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Abstract
Direct imaging of three-dimensional microstructure via X-ray diffraction-based techniques gives valuable insight into the 
crystallographic features that influence materials properties and performance. For instance, X-ray diffraction tomography 
provides information on grain orientation, position, size, and shape in a bulk specimen. As such techniques become more 
accessible to researchers, demands are placed on processing the datasets that are inherently “noisy,” multi-dimensional, and 
multimodal. To fulfill this need, we have developed a one-of-a-kind function package, PolyProc, that is compatible with 
a range of data shapes, from planar sections to time-evolving and three-dimensional orientation data. Our package com-
prises functions to import, filter, analyze, and visualize the reconstructed grain maps. To accelerate the computations in our 
pipeline, we harness computationally efficient approaches: for instance, data alignment is done via genetic optimization; 
grain tracking through the Hungarian method; and feature-to-feature correlation through k-nearest neighbors algorithm. As 
a proof-of-concept, we test our approach in characterizing the grain texture, topology, and evolution in a polycrystalline 
Al–Cu alloy undergoing coarsening.
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Introduction

The microstructures of materials, from ceramics to super-
alloys, are three-dimensional (3D) in nature. Such materi-
als are opaque to most probes, and hence, they have been 
traditionally studied by two-dimensional (2D) techniques, 
e.g., optical or electron microscopy. By coupling the image 
capture with microstructure sectioning, 3D characterization 
is possible [1–4]. Unfortunately, however, serial sectioning 

entails the removal of consecutive layers of material to col-
lect 2D images, and so this method is fundamentally destruc-
tive. Instead, nondestructive metrologies are needed to detect 
various microstructural features (e.g., grains and precipi-
tates) and monitor their evolution with a sufficient tempo-
ral resolution. For this purpose, X-ray imaging techniques 
enable the direct visualization of 3D microstructure in a 
nondestructive manner, since X-rays can penetrate deeply 
in the materials investigated. Computed tomography (CT) 
is one of the oldest 3D imaging [5] techniques that make use 
of an X-ray beam. As the transmitted X-rays are sensitive to 
the density of the material, the resulting 3D microstructure 
shows density differences through the illuminated sample. 
This is the basis of absorption CT (denoted as ACT). On 
the other hand, analysis of the diffracted X-ray beam is the 
hallmark of 3D X-ray diffraction (3DXRD) [6–12]. Thus, 
X-ray microscopes capable of diffraction provide a unique 
opportunity to characterize polycrystalline materials in 3D.

Recognizing the promise of 3DXRD, investigators in the 
past decade have developed a number of different 3DXRD 
techniques, such as high-energy X-ray diffraction micros-
copy (HEDM) [9], diffraction contrast tomography (DCT) 
[8, 10, 12], and scanning 3DXRD (S3DXRD) [11], to name a 
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few. These techniques are all based on X-ray diffraction, and 
thus, they share common features in terms of their working 
principle: As a “hard” (≧ 10 keV) X-ray beam illuminates a 
specimen, a detector placed behind the sample collects dif-
fraction patterns (spots or streaks) that are generated when 
grains in the microstructure satisfy the Bragg condition. 
To track the locations of all grains within the tomographic 
field-of-view, the specimen is rotated with a small angu-
lar increment (≲ 2°). The diffraction images collected must 
then be segmented or partitioned into two classes (streak 
and background). The segmented diffraction streaks are then 
indexed as grains through a reconstruction procedure, such 
as the GrainMapper3D algorithm used here. Differences in 
the 3DXRD techniques stem from the shapes and sizes of 
incident X-ray beam, chromaticity of source, resolution of 
detector, and means of reconstruction [13].

Until recently, nondestructive grain mapping via 3DXRD 
was only available at synchrotron facilities with limited acces-
sibility. With the recent development of laboratory-based 
X-ray diffraction tomography (denoted as LabDCT), bulk 
polycrystalline specimens can now be readily characterized 
from one’s own laboratory [12, 14, 15], spearheading a new 
age in 3D materials science. Unlike synchrotron-based DCT, 
LabDCT makes use of a polychromatic, divergent beam, 
thereby requiring a different reconstruction procedure. A 
number of studies have already demonstrated the efficacy of 
LabDCT for the high-throughput characterization of polycrys-
talline microstructures [16–19]. For instance, Keinan et al. 
[16] integrated ACT and LabDCT imaging modalities on a 
single X-ray microscope to gain new insight into the micro-
structure of metallurgical-grade polycrystalline silicon, which 
is simultaneously multi-phase and polycrystalline. McDonald 
et al. [18] conducted 3D space- and time-resolved experiments 
via both LabDCT and ACT to investigate the dynamics of 
sintering of micrometer-scale Cu particles. While great strides 
have been made in technique development and applications, a 
critical need exists to devise the infrastructure for processing 
such high-dimensional and multimodal datasets.

To this end, a few software packages have been developed 
to aid in the processing of reconstructed X-ray images. Here, 
we review the strengths and limitations of a few. TomoPy is 
a Python-based, open-source framework for the reconstruc-
tion and analysis of absorption images in particular [20]. As 
of this writing, the software has not been extended to sup-
port 3DXRD data, which is inherently multi-dimensional. 
That is, 3DXRD provides orientational information (a vector 
quantity) for each voxel in the imaging domain. At the other 
extreme is MTEX, a free MATLAB toolbox for analyzing 
the crystallographic texture from vectorized orientation 
data outputted from diffraction-based techniques such as 
electron backscatter diffraction [21]. However, MTEX can-
not as yet handle the processing of 3D grain maps. In con-
trast, DREAM.3D is a software package that allows for the 

construction of customized workflows to analyze 3D orienta-
tion data, including serial sectioning, DCT, and HEDM [22]. 
While DREAM.3D has demonstrated success in processing 
3DXRD data, it has not been optimized for high-dimensional 
datasets. Thus, the question remains, “How does one 3D 
microstructure relate to the next in a dynamic experiment?” 
To answer this question, we present our efforts in developing 
a data processing pipeline, PolyProc, capable of parsing the 
full spectrum of 2D, 3D, and further higher-dimensional data 
collected through 3DXRD techniques. With our toolbox, it is 
also possible to “layer” one dataset over another, thereby pro-
viding a unified description of the underlying microstructure.

Experiment

Herein, we demonstrate the efficacy of our function pack-
age with two full-field (volume) scans that are separated by 
a short time-interval. In this interval, we apply an external 
stimulus (heat) to encourage the coarsening of grains in the 
microstructure. We collect the 3D data through the LabDCT 
module in a laboratory X-ray microscope (Zeiss Xradia 520 
Versa) located at the Michigan Center for Materials Char-
acterization at the University of Michigan. We selected an 
alloy of composition Al–3.5 wt% Cu for subsequent analysis, 
as it is relatively well characterized and does not attenuate 
the incident X-ray beam too heavily. The sample was pre-
pared for the first round of imaging by annealing at 485 °C, 
thereby achieving a fully recrystallized state. Of note is that 
this temperature is below the solvus temperature (about 
491 °C), and thus, we retained secondary θ-Al2Cu particles 
within the system. Annealing also releases the strain accu-
mulated in the cold-rolled condition. From our experience, 
strain has the effect of smearing the diffraction spots of poly-
crystals. This, in turn, introduces difficulties in reconstruc-
tion, since it becomes impossible to “untangle” the overlap-
ping diffraction spots belonging to individual grains in the 
microstructure. Following the annealing, the specimen was 
imaged through LabDCT, collecting 181 projection images 
every ~ 2° between 0° and 360° with an exposure time of 
400 s per projection. The detector images measure 385 μm 
of the sample from top to bottom. Due to the nondestructive 
nature of LabDCT, we further annealed the same sample for 
four minutes at the aforementioned temperature (485 °C), 
inducing the microstructural evolution. The second round of 
imaging was done with the same scan conditions. The speci-
men was annealed further and imaged in ACT on the same 
microscope to acquire the spatial distribution of secondary 
phase θ-Al2Cu particles within the tomographic field-of-
view. In the ACT scan, we collected 1600 projections evenly 
distributed between 0° and 180° with an exposure of 5.3 s. 
The Cu constituent provided a natural source of attenuation 
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contrast such that the θ-Al2Cu particles could be readily 
identified via ACT.

The LabDCT diffraction patterns were segmented and 
reconstructed via the GrainMapper3D™ software developed 
by Xnovo Technology ApS. In the reconstruction, the vol-
ume is overlaid on a structured grid with side length of 5 μm. 
Based on the known crystal symmetry and lattice param-
eters, the equations of diffraction are solved for a subset of 
spots in order to compute a prospective orientation. Then, 
the forward simulations calculated by the software are com-
pared against the real grains reflection on the detector. A 
grain is said to be indexed when a match is found between 
the reflection observed on the detector and predicted position 
from the forward simulation. Figure 1 shows superposition 
of the two. The color of calculated diffraction spot represents 
the crystallographic orientation of grains that give rise to the 
various spots. Overall, good agreement is seen between the 
reconstructed and measured results; the simulated patterns 
are able to capture not only the position of the spots but also 
their shapes. The software outputs the high-dimensional data 
in the hierarchical data format version 5 (HDF5), which was 
designed for complex data objects. Each voxel in the 3D 
image domain contains the following attributes: its grain 
identification, Rodrigues vector (texture components), and 
completeness value. On the other hand, the ACT dataset 
was directly reconstructed using the filtered back-projection 
algorithm employed by the Scout and Scan software on the 
Zeiss Xradia 520 microscope. Our principal task is to pro-
cess this high-dimensional and heterogeneous data, as will 
be described in detail below.

The GrainMapper3D reconstructions are inherently six-
dimensional (i.e., 3D space plus 3D orientation). For matrix 
algebra and plotting, we use the MATLAB R2018a pro-
gramming language, which provides a high-level technical 

computing environment. Our toolbox takes advantage of 
a few different toolkits that are freely distributed through 
MathWorks, such as MTEX (described above) [21]. MTEX 
is required to run the pipelines involving data clustering, 
crystallographic analysis, and grain tracking. Other depend-
encies are included as utilities within the toolbox.

Result and Discussion

This section demonstrates integral procedures for process-
ing and analyzing in situ and 3D crystallographic datasets. 
A typical workflow of the function package is illustrated in 
Fig. 2, organized in a set of modules that group the algo-
rithms according to their function. In time-dependent stud-
ies (like ours), there is likely a misalignment of the scanned 
domains and/or grain orientations between consecutive time-
steps, causing challenges in data analysis downstream. Thus, 
after importing the HDF5 data, our workflow starts with 
the alignment of volume data via genetic optimization to 
define the common scope (intersection volume) for further 
analysis. Within the defined scope, grain cleanup procedures 
filter unreliable features such as incorrectly indexed voxels 
that inevitably appear during data collection. The grains are 
processed according to three thresholds: angular, volumetric, 
and completeness. The cleaned data can be visualized in 
3D or cross-sectionally in 2D with different color schemes 
depending on user preference. Data analysis functions pro-
vide various capabilities for the statistical analysis of the 
entire polycrystalline aggregate or a single grain in particu-
lar. Additionally, for time-resolved data, our toolbox offers a 
means of grain tracking via combinatorial optimization. We 
step through each of these modules using the two LabDCT 
reconstructions as a test case.

Fig. 1   Superposition of 
experimental and calculated 
diffraction patterns, the latter 
obtained from forward mod-
eling the reconstruction data. 
A beam-stop (center) blocked 
the forward-transmitted beam. 
Color of calculated spots in 
the periphery reflects crystal-
lographic orientation of the dif-
fracting grain according to the 
standard triangle. White scale 
bar is 1000 μm
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Data Processing

Volume Alignment

A geometric deviation of sample, including translation and 
rotation, would be found between two time-steps (denoted T1 
and T�  hereafter) if the sample was to be repeatedly removed 
and mounted on its holder. Translation will introduce a spa-
tial drift in the corresponding grains between the two data-
sets. Meanwhile, rotation will alter the perceived crystallo-
graphic orientation of the grains between time-steps T�  and ��  . 
Both transformations will thereby mislead further analysis 
like grain tracking. Thus, body alignment (registration) of 
sample volume is the first step of our pipeline.

We solve the registration problem by minimizing the mis-
fit of volume through genetic algorithm (GA). Volume is 
defined as the set of all pixels within the 3D sample; misfit 
is the number of voxels not shared between the two vol-
umes T�  and T�  , over total number of voxels. Six independent 
parameters are determined during the alignment procedure: 
three translational vectors 

t
, � 1, � 1, �

�
 and three rotational 

angles 
t
� � � � � � � �

�
 , assuming a purely isometric transforma-

tion. This implies a massive calculation over a 6D space to 
calculate and compare misfit, if done for all possible trans-
formations. Instead, we achieve a better alignment in a much 
shorter amount of compute time via GA. The detailed oper-
ating principle of GA is discussed below. After those six 
parameters are optimized by GA, a transformation matrix is 
generated for the alignment of T�  onto TR , where Tz is the refer-
ence state. The application of the obtained transformation 
matrix on scalar data is illustrated in Fig. 3a, where volumes 

�1 and T�  are presented by blue and red colors, respectively. 
Before alignment (top left), a huge misfit is observed. After 
alignment (top center), not only the outermost contour of 
sample volume, but also the orientation and location of a 
pore inside the volume (see arrow) align closely. Subse-
quently, the shared (intersection) volume is determined (top 
right), which serves as a “mask” to ensure that all the fol-
lowing comparisons between ��  and T�  are carried out under 
the same region-of-interest.

Based on the Euler rotation matrix described by three 
rotational angles 

t
( )1( � 1( �

�
 , the crystallographic orientation 

of grains is also updated. Figure 3b shows the registration of 
grain orientations. Color represents crystallographic orienta-
tion parallel to the specimen height ( � -direction). It can be 
found that crystallographic orientation of grains becomes 
similar after updating their Rodrigues vectors. For example, 
the grains indicated by white arrows are a pair of match-
ing grains. The orientation of those two matched grains is 
presented by cyan and green colors before updating orienta-
tions, respectively. Once the Rodrigues vectors are updated, 
the grain color at T�  becomes cyan (bottom right), which cor-
responds closely to the grain at T�  . To quantify the accuracy 
of the orientation alignment, we calculated the change of 
average misorientation of the matching grains between time-
steps. Before the orientation update, average misorientation 
angle of the matching grains is 7.56 ± 0.13°; after the update, 
it decreases to 2.63 ± 0.59°.

Since volume alignment is only evaluated by the degree 
of misfit, it can be formulated as an optimization problem. 
GA has a few advantages over other optimization engines. 
For instance, it is generally effective in optimizing a function 

Fig. 2   Workflow for processing 
3D LabDCT data; see text for 
details
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with many local minima since it does not require a good 
starting estimate; furthermore, it is quite flexible in that it 
places no constraint on the form of the objective function 
[23, 24]. Due to these merits, GA has been employed to 
register 2D and 3D data [24–26]. In this work, GA func-
tion from Global Optimization Toolbox of MATLAB is 

employed [27]. Drawing from Darwin’s theory of natural 
selection, GA begins with a randomly generated set of indi-
viduals (rigid transformations in our case) also known as a 
population at first generation (see Fig. 4). Parallel computa-
tion is utilized to calculate the fitness (here, misfit) between 
transformed volume at T�  and volume at T

t
 . Individuals with 

Fig. 3   Procedures for a registering sample volume and defining its 
intersection; and b updating crystallographic orientation of grains 
based on the rotation angles obtained from volume alignment. Arrows 

in top and bottom rows point to features that are registered between 
the datasets 1�  and �

t
 . Scale bar measures 100 μm

Fig. 4   Mechanism of automated 
volume alignment via genetic 
algorithm (GA). Individuals 
from the later time-step are gen-
erated and mutated, and their 
misfit is calculated accordingly. 
Shown is a single generation 
of GA. The algorithm proceeds 
by selecting those individuals 
with the highest fitness (lowest 
misfit) for the next generation 
(not pictured)
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relatively lower misfit would then be selected from the cur-
rent population and its genome modified and recombined to 
produce the next generation. We set the maximum number 
of generations to 25, although this may require some tuning 
based on the size of the search space. Once the lowest misfit 
computed lies below the user-specified misfit tolerance dur-
ing the 25 generations, the algorithm is interrupted in order 
to output the corresponding six parameters. If the calculated 
misfit never goes under the threshold, another iteration of 
GA with 25 generations containing twice the population size 
is triggered. Larger population size gives more opportunity 
to reach global minima rather than local minima. Finally, 
GA outputs the six parameters corresponding to the lowest 
misfit. As GA is “embarrassingly parallel” and converges to 
a high-quality solution after only a few generations through 
a number of bio-inspired operators, the computation time 
is low and accuracy of alignment is quite high. In practice, 
parent selection is done by stochastic universal sampling; 
mutation via Gaussian distribution; and crossover through 
scattered blending. Further details regarding GA can be 
found in Ref. [27]. In contrast, it is difficult to optimize the 
accuracy of “brute force” calculations due to the limitation 
of finite search step size. The accuracy and efficiency were 
compared on a workstation with Intel(R) Xeon(R) E-2176 M 
CPU core and 64 GB RAM capacity. Between volumes t1 
and t2 , the angular constraints were set to ± 7° for each of the 
three rotational angles 

(
Rx,Ry,Rz

)
 and misfit tolerance of 2%, 

for both GA and “brute force” comparison approach. The 
former took 657 s for body alignment with 2.42% of misfit, 
while the latter took 1175 s with 2.61% misfit. The result 
indicates that GA can significantly improve the automated 
registration of 3DXRD data, achieving a better alignment in 
a much shorter amount of time.

Grain Cleanup

The cleanup module aims to align the data based on output-
ted transformation matrices (from above) and further process 
them to exclude unreliable features within the intersection 
volume. Upon importing the raw (i.e., as-collected) 3DXRT 
data together with alignment matrices and mask array, data 
outside of masked scope are cropped, and every dimension 
of data except orientation is transformed to the new frame-
of-reference. Since the calculation of crystal orientation is 
computationally costly—there are O

(
N3

)
 rotations that need 

to be performed, assuming a mask dimension of N—the 
Rodrigues vectors are updated only after the average orien-
tation of grain is computed based on clustering voxels with 
similar orientation. That is, based on a user-defined angular 
threshold (typically ≤ 1°), grains with very small misorien-
tation angles are grouped into a single grain. This order of 
operations greatly reduces computation load without com-
promising the accuracy of orientational alignments.

After clustering grains and updating the average grain ori-
entations, data are further processed to remove small grains. 
Any grain composed of fewer voxels than a preset volume 
threshold is considered as noise and treated as unindexed 
regions. The rationale behind this procedure is to retain sta-
tistically significant grains and not to artificially inflate grain 
statistics. The volume threshold is determined based on the 
spatial resolution of the reconstruction data (10 μm for Lab-
DCT). Finally, grains with lower average completeness than 
a preset completeness threshold are considered as unreliable 
data and marked as unindexed. Low-completeness grains 
are often located near the edges of the LabDCT aperture, 
wherein grains may lie partially outside of the illuminated 
field-of-view. Consequently, their diffraction patterns are 
partially occluded by the aperture, resulting in a low recon-
struction completeness in forward modeling simulations.

Outputs of this module include basic measurements of the 
processed grains: Grain volume is expressed as total number 
of voxels; grain orientation as the average Rodrigues vector 
over all voxels in each grain; grain position as its center-
of-volume, considering the Euclidean coordinates of every 
voxel in the grain. Grain adjacency is also stored in a form 
of a M by 2 arrays of neighboring pairs that meet at a grain 
boundary, where M is the number of unique pairs. Those 
grains adjacent to the free surfaces of the sample are desig-
nated as “exterior” grains and those in the bulk as “interior.”

Visualization

The segmented grain surfaces are meshed or represented as 
a series of triangles and vertices. Triangulation is accom-
plished via MATLAB’s built-in Marching Cubes routine. To 
eliminate any “staircasing” artifacts that occur as a result of 
the triangulation, we smooth the mesh to better reflect the 
physical grain shape. In particular, we make use of Laplacian 
smoothing, which utilizes the normalized curvature operator 
as weights for smoothing in a direction normal to the mesh 
interface. In practice, we apply only a few iterations of mesh 
smoothing in order to reduce artifacts while preserving the 
integrity of the interface.

Different modes for mesh coloring are available based 
on user preference. For instance, the grains can be colored 
according to their crystallographic orientation, topology 
(i.e., number of grain neighbors), volume, and average 
completeness. Figure 5 illustrates these different repre-
sentations of the t1 volume. It should be noted that average 
completeness value of many grains is close to 0.45 because 
reconstruction of this particular dataset was executed with 
a tolerance level of 0.45, meaning that indexing voxels con-
cluded once a completeness value of 0.45 was achieved. 
Grains located on the topmost surface of the sample show a 
lower completeness compared to ones located below because 
those grains partially lie out of the illuminated field-of-view. 
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The bottom surface of the sample is not shown because it is 
outside the intersection mask between volumes t1 and t2 (see 
also Fig. 3a). Visualization of individual 2D slices along the 
specimen z-direction is also available under the same color 
schemes, thereby demonstrating the versatility of our func-
tion package in handling different data shapes.

Data Analysis

Simple Metrics

Direct imaging of 3D microstructure allows for the charac-
terization of various indicators of microstructure evolution, 
including grain size, shape, and topology. These metrics can 
only be estimated via quantitative stereology of planar sec-
tions [28]. To our benefit, these parameters can be measured 
directly from 3DXRD without any averaging or interpola-
tion. In the analysis module, we provide some basic statistics 
at the grain level. These include

•	 Grain volume, see, e.g., Fig.  6a corresponding to t1 
volume. A wide range of grain sizes is captured in the 
grain size distribution, from 33 voxels (4.3 × 103 μm3) to 
20,298 voxels (2.5 × 106).

•	 Grain topology, Fig. 6b. An accurate assessment of topol-
ogy is limited by the finite sample size [29], meaning that 
the number of neighbors for the “exterior” grains may 
be underestimated compared to those in the specimen 
“interior.” To resolve this potential bias, we distinguish 
between topologies of “interior” versus “exterior” grains.

•	 Grain morphology, Fig. 6c. Sphericity ( �  ) is defined 
as a ratio of surface area of a sphere having the same 
volume of a grain to the actual surface area of a grain; 

that is, � =
�

1
3 (6Vg)

2
3

Ag

, where Vg is volume of a grain and 

Ag is surface area of a grain. The former is outputted 
from above, while the latter is determined as the sum-
mation of each triangle area adorning the grainsurfaces, 
Ag =

∑F

i=1
Ai
tri

 , where Ai
tri

 is the area of triangle i and F 
is the total number of triangle faces. The area of each 
triangle is computed as Ai

tri
=

1

2

‖‖‖‖

⇀

e
i

12
×

⇀

e
i

13

‖‖‖‖
 , where ⇀e

i

jk
 is 

the edge vector from vertex j to k of triangle i . The vast 
majority of grains at the time-step t1 show a relatively 
high compactness ( � → 1 ), which is expected for a 
recrystallized system.

•	 Grain misorientation, Fig. 6d. Misorientation Δg is 
formally defined as Δg = gig

T
j
 , where gi and gj are the 

grain average orientations (in Rodrigues vectors) deter-
mined from the cleanup module above. The histogram 
weights in the misorientation distribution are the grain 
boundary areas, found by summing over all triangle 
areas along the boundary. We show for comparison the 
distribution expected for a material with uniformly dis-
tributed misorientations. The results for the t1 data indi-
cate a near-random distribution of grain boundaries.

•	 Grain texture, Fig. 6e. Shown is the inverse pole fig-
ure (IPF) of all grains in the t1 volume. It can be seen 
that the sample has no obvious texture at this particular 
time-step.

Fig. 5   Visualization of 3DXRD 
data in 2D and 3D. Grain color 
corresponds to a crystallo-
graphic orientation, b number 
of neighboring grains, c grain 
volume, d average completeness 
of grain. Scale bar measures 
100 μm
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Multimodal Analysis

The integration of multiple imaging modalities enables 
us to investigate correlations between various features, 
thereby providing an in-depth understanding of the under-
lying microstructure. For instance, in the multimodal anal-
ysis module, we correlate the positions of grain bounda-
ries (retrieved via LabDCT) to that of secondary features 
(observed via ACT). The ACT data are assumed to be 
registered to the LabDCT data through application of the 
functions in the alignment module. The secondary features 
are (in our case) micrometer-scale θ-Al2Cu particles whose 
locations in the microstructure are given in the form of cen-
troid coordinates. The user may specify a grain-of-interest 
(GOI) and a distance threshold to then determine which par-
ticles in the particle cloud are adjacent to the GOI, and the 
corresponding grain-to-particle distances. We visualize the 
particles within a two-voxel distance threshold in Fig. 7a. To 
link grain boundaries to secondary features, we have devel-
oped a new algorithm, summarized here as follows: (1) For 
each triangle face along the grain boundaries, we calculate 
its centroid; next (2) we find the nearest-neighbor distances 

between the face centroid and particle locations; and (3) if 
this distance is less than the threshold, we conclude that the 
particle lies on or sufficiently close to the triangle face.

Step (2) above can be accomplished by calculating the 
Euclidean distance between each particle and each mesh 
triangle and then organizing the results in the ascending 
order of distance. This approach would necessitate N ×M 
calculations to correlate particle and grain boundary posi-
tions, where N is the number of particles and M the number 
of mesh triangles that enclose a given grain. Considering 
that M is on the order of 105 and N is also 105 (this work), 
the task of particle classification (as near or far from the 
boundary) is computationally intensive if done in such an 
exhaustive manner. To recognize patterns in the locations of 
particles with respect to grain boundaries, we harness the k
-nearest neighbors ( k-NN) algorithm, a type of “lazy” learn-
ing. k-NN lessens the computational load significantly—
determining the nearest-neighbor particles in seconds—by 
using a so-called K d-tree to narrow the search space. This 
algorithm was previously implemented in measuring the 
local velocities of solid–liquid interfaces in dynamic, syn-
chrotron-based CT experiments [30].

Fig. 6   Analysis of 267 grains in the microstructure. a Grain size dis-
tribution, b neighbors distribution, c sphericity distribution, d misori-
entation distribution (i.e., Mackenzie plot), and e inverse pole figure 

where colors are drawn from the standard triangle. Shown in d for 
comparison is the distribution expected for a material with uniformly 
distributed misorientations
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Provided that the grain misorientations are known 
(Fig. 7b), we can measure the particle-associated misorien-
tation distribution (PMDF), among other interrelationships 
[31]. The PMDF is defined as the fraction of secondary fea-
tures (here, particles) that are located on or in the vicinity of 
grain boundaries within a specific range of misorientation 
angles. It can be seen in Fig. 7c that the distribution of par-
ticles does not follow the distribution of grain boundaries, 
which might be expected if the particle–boundary correla-
tions were truly random (i.e., density of particles per unit 
area of boundary is constant).

Grain Tracking

In this module, we define a mapping between experimental 
time-steps, allowing for the analysis of individual grains as 
time progresses. We use two key parameters for grain track-
ing: crystallographic misorientation and physical distance. 
The crystallographic orientation of a given grain should not 
change over time, provided the sample is fully recrystallized, 

and its location within the microstructure should also not 
change too drastically. Figure 8 illustrates our approach for 
grain tracking. Under the above two constraints, we search 
for a matching grain at some time-step in the future ( t + Δt ) 
within a local neighborhood of the grain at the current time-
step t . The neighborhood is defined as the smallest cuboid 
that encapsulates a grain with a user-defined additional 
padding (in number of voxels). Any grain included in the 
cuboidal scope is considered to be within a local neighbor-
hood. For instance, the gray-colored region in Fig. 8 illus-
trates the cuboidal scope of grain m with default padding of 
two voxels. Care must be taken in defining the size of the 
grain neighborhood since too large a padding may lead to 
an incorrect grain assignment and too small an extension 
may fail to contain the matching grain. Any grain that is 
partially contained in this cuboidal scope at time-step t + Δt 
is labeled as a candidate grain.

For each candidate grain in the neighborhood, we tabulate 
its distance and misorientation. Distance Δdnm refers to that 
between the centroid of grain m and centroid of candidate 
grain n . The maximum (threshold) distance is predetermined 
as the half-diagonal length of cuboidal neighborhood. Simi-
larly, misorientation angle Δ�nm is that between grain m at 
time-step t  and grain n at time-step t + Δt . The maximum 
allowable misorientation (threshold) is a user-defined value. 
In theory, the misorientation between two datasets should 
be zero if the sample is perfectly registered and there are no 
grain rotations. Yet this is often not the case due to slight 
misalignments between datasets (see “Data Processing” sec-
tion). These two metrics are combined linearly to formulate 
a cost function Jnm associated with the assignment of grain 
n to grain m,

where c is a scalar quantity (ranging from zero to one) that 
reflects the importance of the distance over misorientation 
criterion. Rohrer uses a similar formulation of the cost func-
tion [32]. The problem of grain tracking is then to find the 
lowest cost way of assigning grains from one time-step to the 
next. To solve this assignment problem in polynomial time, 
we employ the Hungarian algorithm (otherwise known as 
the Kuhn–Munkres algorithm) [33, 34]. The algorithm oper-
ates on a cost matrix J =

{
Jnm

}
N×M

 and outputs a binary 
matrix X =

{
xnm

}
N×M

 , where xnm = 1 if and only if the n th 
grain at t  is assigned to the m th grain at t + Δt . The total 
cost is then found as 

∑N

i=1

∑M

j=1
xnmJnm → min. Unlike the 

typical assignment problem with a square cost matrix (i.e., 
the matrix dimensions are such that N = M ), our cost matrix 
is rectangular ( N < M ) since the total number of grains 
decreases with time over the course of grain growth. How-
ever, the algorithm can be extended to rectangular arrays 
using the method prescribed by Ref. [34], which we have 
applied here. Worth mentioning is that the cost element Jnm 

(1)Jnm = cΔdnm + (1 − c)Δ�nm,

Fig. 7   Analysis of a single grain according to its a adjacency to sec-
ondary features (here, �-Al2Cu precipitates in red), and b misorienta-
tion with adjacent grains. Only those particles within two voxels of 
the grain boundary surfaces are shown. The one voxel “gap” between 
two given grain faces in b arises due to the uncertainty of classifying 
that voxel to a given face. Scale bar measures 50 μm. c Particle-asso-
ciated misorientation distribution of the same grain. Volume fraction 
of particles adjacent to grain boundaries is shown in blue, and Mac-
kenzie plot is shown in orange
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for a non-candidate grain is computed to infinity, preventing 
the assignment of disappearing grains. Elements for can-
didate grains are normalized by threshold values to bring 
orientation and distance parameters into the same scale.

The result of grain tracking via Hungarian algorithm 
approach is evaluated using two performance metrics, 
matching efficiency and computation time. Matching effi-
ciency represents the percentage of grains that are success-
fully tracked (assigned), i.e.,

Grain tracking between the two LabDCT datasets 
achieved a ~ 86% matching efficiency. The remaining ~ 14% 
of grains that were not assigned can be mainly attributed 
to grains that emerged into the tomographic field-of-view. 
Since the rod specimen is long enough tobeconsidered an 
open system, “new” grains that were not captured in previ-
ous time-step may be detected near the top and bottom of the 
X-ray source aperture. This can be confirmed from Fig. 3b 
that top layer of t2 volume has several new grains that are not 
observed in previous t1 volume.

Hungarian optimization offers distinct advantages over 
the “brute force” solution to the assignment problem. 
The latter considers every possible assignment, implying 

(2)

matching efficiency (%)

=
number of matched grains at later time step

number of total grains at later time step
× 100

a complexity of O(N!) . To speed up the task at hand, we 
may elect to iteratively (i) locate a grain neighborhood, (ii) 
compute costs Jnm of all grains in the neighborhood and 
(iii) assign matching grains based on minimum cost; once 
a matching grain is found, we proceed to the next grain in 
the dataset. However, rather than computing cost matrices 
J and analyzing the matching problem in a comprehensive 
manner, this approach sequentially assigns matching grain as 
it goes through the N grains, causing an inherent bias from 
the matching order. It is for this reason that the Hungar-
ian algorithm offers a higher matching accuracy and com-
putational efficiency over these brute force methods. On a 
same workstation with Intel(R) Xeon(R) E-2176 M CPU 
core and 64 GB RAM, grain tracking between datasets with 
M = 308 and N = 295 grains via Hungarian optimization 
takes 11.44 s with a cuboidal scope padding of two vox-
els, misorientation threshold of four degrees, and weight 
factor c of zero. On the other hand, the three-step iterative 
matching scheme described above takes 15.69 s with the 
same parameters and offers a matching rate of ~ 85%. Even 
though the matching efficiency of both methods is compara-
ble, tracking by brute force results in a few cases of incorrect 
assignments for the reasons mentioned above. Even larger 
data sizes (e.g., fine-grained materials) should widen the 
performance gap between combinatorial optimization and 
“brute force” approaches.

Fig. 8   a Mechanism of grain 
tracking. For the candidate 
grains n in the neighborhood of 
grain m, physical distances Δd

nm
 

and misorientation angles Δ�
nm

 
are computed. These param-
eters are combined linearly to 
give the cost of assignment 
according to Eq. 1. The green 
line represents the matching 
grain among other candidate 
grains (red lines). b Schematic 
of cost matrix J , where row and 
column entries represent grains 
from time-step t  and t + Δt , 
respectively. Colored entries in 
each row represent candidate 
grains at t + Δt ; color scheme 
indicates cost of assignment. 
c Output binary matrix, X , 
where row and column entries 
represent grains from time-step 
t  and t + Δt (as before). Black-
colored entries are optimized 
assignments
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Conclusion

With the concomitant rise and accessibility of 3D charac-
terization approaches, there is an emerging need for pro-
cessing the multimodal and multi-dimensional data output-
ted from such techniques. To this end, we have developed 
a set of functions to import, process, and analyze 3DXRD 
datasets of varying dimensions, from 2D to higher dimen-
sions. Through effective computational routines, the toolbox 
allows us to align and track features in a highly accurate, 
efficient, and robust manner. For instance, we have achieved 
a 45% decrease in computation time by registering data via 
genetic optimization. Similarly, we attained an 86% match-
ing rate between grains in consecutive time-steps, whereas 
brute force solution to the assignment problem achieved a 
similar matching efficiency in 37% longer time. Our package 
also includes functions to filter out unreliable features of the 
experimental data, perform basic statistics on the “cleaned” 
data, and visualize the resultant microstructures. We also 
offer a solution to correlate and fuse the results from dif-
ferent imaging modalities and/or instruments, e.g., ACT 
and LabDCT. The full breadth of our toolbox is tested on 
two datasets of a bulk metallic specimen undergoing grain 
growth, yet the toolbox is capable of processing a stream of 
multiple datasets. It is also noteworthy that the toolbox is 
not strictly limited to metals nor coarsening phenomena, as 
showcased here. Rather, we expect that our function package 
will provide a cross-cutting foundation for data processing 
involving very minimal sample-specific tuning. Potential test 
cases include studies of crack propagation in polycrystalline 
materials, embrittlement of grain boundaries, and defects in 
additively manufactured polycrystals.

Our function package is available as a free and open-
source MATLAB toolbox and may be downloaded from 
repository platforms, such as Github (https​://githu​b.com/
shaha​niRG/PolyP​roc) and MATLAB File Exchange (https​
://www.mathw​orks.com/matla​bcent​ral/filee​xchan​ge/71829​
-polyp​roc). It is open to any party wishing to not only use 
the codes but also contribute to its vitality. Current efforts 
in code development are directed toward merging data from 
DCT and HEDM experiments. While both techniques fall 
under the bracket of 3DXRD (see Introduction), they offer a 
different granularity of analysis. At the one extreme, HEDM 
has been shown to capture intragranular orientation spreads 
in severely deformed materials [35]. Unfortunately, the high-
quality results come at the expense of the long scanning and 
analysis times. This is because HEDM uses a layer-by-layer 
approach (somewhat akin to serial sectioning). Conversely, 
DCT uses a “box” beam that illuminates the full sample at 
once, and therefore, one can collect data at a faster rate than 
with HEDM. However, the discretization unit in DCT recon-
struction is the entire grain, much larger than the pixel size 

in HEDM. By collecting only a few data “slices” via HEDM, 
however, one can interpolate orientation spreads over the full 
DCT volume. For this purpose, deep learning (through, e.g., 
convolutional neural networks) will be necessary.
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