ORIGINAL PAPER # Sb₂Se₃ sensitized heterojunction solar cells Anil N. Kulkarni² · Sandeep A. Arote¹ · Habib M. Pathan¹ · Rajendra S. Patil² Received: 26 February 2015/Accepted: 29 July 2015/Published online: 15 August 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com **Abstract** The study deals with the sensitization of the porous SnO₂ films deposited on fluorine-doped tin oxide with nanocrystalline Sb₂Se₃. The sensitization was achieved for three different sensitization times employing chemical solution deposition with antimony chloride and sodium selenosulphate as precursors for Sb³⁺ and Se²⁻, respectively. The unsensitized and sensitized photoelectrodes were characterized using X-ray diffractometry, scanning electron microscopy and diffused reflectance spectroscopy. The solar cells fabricated using three different photoelectrodes were characterized for their photovoltaic performance using the photocurrent density versus photovoltage curves. The study revealed that sensitization time significantly influences the photovoltaic parameters namely, short circuit current density (J_{sc}) , open circuit voltage (V_{oc}) and fill factor (FF) and hence the photovoltaic efficiency (η) . $\begin{tabular}{ll} \textbf{Keywords} & Sb_2Se_3 \cdot Photosensitization \cdot SnO_2 \cdot \\ Heterojunction \cdot Solar cell \end{tabular}$ #### Introduction Metal chalcogenides such as CdS [1], CdSe [2], Ag₂S [3], Sb₂S₃ [4], Bi₂S₃ [5] and Sb₂Se₃ [6] have recently attracted considerable attraction of researchers due to their potential applications in electrical and optical devices. Among these materials, antimony selenide (Sb₂Se₃) is a group V₂-VI₃ layered structured direct band gap semiconductor with orthorhombic crystal structure [7]. Sb₂Se₃ displays a narrow band gap of 1.1-1.3 eV, [8-10] which approaches the ideal Shockley-Queisser value, [11] and has the ability to extend light harvesting over the near-IR region up to approximately 1000 nm. Besides, the relative positions of the conduction band edges of nanostructured Sb₂Se₃ and SnO₂ display favourable energetics for electron transfer at their interface [12]. In addition, theoretical calculations performed by Giustino et al. [9, 10] demonstrated the improved performance of Sb₂Se₃-based devices compared to Sb₂S₃ based cells, and suggested Sb₂Se₃ as a promising candidate for achieving 20 % PCE. In spite of these advantages, Sb₂Se₃-based solar cells have rarely been experimentally demonstrated. Of these one is photoelectrical solar cell fabricated using a Sb₂Se₃ photoanode prepared by chemical bath deposition (CBD) reported by Bhattacharya et al. [13]. Second one is based on electrodeposited Sb₂Se₃ thin films in TiO₂/Sb₂Se₃/CuSCN planer heterojunction solar cells reported by Zaera et al. [14]. However, only one report is available on photovoltaic performance of Sb₂Se₃ as a sensitizer spin coated on TiO₂ photoanode in semiconductor sensitized solar cell applications [6]. Conversely, the reports available on Bi₂S₃ and Sb₂S₃ sensitized SnO₂ photoanode-based solar cells are limited [4, 5], which showed very low power conversion efficiency (PCE) as compared to other nanocrystalline semiconductor sensitized solar cells. Till date, TiO₂ has Advanced Physics Laboratory, Department of Physics, Savitribai Phule University, Pune 411007, India Department of Physics, PSGVPM's ASC College, Shahada, India. widely been used as photoanode material in most of the SSSCs [1–5]. However, the promising optical and electrical properties of SnO₂, such as higher electronic mobility and large band gap (3.8 eV), draw the attention of researchers towards it as an alternative photoanode for SSSC. Furthermore, SnO₂ has a 0.4 V more positive band edge as compared to TiO₂; hence, effective charge injection into $E_{\rm CB}$ of SnO₂ from excited sensitizer is expected compared to TiO₂ [12]. In spite of merits of these semiconductor materials for its solar cell application, reasons for the low conversion efficiencies of cells based on stibinite family members still elude better understanding. Studies on different factors responsible for the photoconversion in these cells need to be carried out and optimized for obtaining the theoretically projected efficiencies of these nanostructured excitonic solar cells. Therefore, to investigate the effect of various parameters such as photoanode properties, counter electrode, electrolyte and sensitization time of photoanode, which decide performance of cells based on Sb₂Se₃ still need further studies and optimization. In this work, porous SnO₂ photoelectrodes have been prepared by doctor blade method. Sensitization of SnO₂ photoelectrode with nanocrystalline Sb₂Se₃ has been achieved using chemical bath deposition by varying the sensitization time from 30 to 120 min. To the best of our knowledge, first time we are exploring the SnO₂/Sb₂Se₃ combination in semiconductor sensitized solar cells and of the many influencing factors, the effect of sensitization time is given emphasis in the present study. ## **Experimental** # **Materials** All chemicals [antimony chloride (SbCl₃) (Merck), sodium sulphite (SRL), selenium metal powder (Thomas baker), triethanolamine (TEA) (SRL)] were of the highest purity available and they were used without further purification. # Preparation of SnO₂ photoanode To make SnO_2 paste, 0.5 gm of SnO_2 powder was mixed with ethanol, acetic acid, ethylene glycol and α -terpineol in mortar and pestle for 40 min, then SnO_2 film was prepared on fluorine-doped tin oxide (FTO) glass by doctor blade method. After drying, all samples were annealed at 450 °C for 1 h. # Chemical bath deposition of Sb₂Se₃ on porous SnO₂ photoanode In the present synthesis, solutions of SbCl₃ (0.01 M; 10 ml) and Na₂SeSO₃ (0.01 M; 10 ml) were prepared in acetone and double distilled water, respectively, in two different beakers, wherein SbCl₃ acts as a precursor of Sb³⁺ and Na₂SeSO₃ that of Se²⁻. TEA (20 %; 5 ml), a complexing agent, was then added to the bath containing antimony source. The solution containing selenium source was then slowly added to the bath containing Sb³⁺ and TEA. The deposition process of Sb₂Se₃ was considered to be based on slow release of Sb³⁺ and Se²⁻ ions in the solution, which was achieved using TEA. TEA controls the Sb³⁺ ion concentration and allows for obtaining soluble species of Sb³⁺ in the bath. The pH of the combined bath was adjusted to be around 8-10, by adding few drops of 1 M NaOH solution. The previously prepared SnO₂ photoelectrodes were introduced vertically into this bath containing both Sb³⁺ and Se²⁻, at room temperature for the deposition of Sb₂Se₃ over the porous nanocrystalline SnO₂. After carrying out sensitization for different time durations of about 30, 60 and 120 min, the photoelectrodes were withdrawn from the bath and the corresponding photoanodes were named as P-30, P-60 and P-120, respectively. The sensitized photoelectrodes were observed to be coated with increased darkening of brownish tinge of the photoanodes from P-30 to P-120. This may be due to the enhanced level of deposition of nanocrystalline Sb₂Se₃ onto the bare photoanodes of SnO₂ with increase in sensitization time. ## Solar cell assembly Preparation of electrolyte and counter electrode - (a) Electrolyte: The aqueous solution of polysulphide electrolyte was prepared using the 0.5 M Na₂S, 0.1 M sulfur powder and 0.2 M KCl. - (b) Counter electrode: To prepare the counter electrode, the FTO glass was washed with acetone, water, and ethanol. After removing contaminants, carbon-coated counter electrode was prepared on the conductive side of the FTO substrate using mild flame. For cell assembly, the carbon-coated FTO was used as a counter electrode. The Sb₂Se₃ sensitized SnO₂ photoelectrode and counter electrode were clamped together into a sandwich type configuration with a droplet of polysulphide electrolyte injected between them. The fabricated solar cells using photoelectrodes P-30, P-60 and P-120 were named C-30, C-60 and C-120, respectively, and characterized to study their photovoltaic performance. The analysis of structural, morphological properties and elemental composition of unsensitized SnO_2 photoanode and Sb_2Se_3 sensitized photoanode of SnO_2 was carried out using X-ray diffractometry (XRD) (model: XRD, Rigaku " $D/B_{\rm max}$ -2400", Cu $K_{\alpha}=0.154$ nm), scanning electron microscopy (SEM) (model: JEOL-JSM 6360-A) and energy-dispersive X-ray spectroscopy (EDAX), respectively. A UV-Vis spectrophotometer (model: JASCO V-670) was used to record optical absorption spectra of unsensitized and sensitized photoelectrodes in diffused reflectance mode in the range 200–800 nm at room temperature. The cell performance was measured by a semiconductor characterization unit [Keithley 2420 (source meter)] under illumination of 30 mW cm⁻². #### Results and discussions # Structural analysis of bare SnO₂ and SnO₂/Sb₂Se₃ photoanodes Figure 1 shows diffraction pattern for unsensitized SnO_2 photoelectrode with defined peaks at $2\theta=26.63^\circ$, 34.07° , 38.20° , 52.18° and 55.19° corresponding to the diffraction from planes which confirm its tetragonal phase (JCPDS file no: 41-1445). Figure 1 also shows the diffraction patterns related to P-10, P-20 and P-30, respectively. P-30, P-60 and P-120 show diffraction signatures corresponding to both, Sb_2Se_3 and SnO_2 . In P-30, P-60 and P-120, Sb_2Se_3 nanocrystals appeared in the orthorhombic phase (JCPDS file no: 72-1184). # Optical properties of bare SnO₂ and SnO₂/Sb₂Se₃ photoanodes The absorption spectra of the unsensitized SnO_2 , P-30, P-60 and P-120 are shown in Fig. 2. It is seen from the figure that the absorption for unsensitized SnO_2 is limited to the ultraviolet region of electromagnetic spectrum. **Fig. 1** XRD spectra of bare SnO₂ and SnO₂/Sb₂Se₃ photoanodes sensitized with different deposition times; P-30: 30 min, P-60: 60 min and P-120: 120 min However, for all sensitized photoelectrodes, the absorbance is enhanced in the visible region. It may be noted that the intensity of the absorption spectra increases in the visible region from 400 to 600 nm with the increasing sensitization time from P-30 to P-120. This fact suggests that amount of loading of a sensitizer increases with increase of loading time resulting in enhanced absorption of visible light from P-30 to P-120. Also, there is an apparent red shift in the absorption feature from P-30 to P-120, which is probably a consequence of increase in particle size of sensitizer with increase of deposition time and may be attributed to the aggregation of sensitizer on the surface of bare photoelectrode. This observation is in accordance with the other metal chalcogenides including Sb₂Se₃ deposited with SILAR technique [9, 16]. # Morphological and elemental analysis of SnO₂/Sb₂Se₃ photoanodes To further analyse the effect of sensitization time on the SnO₂ photoelectrode, morphology of both bare and sensitized photoelectrode was studied. Figure 3 shows the scanning electron micrographs of Sb₂Se₃ sensitized SnO₂ photoelectrode with different sensitization times. It is clearly seen from Fig. 3 that the pores in SnO₂ photoelectrode are filled up with nanocrystalline Sb₂Se₃. The pore-filling apparently increased with increase of deposition time from P-30 to P-120. In addition to this, there is no observable alteration in the surface quality and structure of the SnO₂ photoelectrodes with the increase in sensitization time. Supplementary elemental analysis by energy-dispersive X-ray spectroscopy (EDAX) for unsensitized and sensitized photoelectrode was carried out and shown in Fig. 4. EDAX spectrum for unsensitized film reveals the presence of only Sn and O, while that of all sensitized films show the presence of Sb and S in addition to Sn and O. The quantitative analysis obtained by EDAX shows an overall increment in the amount of Sb and Se from P-30 to P-120, with increasing deposition time. It is also observed that Sb/Se ratio leads to the average stoichiometric value of 2/3 for sensitization time of 120 m (Table 1). Therefore, the XRD results along with EDAX spectrum analysis demonstrate sensitization of SnO₂ qualitatively using CBD. # Photovoltaic performance analysis The photovoltaic performance of solar cells C-30, C-60 and C-120 was investigated by conducting photocurrent density (J) versus voltage (V) measurements. Figure 5 shows photocurrent density (J) versus photovoltage (V) characteristics curves of the fabricated solar cells namely, C-30 and C-60. The photovoltaic parameters like short circuit Fig. 2 Optical absorption spectra of bare SnO₂ and SnO₂/Sb₂Se₃ photoanodes sensitized with different deposition times; P-30: 30 min, P-60: 60 min and P-120: 120 min Fig. 3 Elemental (% atomic) analysis of bare SnO2 and SnO2/Sb2Se3 photoanodes sensitized for 30 min **Fig. 4** SEM images of SnO₂/Sb₂Se₃ photoanodes sensitized with different deposition times; P-30: 30 min, P-60: 60 min and P-120: 120 min current density $(J_{\rm sc})$, open circuit voltage $(V_{\rm oc})$, fill factor (FF) and photovoltaic efficiency (η) are obtained from the J–V curves and listed in Table 2. Table 1 Elemental (% atomic) analysis of bare SnO_2 and SnO_2 photoanodes sensitized with Sb_2Se_3 | Photoanode | Sensitization time (min) | Sn | О | Sb | Se | |-----------------------|--------------------------|-------|-------|------|-------| | Bare SnO ₂ | _ | 39.97 | 60.03 | _ | _ | | P-30 | 30 | 24.32 | 73.64 | 1.08 | 0.96 | | P-60 | 60 | 21.84 | 65.63 | 5.43 | 7.10 | | P-120 | 120 | 21.05 | 62.89 | 6.02 | 10.04 | | | | | | | | It is observed from the Table 2 that, with increase in sensitization time, the value of $J_{\rm sc}$ increases, while $V_{\rm oc}$ shows decrease in its value from C-30 to C-60. However, in spite of better optical absorbance of P-120 vis-à-vis others, cell fabricated using it does not show considerable photovoltaic performance. This may be due to the over aggregation of sensitizer over the surface of the photoanode. With increase of sensitization time, the optical absorption spectra as given in Fig. 2 clearly show an enhanced amount of loading of the sensitizer into the Fig. 5 J-V characteristics of cells C-30 and C-60 fabricated with SnO_2/Sb_2Se_3 photoanodes sensitized with deposition times of 30 and 60 min, respectively Table 2 Photovoltaic parameters of Sb₂Se₃ sensitized SnO₂ photoanode-based solar cell prepared with different sensitization time | Solar
cell | Sensitization time (min) | V _{oc} (V) | $J_{\rm sc}$ (mA/cm ²) | FF
(%) | η
(%) | |---------------|--------------------------|---------------------|------------------------------------|-----------|----------| | C-30 | 30 | 0.272 | 0.715 | 49 | 0.31 | | C-60 | 60 | 0.182 | 0.795 | 41 | 0.19 | Fig. 6 Schematic showing band energetics of SnO₂/Sb₂Se₃ interface **Fig. 7** Cartoon showing recombination of excited electron at SnO₂/Sb₂Se₃-electrolyte interface due to aggregation photoelectrodes. This is evident from the improved optical absorption in the visible region. Such an enhanced absorption of light in the visible region leads to generation of increased number density of excitons at the electrode–electrolyte interface. The excitons so generated get dissociated at the SnO_2/Sb_2Se_3 interface due to the favourable interfacial band energetics (see Fig. 6) leading to effective electron injection from excited Sb_2Se_3 to the conduction band of SnO_2 [15], which further results in improved photocurrent (J) from C-30 to C-60 and hence J_{sc} in from C-30 to C-60. But, such an aggregation of sensitizer may cause to delay the transfer of excited electrons from sensitizer to the conduction band of SnO_2 , giving rise to the recombination of excited electron at electrode–electrolyte interface. This probable reason depicted in schematic form in Fig. 7 apparently explains the reduction of V_{oc} , for C-60. However, as discussed earlier in optical analysis, optical absorption enhances with increase in deposition time, which may be attributed to the further aggregation of sensitizer in P-120. In spite of enhanced absorption in P-120, the increased number density of sensitizer molecules in it, may have offered the increased grain boundary resistance in C-120 vis-a-vis former, probably affected the photocurrent (*J*) and photovoltage (*V*). This probable reason depicted in schematic form in Fig. 7, which apparently rationalizes the poor values of photovoltage and photocurrent in C-120 and hence not incorporated in the Table 2. The same was confirmed by the Solis and Co-Workers [16]. Relatively better photovoltaic efficiency of C-30 vis-avis other cells may be obviously attributed to its improved photovoltaic parameters. The performance observed in present study in terms of photoconversion efficiency (η) about 0.31 % is relatively greater than that of as-prepared spin-coated TiO₂ photoanode with Sb₂Se₃-based solar cell showing efficiency of about 0.22 % reported by Seok et al. [6]. It can be seen from Fig. 6, showing band energetics of SnO₂/Sb₂Se₃ interface, that conduction band (E_{CB}) of Sb₂Se₃ lies well above the E_{CB} of SnO₂; hence, effective charge injection into E_{CB} of SnO₂ from excited Sb₂Se₃ is expected as compared to TiO₂ [12]. This may be one of the probable reasons that Sb₂Se₃ in combination with SnO₂ shows better performance. This suggests SnO₂, potential alternative to conventional TiO₂-based system in SSSC. ## **Conclusions** In the present report, we have demonstrated the photovoltaic performance of Sb_2Se_3 sensitized SnO_2 -based solar cells. The optical, morphological properties and photovoltaic characteristics of SnO_2/Sb_2Se_3 photoanodes were analysed as a function of sensitization time. From the study, it may be concluded that sensitization time has a profound influence on all the photovoltaic parameters, thus, effecting the photoconversion efficiency of these cells. It is understood that the overall efficiency of a nanostructured solar cell may be improved by developing a conformal monolayer coating of sensitizer as this can improve the light harvesting efficiency besides mitigating the back electron transfer. HMP is thankful to Departmental Research Development program, Savitribai Phule Pune University, Pune—07 for partial financial support. ANK is grateful to Prof. M. B. Rajendra Prasad for discussions during drafting to raise the quality of English and to make manuscript informative. **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. #### References Sun, W., Yu, Y., Pan, H., Gao, X.F., Chen, Q., Peng, L.M.: CdS quantum dots sensitized TiO₂ nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124–1125 (2008) - Chen, Y.X., Wei, L., Zhang, G.H., Jiao, J.: Open structure ZnO/ CdSe core/shell nanoneedle arrays for solar cells. Nanoscale Res. Lett. 7, 516–521 (2012) - Chen, C., Xie, Y., Ali, G., Yoo, S.H., Cho, S.O.: Improved conversion efficiency of Ag₂S quantum dot-sensitized solar cells based on TiO₂ nanotubes with a ZnO recombination barrier layer. Nanoscale Res. Lett. 6, 462–470 (2011) - Kulkarni, A.N., Arote, S.A., Pathan, H.M., Patil, R.S.: Room temperature synthesis of crystalline Sb₂S₃ for SnO₂ photoanodebased solar cell application. Bull Mater. Sci. 38, 493–498 (2014) - Kulkarni, A.N., Arote, S.A., Pathan, H.M., Patil, R.S.: Time dependent synthesis of crystalline Bi₂S₃ and its application as a sensitizer in SnO₂ based solar cells. Int. J. Mater. Res. 105, 314–317 (2014) - Choi, Y., Mandal, T., Yang, W., Lee, Y., HyukIm, S., Noh, J., Seok, S.: Sb₂Se₃—sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor. Angew. Chem. 53, 1329–1333 (2014) - 7. Ko, T.Y., Sun, K.W.: Optical and electrical properties of single Sb₂Se₃ nanorod. J. Lumin. **129**, 1747–1749 (2009) - Platakis, N.S., Gatos, H.C.: Threshold and memory switching in crystalline chalcogenide materials. Phys. Status Solidi A Appl. Res. 13, K1 (1972) - Patrick, C.E., Giustino, F.: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. Adv. Funct. Mater. 21, 4663–4667 (2011) - Filip, M.R., Patrick, C.E., Giustino, F.: G W quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite. Phys. Rev. B 87, 205125 (2013) - Shockley, W., Queisser, J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961) - Rhee, J.H., Chung, C., Wei-Guang Diau, E.: A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Mater. 5, e68 (2013) - Bhattacharya, R.N., Pramanik, P.: A photoelectrochemical cell based on chemically deposited Sb₂Se₃ thin film electrode and dependence of deposition on various parameters. Sol. Energy Mater. 6, 317–322 (1982) - Tuyen Ngo, T., Chavhan, S., Kosta, I., Miguel, O., Grande, H., Tena-Zaera, R.: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells. Appl. Mater. Interfaces 6, 2836–2841 (2014) - Guijarro, N., Lana-Villarreal, T., Shen, Q., Toyoda, T., Gomez, R.: Sensitization of taitanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photochemical and carrier dynamics studies. J. Phys. Chem. C 114, 21928–21937 (2010) - Solis, M., Rincon, M.E., Calva, J.C., Alvarado, G.: Bismuth sulfide sensitized TiO₂ arrays for photovoltaic applications. Electrochem. Acta 112, 159–163 (2013)