping the observed squared Mahalano-
bis distances in Nb bins, comparing their joined probability against the theoretical �2 
one as

where CDFE corresponds to the empirical CDF of the ith bin, and CDF
�2 the CDF of 

the �2 distribution. Considering more statistically robust CDF comparison metrics 
was out of the scope of the present work. However, the application of other metrics 
such as Cramer–von-Mises or Kolmogorov–Smirnov [5] is an open line of research.
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3.3 � Validation Chain

In this section, we describe a process to generate the required data to apply the 
proposed covariance determination method in a simulated scenario for validation 
purposes.

The presented methodology can be validated by checking if the obtained con-
sider parameter variances are representative of the uncertainty present in the sys-
tem. To confirm this, we run a Monte Carlo iterative scheme in which we simu-
late a population of orbits. Under simulation conditions, we are able to impose 
the uncertainty levels in the time bias and SRP. Thus, we condition the outputs of 
the optimization process to known, controlled values for validation purposes. The 
steps of the data generation are described below. For further clarification of this 
scheme, the different kinds of orbits in a relative propagation timeline is shown in 
Fig. 1 exemplifying a single Monte Carlo iteration.

•	 From a GEO reference state associated to an existing RSO and a certain epoch 
( t0,  estimation epoch), we perform an orbit propagation process to obtain the 
reference orbit, which is used to obtain the orbital differences required for 
the Mahalanobis distance in Eq. (14). The details of the RSO can be found in 
Table 1. The dynamic model of this propagation is deterministic, without includ-
ing any additional perturbation in the SRP or time bias models. See Table 2 for 
model details on the dynamic model characteristics.

•	 In a Monte Carlo process, we generate a population of orbits sampling the 
Gaussian distribution of the consider parameters models, and introducing each 
sample as a constant perturbation for each orbit. We then perform the following 
steps per iteration, also depicted in Fig. 1: 

Fig. 1   Monte Carlo scheme showing the process to generate the predicted and reference orbits, the typi-
cal propagation arc and analysis epochs, and the operational reference orbit 
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1.	 We propagate the reference state backwards 28 days considering a SRP con-
sider parameter perturbation sample in the dynamics. We refer to this propa-
gated orbit as the simulated orbit.

2.	 We generate tracks of the simulated orbits using a model of a ground-based 
telescope, whose details can be found in Table 3. We introduce the time bias 
uncertainty on each simulated observation, again selecting a perturbation 
sample from the consider parameter model defined in Sect. 3.1.2. Along the 
generation of these simulated observations, the measurement noise is also 
included.

3.	 We perform an OD process based on the simulated tracks. We have inputs 
from a period spanning between t0-28 days and t0 , where t0 corresponds to the 
time of estimation. The estimation output (state and noise-only covariance) 

Table 1   Reference RSO 
parameters Semi-major axis 42190.42 km

Eccentricity 6.826.10-5
Inclination 13.906◦

RAAN 339.651◦

Argument of pericenter 312.092◦

True anomaly 229.845◦

Mass 500 kg
Solar radiation area 40 m2

SRP coefficient 1.3
Reference epoch 2018-01-28 

00:00:00.000 
UTC​

Table 2   Dynamical model 
characteristics Reference frame J2000 ECI

Gravity field 16x16
Third body perturbations Sun & Moon
Earth geodetic surface ERS-1
Polar motion and UT1 IERS C04 08
Earth pole model IERS 2010 conventions
Earth precession/ nutation IERS 2010 conventions
Atmospheric model NLRMSISE-90
Solar radiation pressure Constant area

Table 3   Telescope parameters
Latitude 55.444◦

Longitude −4.638◦

Height 800 m
Measurement noise 0.5 mdeg
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are obtained at such epoch, which is set at the epoch of the last available 
measurement in the OD arc of 28 days. The resulting orbit is known as the 
estimated orbit.

4.	 The estimated state is propagated up to the desired propagation arc, in this 
case 21 days to have complete coverage of typical prediction periods in GEO, 
using now the same unperturbed dynamic model of Table 2. This orbit is 
known as the predicted orbit.

•	 From one iteration to the next, the simulation time frame is shifted one day for-
ward, so that the generation of observations in the OD process is aligned in time 
as in an operational scenario. 400 samples, which correspond to more than 1 
year of daily tracking data for an object, are expected to suffice for the statistical 
computations of the proposed methodology, as was found in the simulations per-
formed in previous studies [1].

•	 Operational reference orbit: We propose an alternative orbit to use for the 
computation of the orbital differences of Eq. (14) other than the aforementioned 
reference orbit. The operational reference orbit consists in the output of an OD 
whose determination arc includes the propagation epochs of interest for each 
Monte Carlo iteration. In other words, if we want to analyse the current orbit 
between t0 +7 days and t0+21 days, we can use as reference the output of another 
OD whose arc ranges from t0 days up to t0+28 (see Fig. 1). The reason behind 
this choice is that, for most SST operational environments, precise orbits whose 
ephemeris can be assumed perfect are not commonly accessible. For instance, 
external sources of precise GNSS orbit data is not available when the targets are 
non-collaborative objects such as space debris. It is important to remark that, the 
estimation corresponding to this operational reference orbit has certain noise-
only covariance due to the measurements uncertainty. Thus, it is necessary to 
include its noise-only covariance inside the Mahalanobis distance computation 
of Eq. (14).

The Mahalanobis distances can be calculated once all the necessary data for all 
the orbits is available at the desired analysis epochs. Then, the proposed covari-
ance determination methodology can be applied. This process is summarised in 
Algorithm 1. 
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4 � Results and Discussion

This section is divided in three different subsections. The first one describes the 
characteristics of the simulated environment, providing details on the dynamical 
model used and the expected uncertainty levels. The second section describes the 
results of the validation chain of the proposed covariance determination methodol-
ogy in several test scenarios. Finally, the effectiveness that the proposed methodol-
ogy achieves in terms of covariance realism is further analysed.

4.1 � Simulation Environment

For the sake of completeness, this section characterizes the conditions under which 
the validation test sequence has been performed. Table 1 contains the information 
corresponding to the reference RSO. Table  2 defines the applied dynamic model. 
Finally, Table  3 describes the parameters of the simulated telescope used for the 
generation of orbit tracks (set of measurements).

The tracking strategy, using the telescope described in Table 3, consists on series 
of three measuring intervals per night. Every night, the telescope takes measure-
ments at intervals of 15 min located at the beginning, middle and end of the night, 
with a time-step of 20 s. The exact position of the intervals within the night may 
vary slightly due to shadow conditions. This approach is taken to resemble telescope 
availability in an operational scenario.

It remains to describe the chosen uncertainty variances to introduce during 
the validation campaign. To this end, it is customary to resort to the literature for 
expected uncertainty levels in operational environments for the target uncertainty 
sources that have been modelled as consider parameters. Regarding the SRP uncer-
tainty, according to Montenbruck and Gill [18] an annual variation of 3.3% is 
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estimated. Other studies performed for Ajisai and LAGEOS geodetic satellites [9] 
identified variations ranging between 1% and 3%. Thus, for the purposes of the work 
at hand, a 5% standard deviation in SRP has been considered a realistic uncertainty 
for validation. Nonetheless, higher uncertainty levels are also analysed in Sect. 4 for 
validation purposes. The characterization of the time bias behavior is more complex, 
mostly due to its strong dependence on the type of instrument. From Lee and Pogge 
[14] and teindorfer, Kirchner et al. [23], typical uncertainty levels ranging from 1 to 
more than 100 ms can be extracted. Similarly to the SRP case, 100 ms of standard 
deviation has been selected as a realistic uncertainty for validation, despite reaching 
higher values in the presented results.

4.2 � Simulation Results

The main objective of the validation phase is to verify that the uncertainty intro-
duced in the Monte Carlo simulation is correctly retrieved as consider parameter 
variances in the optimization process. To verify this, we propose a sequence of vali-
dation tests, summarized in Table 4. Only the most relevant test cases are included.

The tests become gradually more complex. The first three series (I to III) repre-
sent the core validation pipeline, in which we subject the dynamic model to pertur-
bations significantly higher than the ones suggested by the literature (Sect. 4.1) to 
verify the robustness of the presented covariance determination method in highly-
perturbed environments where data Gaussianity is stressed to the limits of the meth-
odology assumptions. In the first series, we restrain our analysis to the estimation 
epoch t0 , starting from null perturbation. We then proceed to include perturbations 
as uncertainty in the system. In the second series, we extend the analysis to a future 
epoch, located at 15 days of propagation into the future. The third series is represent-
ative of the final complexity of the methodology, combining Mahalanobis distance 
calculations from epochs located all over an interval of 14 days, with a time-step of 

Table 4   Simulation tests results summary

Case Comparison
orbit

Analysis
epoch

Input Results Accuracy
∣ % ∣

I-A Ref. t
0

– – –
I-B Ref. t

0
�
SRP

 = 30%
�
CB

 = 1000ms
�
SRP

 = 27.93%
�
CB

 = 1071.17ms
6.9
7.1

II-A Ref. t
0
+15 �

SRP
 = 30%

�
CB

 = 1000ms
�
SRP

 = 28.02%
�
CB

 = 988.23ms
6.6
1.2

II-B Op. ref. t
0
+15 �

SRP
 = 30%

�
CB

 = 1000ms
�
SRP

 = 26.73%
�
CB

 = 1001.23ms
10.9
0.1

III-A Ref. t
0
+7-21

(interval)
�
SRP

 = 30%
�
CB

 = 1000ms
�
SRP

 = 28.26%
�
CB

 = 1083.46ms
5.8
8.4

III-B Op. ref. t
0
+7-21

(interval)
�
SRP

 = 30%
�
CB

 = 1000 ms
�
SRP

 = 29.40%
�
CB

 = 982.75ms
2.0
1.7

IV-A Op. ref. t
0
+7-21

(interval)
�
SRP

 = 5%
�
CB

 = 100ms
�
SRP

 = 4.56%
�
CB

 = 100.22ms
8.8
0.2



1408	 The Journal of the Astronautical Sciences (2022) 69:1394–1420

1 3

one day. Including different epochs of the propagation arc in the same optimization 
process has the objective of computing a single consider parameter variance that 
is able to improve the realism of the covariance in the complete interval of inter-
est, which is a desired operational feature. The fourth series is conceptually equal to 
the third, but show a case with reduced perturbation levels in line with the discus-
sion Sect. 4.1, looking for values of uncertainty closer to the ones expected in the 
literature.

The analyses were performed discarding velocity components (in the minimiza-
tion phase), due to the accumulation of small errors in the in-track velocity after 
propagation. Apart from the velocity components being several orders of magni-
tude smaller than the position ones, the expected precision of the in-track veloc-
ity was found to be the smallest covariance term among the velocity components. 
This lead to ill-conditioning of the covariance and an exponential increase in the 
Mahalanobis distance for high perturbations after more than 3 days of propagation. 
Therefore, only 4 DOF remain for the �2 distribution, namely the position differ-
ences (TNW frame) and the SRP coefficient. Nonetheless, since a series of different 
position ephemeris are considered, the dynamics of the system are fully regarded in 
the computations.

The overall results of the validation test sequence, paying special attention to 
the last ones due to their increased level of complexity, has shown to provide sat-
isfactory results when computing the consider parameter variances. The deviations 
between the input perturbations and output consider parameter variances did not 
exceed 11% for any of the perturbations in any of the cases.

The starting point of the validation (Case I-A) explores the ideal situation in 
which no perturbation is present in the dynamic model. Then, if the measurement 
noise is properly characterized, the noise-only covariance is expected to be repre-
sentative of the uncertainty of the system, and the squared Mahalanobis distance 
distribution should directly resemble a �2 one. Figure  2 shows the results of this 
case, where this fact can be appreciated. The retrieved distribution is very close 
to the �2 distribution without applying any consider parameter correction. This is 
a clear indication that in the sole presence of measurement noise, the noise-only 
covariance is able to represent the uncertainty of the system. Moreover, It can be 
noted that the number of DOF in this case is 7. As opposed to the rest of the tests, 
series I cases are analysed at t0 , not suffering from in-track velocity error accumula-
tion during propagation.

On the contrary, the noise-only covariance no longer represents the uncertainty 
of the system when dynamic model uncertainty is introduced. Case I-B shows the 
results of including both consider parameter perturbations simultaneously, per-
forming two-variable optimization at the estimation epoch. As seen in Table 4 the 
methodology is capable of computing consider parameter variances within a margin 
lower than a 10%.

However, we discussed that from an operational perspective it is desirable to 
extend this analysis into the prediction region. In the second series (II-A, II-B), 
we establish the analysis epoch at t0+15, proving that the quality of the results 
obtained in the previous series can be maintained when propagating up to this 
time horizon. Additionally, we introduce the usage of operational reference 
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orbits in the case II-B. Thus, we include a new layer of realism by not relying on 
an absolutely true representation of the reference orbit, but rather on the result 
of an OD process with an associated covariance matrix. As was observed in [1], 
obtaining appropriate results using the operational reference orbit is of high rel-
evance in operational scenarios, allowing the methodology to function using only 
the observations, not requiring other external information sources.

The third series of cases extend the analysis epoch from a single one to a full 
interval spanning for 14 days between t0 +7 and t0+21. Table  4 shows the most 
relevant subcases, combining both consider parameters and comparing against 
reference and operational orbits. Mahalanobis distances are calculated at specific 
points within this period, at time steps of one day. The main leap forward in this 
series is that a singular optimized consider parameter variance is able to recover 
the �2 behavior of the squared Mahalanobis distance population for a wide propa-
gation interval, obtaining consider parameter variances very similar to the intro-
duced perturbations as can be seen in Table 4 and recovering the �2 behaviour 
as can be observed in Fig. 3. Again, accurate results are obtained independently 
on the orbit used to obtain the orbital differences. Besides the fact that adding 

Fig. 2   Case I-A
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more comparison epochs increases the analyzed population samples, specific dis-
turbances associated to a certain point in the orbit can be smoothed by including 
Mahalanobis distances from a wider range of analysed epochs.

Figure 4 corresponds to the same case scenario as in Fig. 3, but in this case main-
taining the noise-only covariance for the Mahalanobis distances computations. We 
find that the values of the distribution are far from resembling the �2 behavior. This 
figure has been included to show the inability of the noise-only covariance to rep-
resent the uncertainty of the system when model uncertainty is present. The high 
values of the distribution indicates that, without the consider parameter variances 
correction, the covariance is overly-optimistic and the observed orbital differences 
are much larger than the standard deviation present in the covariance.

The fourth series of tests does not introduce new elements into the methodology. 
It serves to prove that the model is sensitive to lower perturbation levels which are 
aligned with those suggested by the literature. Figure 5 contains the fitting results of 
the last test case, IV-A, which is representative of the full complexity of the method-
ology proposed in this work. Again, the differences between the input perturbation 

Fig. 3   Case III-B
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and the results of the consider parameter variances is lower than a 10%, showing 
that the methodology is able to recover the theoretical �2 behavior and thus improve 
the covariance realism.

4.3 � Containment Analysis

To obtain a physical interpretation and a proper visual representation of the effec-
tiveness of the proposed covariance determination method for improving the 
covariance realism, covariance containment tests, such as the one proposed in 
[27], are provided in this section. To evaluate whether the covariance is repre-
sentative of the orbital differences (i.e. realistic), the Mahalanobis distance can 
be used as a metric to see the number of points that lay inside a k − � ellipsoid 
( k = 1, 2, 3, 4 ) and compare it against the theoretical expected fraction for a mul-
tivariate Gaussian distribution of as many Degrees Of Freedom (DOF) as compo-
nents of the state vector used for the Mahalanobis distance. In all tests presented 
previously, only position and the SRP coefficient of the state vector were included 
in the Mahalanobis distance computation. Gaussianity tests of the orbital 

Fig. 4   Case III-B without consider parameter correction
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differences were performed (Michael’s normality test), to ensure the fulfillment 
of Gaussian assumptions in the proposed methodology, though those results have 
been omitted for conciseness. Table 5 summarises the evolution of the contain-
ment metric at different epochs, comparing both noise-only and consider covari-
ance matrices versus the 4 DOF theoretical containment results. The results found 
in Table 5 were obtained using the optimum consider parameter variances found 
in the results of case III-B. The results of this test case are chosen for this analy-
sis due to a high resemblance to an operational scenario, as it maintains a real-
istic amount of data, it uses the operational reference orbit for comparison and 
achieves sufficient accuracy.

It is clear from Table 5 that the proposed methodology leads to an improve-
ment in covariance containment when model uncertainty is present. The results 
at all epochs are close to the theoretically expected ones, particularly for 3 � and 
4 � . There are several implications of these results. Firstly, the average contain-
ment along the complete propagation interval resembles closely its theoretical 
expectation. Recalling the operational goal of the methodology, this shows that 
a unique consider parameter variance is able to improve substantially the covari-
ance realism in the interval of interest for GEO scenarios. Secondly, the degree 

Fig. 5   Case IV-A
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of similarity of the containment in all sigma ellipsoids indicates that the consider 
covariance is not over-sized, showing that the proposed methodology is able to 
tackle the model uncertainty properly and maintain the traceability of its sources. 
On the contrary, it is directly observed the lack of covariance realism in the 
absence of consider parameter correction when model errors are present. Noise-
only covariance matrices are too optimistic and fail to represent the PDF of the 
state. Another way to visualize this phenomenon can be found in Figs. 6 and 7, 
where we compare the amount of orbital differences included in the 3 � ellipsoid 
(in green) in both cases: with consider parameter and without consider parameter, 
respectively. The orbital differences are shown in the relative frame TNW (in-
track, normal and cross-track directions)

Figure 6 shows that the orbital differences are larger in the in-track direction. The 
consider covariance is elongated in such direction, representing the actual distribu-
tion. The ellipsoidal shape is not easily discerned in Fig. 6 due to the significantly 
larger standard deviation of the in-track component. It is clearly observed that the 
consider parameter methodology correction with our determined variance elongates 
the ellipsoid in the in-track direction, which is the one showing a higher dispersion.

For further analysis, Figs. 9, 8 and10 are included to show the effect on the posi-
tion covariance that enables the consider parameter correction, focusing on a single 
orbit and separating the contribution of each of the consider parameters included in 
the present analysis. The figures compare the standard deviation of the noise-only 
covariance and the consider covariance in the three main directions of the local 
TNW reference frame. Again, the optimum consider parameter variances obtained 
in case III-B (29.4% and 982.75 ms for SRP and clock-bias consider parameter 
standard deviations, respectively) have been used for consistency.

SRP model correction causes a fast covariance growth in in-track and nor-
mal directions as compared to the noise-only, mildly affecting the out-of-plane 

Table 5   Containment tests

Epoch
[days]

Without consider parameter
correction [%]

With consider parameter
correction [%]

1� 2� 3� 4� 1� 2� 3� 4�

t
0
+ 4 0 0 0.25 0.51 8.33 57.07 92.68 99.75

t
0
+ 6 0 0 0.25 0.51 8.84 56.82 92.42 99.49

t
0
+ 8 0 0.25 0.25 0.25 8.84 56.31 93.18 99.75

t
0
+ 10 0 0.25 0.25 0.25 8.33 56.82 92.93 99.75

t
0
+ 12 0 0.25 0.25 0.25 7.58 57.32 93.69 99.75

t
0
+ 14 0 0.25 0.25 0.25 8.61 57.47 93.92 100

t
0
+ 16 0 0 0.25 0.25 8.61 58.73 93.92 100

t
0
+ 18 0 0 0.25 0.25 8.61 58.99 93.92 100

t
0
+ 20 0 0 0 0.25 9.11 58.99 93.92 99.75

Average 0 0.11 0.22 0.31 8.54 57.61 92.96 99.80
Theoretical
(4 DOF)

9.00 59.40 93.90 99.70 9.00 59.40 93.90 99.70



1414	 The Journal of the Astronautical Sciences (2022) 69:1394–1420

1 3

Fig. 6   Orbital differences 3� containment at t
0
+ 20 days using the determined consider covariance

Fig. 7   Orbital differences 3� containment at t
0
+ 20 days without any consider parameter correction
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component as can be seen in Fig. 8. However, at t0 its effects are barely visible in 
the state covariance. This is caused by the consider parameter correction, which 
at t0 for the SRP is mostly applied to the SRP coefficient variance, and is transmit-
ted to the state via the linear propagation of the ESTM (which includes the com-
plete augmented state with the SRP coefficient), due to the correlation between 
the SRP coefficient term and the state vector. This causes the observed growth in 
the in-track and normal directions.

Clock bias correction, on the contrary, provokes a remarkable growth of the 
in-track covariance at t0 without any further time evolution, as obsered in Fig. 9. 
This is expected due to the nature of the clock bias perturbation, which is only 
affecting the measurements model, being observed mostly at the output of the 
estimation. It is concentrated in the in-track component, since any error in the 
observation time is directly translated into an uncertainty in the satellite position 
in the direction of the motion. For this reason the in-track covariance appears 
constant in the CB-only case, since the orbital oscillations from the noise-only 
covariance are several orders of magnitude smaller.

When both corrections are combined (Fig.  10), the clock bias provides not 
only a higher initial value of the in-track covariance, but also a lower uncertainty 
limit for this direction along the orbit oscillations. Again, the growth of both in-
track and normal directions with time is dominated by the SRP correction.

Fig. 8   Covariance evolution in TNW frame from estimation epoch up to 21 days of propagation for 
a sample orbit comparing 2 cases: without applying any correction (“n” prefix), with a SRP consider 
parameter variance of 29.4% (“se” prefix)
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5 � Conclusions and Future Work

The results shown in this work indicate that the presented covariance determina-
tion methodology is capable of accurately capturing the model error present within 
the dynamics of an RSO on a simulated SST scenario. It has been successfully 
applied to GEO, considering SRP and sensor time bias uncertainty. We have tested 
the robustness of the model by enforcing large perturbation levels, while also ensur-
ing that sensitivity to lower values is maintained. The deviation between the uncer-
tainty introduced as perturbation inputs and the determined consider parameters has 
remained lower than a 11% throughout the development of this work. Additionally, 
successful results have been obtained when estimated orbits are used as reference 
to compute the Mahalanobis distance, indicating the operational suitability of the 
methodology for operational scenarios. Relevant metrics for covariance realism 
assessment such as the covariance containment tests have shown that the proposed 
methodology is able to determine a realistic covariance, applicable to the complete 
propagation region of interest in GEO and without over-sizing.

The presented methodology allows to maintain the traceability of the different 
sources of uncertainty, being capable of determining the uncertainty accordingly 

Fig. 9   Covariance evolution in TNW frame from estimation epoch up to 21 days of propagation for a 
sample orbit comparing 2 cases: without applying any correction (“n” prefix), with a clock bias consider 
parameter variance of 982.75 ms (“cb” prefix)
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in different consider parameters. Regarding the impact of the corrections induced 
by the retrieved consider parameter variances on the covariance matrices, it was 
observed that the time bias uncertainty accumulates in the in-track component 
at estimation epoch, but does not introduce a significant degree of growth rate in 
the long term. On the contrary the SRP uncertainty correction, though small at t0 , 
increases the growth rate in the in-track and normal direction with time.

The next natural step is to use real data from a GEO RSO to further study the 
capabilities of the methodology. However, the efforts carried out towards realis-
tic simulated scenarios, and the real data results of previous lines of research sug-
gest that the applicability of the proposed methodology for GEO in a real scenario 
is possible [1]. Further research is under development regarding the optimization 
process. Robust statistics widely used for the comparison of CDFs such as Cramer-
von-Mises or Kolmogorov–Smirnov are being tested as cost functions to retrieve 
the optimum consider parameter variance, allowing also to determine bounds for 
variances that are statistically consistent to a �2 behavior. Additional analysis needs 
to be performed to increase the number of consider parameters for different regimes, 
intending to quantify as much as possible all sources of uncertainty. Although the 
work presented here focused on covariance realism, analyzing the two first moments 
of the state PDF, the impact of the proposed methodology in terms of uncertainty 
realism by retaining higher order moments of the distribution must be considered. 

Fig. 10   Covariance evolution in TNW frame from estimation epoch up to 21 days of propagation for a 
sample orbit comparing 2 cases: without applying any correction (“n” prefix), with both consider con-
sider parameter variances applied simultaneously (“2c” prefix)
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This is crucial for highly non-linear environments where the Gaussian assumptions 
upon which this methodology is based are stressed.

It is worth reminding that the consider parameter methodology assumes a constant 
error model for its derivation, even though having a certain variance. More complex 
noise models such as purely Gaussian, Ornstein–Uhlenbeck, Gauss–Markov or other 
time and space correlation processes are also a current line of research, focusing 
on how to adapt or generalize the consider parameter methodology to more com-
plex representation of the orbit uncertainty sources. Another relevant line of work is 
connected to the characterization of the methodology accuracy, exploring the mini-
mum amount of orbital data required to achieve a successful model error estimation. 
The less data is required, a smaller time-region can be faithfully analyzed, which 
can allow to capture seasonal variability in the model uncertainties. This is relevant, 
for instance, in solar weather cycles. Finally, parametrization and bench-marking to 
select appropriate consider parameter corrections as a function of the orbital regimes 
and space conditions to improve catalogue covariance realism is a relevant future 
goal to improve SST products quality.
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