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Abstract Our knowledge of the pharmacology of the

drugs used in pediatric anesthesia has advanced with a

greater understanding of their pharmacokinetics (PK) and

pharmacodynamics. This has resulted in a refinement of

their uses, broader indications, and alternative methods of

delivery. For example, methadone is becoming increas-

ingly popular for spinal surgery, the dosing of etomidate

has been clarified and the PK of intravenous acetamino-

phen from neonates to adults has been revealed. Morphine

PK have also been clarified, although pharmacodynamic

ethnic differences remain unexplained. The optimal size

descriptor to predict correct drug doses in the obese

remains controversial. Efforts to reduce adverse effects of

individual drugs have spawned investigations into benefi-

cial drug interactions, although combinations such as pro-

pofol and ketamine await PK and safety review. The nasal

route may be a reasonable alternative to intravenous

administration for many drugs. Oral ketamine may serve as

a valuable premedication for children suffering burns.

Expanded indications can have unfavorable consequences;

propofol may cause profound hypotension in neonates.
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Introduction

Aspects of pharmacology and how these relate to clinical

practice remain major areas targeted for future investiga-

tion in pediatric anesthesia [1]. The prohibitive cost of

developing and bringing new drugs to the market has been

partially offset by further exploration of older familiar

drugs; refining their use, indications, method of delivery,

and interactions with other drugs.

The holy grail of clinical pharmacology is predicting the

pharmacokinetics (PK) and pharmacodynamics (PD) of

drugs in the individual patient [2]. This requires knowledge

of the covariate effects that contribute to variability.

Pharmacology is not simply an application of PK, and

determinants of drug dose also require an understanding of

the variability associated with pharmacodynamic response

and a balancing of beneficial effects against unwanted

effects [3]. Identification of pharmacodynamic covariates

can only benefit children under our care.

New Insights into Old Drugs

Pediatric anesthesiologists have embraced the population

approach for determining drug PK and PD [4]. This

approach, achieved through nonlinear mixed effects models,

provides a means to study variability in drug responses

among individuals representative of those in whom the drug

will be used clinically. Allometric scaling using an exponent

of 0.75 has proved useful to compare the clearance in adults

with those in children older than 2 years [5]. The supple-

mental use of a maturation model (e.g., a sigmoid maturation

function based on postmenstrual age) to describe develop-

mental aspects of clearance in children younger than 2 years

allows improved dosing estimates [6].
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Morphine

Morphine is widely used throughout the human life span,

and numerous pharmacokinetic models have attempted to

predict the changes in morphine clearance with weight and

age. These models have been evaluated using a large

external data set to evaluate their ability to predict mor-

phine dose in preterm and full-term neonates, infants,

children, and adults. An allometric model using weight

combined with a sigmoid maturation model using post-

menstrual age successfully predicted the morphine dose

rate within 25 % of target in all age groups except infants,

where the predicted dose was 30 % under target. Other

published models all made unacceptable predictions

([100 % of target) in at least one age group. These data

further support the theory that allometric scaling combined

with a maturation function provides a sound basis for

describing clearance and predicting morphine doses in

humans of all ages [7••].

Thiopentone

Thiopentone is an old drug used in children of all ages.

Although its use is disappearing, some still prefer this drug

over propofol for neonatal intubation because it causes less

peripheral vasodilation, and therefore less hypotension, in

this age group [8•]. Reported pharmacokinetic parameter

estimates have been derived from infusions administered

for seizure control in neonates suffering hypoxic–ischae-

mic insults. While most clearance estimates are less than

those in adults (200 mL/h/kg) [9], interpretation is difficult

because the hypoxic–ischaemic insult will also affect its

clearance. Clearance is through oxidation (CYP2C19) to an

inactive metabolite, thiopentone carboxylic acid. Immature

hepatic enzymes in neonates decrease the oxidising

capacity. CYP2C19 microsomal activity is approximately

30 % of mature values in the third trimester, but increases

dramatically at birth [10]. A recent analysis of the matu-

ration of thiopentone clearance using an allometric model

with weight and a maturation model with PMA yielded

results consistent with the maturation of CYP2C19.

Clearance rapidly increases during the neonatal period

from 33 mL/h/kg at 24 weeks postmenstrual age to

160 mL/h/kg at term [11•]. Neonates have less fat and

muscle mass than adults and this is reflected in their

reduced peripheral volume of distribution [11•]. A smaller

clearance and peripheral volume of distribution means that

plasma concentrations remain increased in neonates when

compared with adults for a given dose. This is reflected in

reduced dose requirements for neonates; the ED50 of

thiopentone is 3.4 mg/kg in neonates and 4.1 mg/kg in

adolescents aged 12–16 years [12, 13].

Etomidate

Etomidate is another old drug that continues to be used in

children despite a lack of approval and a paucity of phar-

macokinetic information. Pharmacokinetics have now been

characterised in children (n = 49, 6 months–13 years)

using an allometric model based on weight [14•]. The

authors report an increased clearance and an increased

central compartment volume of etomidate compared with

adults. Consequently, younger children require a greater

per-kilogram induction dose of etomidate compared with

older children to achieve equivalent plasma concentrations

[14•]. However, the use of etomidate has been plagued by

concerns about adrenal suppression. These concerns have

led to the development of a new compound, methox-

ycarbonyl-carboetomidate, which has a very rapid offset

because of esterase hydrolysis, as well as virtually no

adrenal suppression, while maintaining the potency of the

parent compound [15]. This compound offers real promise

and could offer an alternative to propofol for short term

sedation.

Methadone

Intravenous methadone may be administered to pediatric

patients undergoing posterior spinal fusion [16] and major

abdominal surgery [17]. Methadone’s long duration of

action and N-Methyl-D-aspartate (NMDA) receptor

antagonism are perceived as advantages for children who

may experience prolonged pain. Methadone is cleared

predominantly by the hepatic P450 cytochrome enzymes

CYP2B6 and CYP3A4, and to a lesser extent by CYP2C19

[18]. These hepatic enzyme systems mature rapidly within

the first few years of postnatal life [19], and we might

expect the PK after infancy to be similar to those described

in young adults, if scaled using allometry [6]. However, the

optimal dosing regimen for methadone remains uncertain

because of sparse pharmacokinetic data in children and a

paucity of analgesic effect data. It has been suggested that

the analgesic EC50 is 58 mcg/L in the opioid-naı̈ve adult

[20], but comparable data in children are lacking, and

whether these concentrations are achieved at the conclu-

sion of spinal surgery is unknown. Recently, Sharma [21•]

reported the PK of methadone in adolescents, however they

presented a non-compartmental isomer analysis, making

direct comparison to reported adult values awkward.

Another compartmental analysis of the methadone race-

mate commonly used revealed that PK parameter estimates

in adolescents are indeed similar to those reported in adults

when scaled using allometry [22•]. Methadone undergoes

rapid redistribution after bolus administration. This may

result in plasma concentrations that provide inadequate

analgesia postoperatively if the drug is given at the start of
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anesthesia. The authors suggested that an infusion

(0.1–0.15 mg/kg/h) be used during spinal surgery to ensure

adequate plasma concentrations for 24 h. Alternatively,

subsequent dosing based upon pain severity (i.e., 0.03 mg/

kg for mild pain and 0.05 mg/kg for severe pain) every 4 h

may provide sustained analgesia after bolus redistribution.

Caution has been expressed against administering a large

second bolus immediately after surgery because the con-

centration–response relationship for sedation and respira-

tory depression in opioid naı̈ve children has not been

elucidated [22•].

Nonsteroidal Anti-inflammatory Drugs (NSAIDs)

Conflicting reports plague the literature in terms of the rel-

ative analgesic efficacy of NSAIDs and acetaminophen,

when administered individually. An early meta-analysis that

compared single doses of acetaminophen, 7–15 mg/kg, with

ibuprofen 4–10 mg/kg, reported similar analgesic effects in

children [23]. However, a more recent meta-analysis con-

cluded that ibuprofen was at least as effective, if not more

than acetaminophen in both adults and children [24]. These

conflicting results have been clarified by data from adults

who were given ibuprofen after dental extraction. The

maximum analgesic effect (1.54 of a scale 0–3) [25] was

similar to that described for acetaminophen (5.3 of a scale

0–10) [26]. Importantly, the equilibration half-time (T1/2keo)

of 28 min for ibuprofen was less than the 53 min reported for

acetaminophen [26] and the slope of the concentration–

response curve was steeper than that for acetaminophen.

These data indicate that although these two NSAIDs may be

equally efficacious, the onset of analgesia with ibuprofen is

more rapid than that with acetaminophen.

NSAIDs reduce opioid consumption and the incidence

of postoperative vomiting during in children [27•]. The

effective dose of diclofenac has been estimated based on

the assumption that attaining similar adult exposure to

50 mg in children should give similar effectiveness. This

argument has been used to support a single dose of dic-

lofenac 0.3 mg/kg for intravenous administration, 0.5 mg/

kg for suppositories, and 1 mg/kg for oral diclofenac in

children aged 1–12 years [28••].

Interpretation of analgesia is also complicated by the

effects of active metabolites. Diclofenac has a 40-hydroxyl

metabolite that contributes 30 % of the anti-inflammatory

and antipyretic activity of the parent compound. The effect

of parecoxib, a cyclooxygenase-2 selective inhibitor, is

entirely through its active metabolite valdecoxib. These PK

in children have been elucidated. The clearance of val-

decoxib matures with a maturation half-time of 87 weeks

PMA [29•], which is similar to that described for midaz-

olam; a drug that is also cleared by primarily CYP3A4 with

some contribution from CYP2C9 [30]. The authors used a

similar approach to dosing as that used for diclofenac

[28••]. In order to achieve equivalent adult exposure to

40 mg IV, children (2–13 years) should be given 0.9 mg/kg

IV if they weigh 10–14 kg, 0.8 mg/kg IV if 15–24 kg,

0.7 mg/kg IV if 24–39 kg and 0.6 mg/kg IV if 40–69 kg.

These doses reflect the elimination clearance of parecoxib,

which was scaled using allometry in children ages

1.1–12.7 years [29•]. The simulated free valdecoxib con-

centration exceeded the in vitro 50 % inhibitory concen-

tration for free valdecoxib for at least 12 h [29•].

Ketamine

There has been a resurgence in the use of ketamine

(0.5–1 mg/kg) for procedures of brief duration in the

emergency room [31••]. A case–control analysis of the

largest available sample of ketamine-associated laryngo-

spasm in the emergency room (n = 8,282) did not dem-

onstrate evidence of association with age, dose, or other

clinical factors. Laryngospasm appeared to be idiosyncratic

[32]. This report is consistent with rat data that suggests

ketamine is a respiratory stimulant that abolishes the cou-

pling between loss-of-consciousness and upper airway

dilator muscle dysfunction over a wide dose-range [33].

Adverse respiratory events are associated with large

intravenous doses, administration to children younger than

2 years or aged 13 years or older, and the use of coad-

ministered anticholinergics or benzodiazepines [34].

‘Ketofol’ is a mixture of ketamine and propofol (1:1)

that is finding a niche for procedural sedation in the

emergency room. Stable hemodynamics, analgesia and

good recovery are reported [35•]. This mixture is creeping

into anesthetic practice, although the ideal mixture remains

unknown. It is probable that the ‘ideal mix’ will depend on

the duration of sedation required. The context sensitive

half-times for propofol and ketamine increase with the

duration of the infusion [36]. The limited number of pro-

spective studies at this time precludes an assessment of

safety and efficacy of this combination.

Acetaminophen

The release of an intravenous formulation of acetamino-

phen in the USA has increased interest in this drug. A

population analysis [37] using allometry and a maturation

model has confirmed earlier parameter estimates deter-

mined using propacetamol (an intravenous prodrug of

acetaminophen) in children [38]. Intravenous acetamino-

phen in infants, children, and adolescents was well toler-

ated and achieved plasma concentrations similar to those

achieved with labelled 15 mg/kg body weight doses by oral

or rectal administration. In Europe, the PK of acetamino-

phen in neonates have been further explored. Weight was
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used to predict patient size and was the major covariate

contributing 57.5 % of variance. Clearance expressed as

mg/kg/h increases only slightly with PMA (0.138 L/kg/h at

28 weeks’ PMA to 0.167 L/kg/h at 44 weeks’ PMA).

Using these estimates, a mean acetaminophen serum con-

centration of 11 mg/L is predicted in neonates of

32–44 weeks’ PMA given a standard dose of intravenous

acetaminophen of 10 mg/kg every 6 h [39•]. Safety data

for this drug are limited in neonates and surveillance

therefore remains essential. Tenfold dosing errors have

occurred in paediatric practice and this error has been

reported in neonates given IV acetaminophen [40].

Future acetaminophen analyses may be simplified in part,

through the use of ‘blood spot’ sampling. As little as 30 mcL

of blood is spotted on to a Guthrie card, ensuring that the

blood soaks through to the other side of the card and then

allowed to dry at room temperature overnight in darkness.

Blood spots are stored in sealed airtight plastic bags at 48 �C

in a secured fridge until chromatographic analysis [41, 42].

The Growing Obesity Issue

A Scaler for Dosing

Children presenting for adenotonsillectomy have a greater

incidence of perioperative complications and are more

likely to be admitted and/or remain in hospital for pro-

longed periods compared with their normal-weight peers

[43, 44]. While simple measures such as neck circumfer-

ence may warn practitioners of the increased incidence of

postoperative respiratory complications [45], a suitable

index relating dose to body mass remains elusive.

Pharmacokinetic properties of some drugs are known to

change in obesity [46]. Although body fat has minimal

metabolic activity, fat mass contributes to overall body size

and may have an indirect influence on both metabolic and

renal clearance. On the other hand, the volume of distribution

of a drug depends on its physicochemical properties [47].

The apparent volume of distribution of some drugs may be

independent of fat mass (e.g., digoxin), whereas others are

extensively determined by it (e.g., diazepam). To address the

pharmacokinetic differences among drugs in obese patients,

several size descriptors have been proposed for use in these

patients including total body weight (TBW), lean body

weight (LBW), ideal body weight (IBW), body mass index

(BMI), fat free mass (FFM), normal fat mass (NFM).

One controversial issue is the selection of the optimal

size descriptor to scale pharmacokinetic parameters when

adjusting the dose of propofol for the obese patient [48,

49]. In normal-weight subjects, total body weight is a good

size descriptor and a good approximation of lean body

mass [48]. However, in obese patients, total body weight

overestimates lean body mass because the increase in lean

body mass only represents 20–40 % of total excess weight

[46, 49–51]. As a result, the optimal size descriptor that

provides the most accurate information about the rela-

tionship between propofol dose and its plasma concentra-

tions remains unclear (Fig. 1) [49].

Propofol

The effective dose of propofol for loss of lash reflex in

obese pediatric patients (ED95 2.0 mg/kg, 95 % CI

1.8–2.2 mg/kg) is less than that in their non-obese coun-

terparts (3.2 mg/kg, 95 % CI 2.7–3.2 mg/kg). Obese chil-

dren (BMI [95th percentile for age and gender) require a

reduced weight-based dose of propofol for induction of

anesthesia when compared with normal-weight children

[54]. This has been attributed to the nonlinear relationship

between weight and clearance. Although lean body weight

has been proposed as the ideal measure for propofol [55,

56], allometric scaling using total body weight with an

exponent of 0.75 may be more appropriate [6, 57]. This

same exponent has been advocated for the clearance of

propofol in obese adults [58] and children [59] although a

recent analysis suggested an exponent of 0.8 in obese

children may be superior [60•]. We find it difficult to

accept claims that the allometric coefficient differs from

0.75 based on an estimation from almost any realistic study

design. The exponents 0.66, 0.75 and 0.85, for example,

provide the same degree of accuracy or error in the

Fig. 1 Size descriptors used to scale clearance. Scaling factors are

based on a median population TBW of 75 kg and height of 180 cm. A

nonlinear relationship exists between weight and clearance and the

use of TBW overestimates clearance. The other descriptors are in

close agreement between 45 and 100 kg. The classic formula for lean

body weight (LBW [52]) fails at weights greater than 120 kg. The use

of body surface area (BSA) and allometry using an exponent of 0.75

are similar and diverge from lean body mass (LBM [53]) over weights

of 100 kg. The correct descriptor probably differs for each drug and

will lie between the allometric and LBM curves. The relationship in

children remains relatively unexplored
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prediction of clearance in children [6]. There is a real

danger estimating the allometric exponent using a narrow

range of children’s weights. Investigators who focus only

on obese subjects rather than a broad weight range that

included normal-weight subjects, may not find a realistic

allometric relationship [58]. Strange reports of negative

exponents that imply clearance decreases with weight have

been published [61].

Another danger is attempting to use the ‘one size

descriptor fits all’ approach to all drugs [62]. An allometric

model using TBW may be appropriate for propofol, a drug

with high fat solubility. However, this approach may be

inappropriate for remifentanil, as lean body weight is a

better size descriptor [63]. Hence, the size descriptor may

differ for each drug. The use of normal fat mass with

allometric scaling as a size descriptor may prove versatile

[64]. That size descriptor uses the idea of fat fee mass

(similar to LBW but excludes lipids in cell membranes,

CNS and bone marrow) plus a ‘bit more’. The ‘bit more’

will differ for each drug and the maximum ‘bit more’

added to fat free mass would equal TBW.

Alternative Delivery Routes

Exploration of alternative delivery routes for drugs in young

children has centred on the nasal passages. Buccal and sub-

lingual administration in children is unsatisfactory because

they require prolonged exposure to the mucosal surface.

Younger children find it difficult to comply with instructions

to hold drugs in their mouths for the requisite retention time

(particularly if the taste is unfavorable), and this results in

more drug swallowed or expectorated than in adults. If the

drug has a large first-pass effect then the reduced relative

bioavailability decreases the plasma concentrations.

In contrast, the nasal route for opioid delivery is gaining

popularity in children [65••]. Nasal diamorphine, 0.1 mg/kg,

is used in the UK for forearm fracture pain in the emergency

room [66–69], but for the remainder of the world, fentanyl

remains the stalwart. Nasal fentanyl (150 mcg/mL) 1.5 mcg/kg

given to children (3–17 years) with fracture pain resulted in

good analgesia. The pain score (VAS 0–100) decreased from

80 mm (IQR 60.0–95.5) to 49.5 mm (IQR 26.5–68.5) by

10 min and to 27.5 mm (IQR 18.5–56.5) by 20 min after

administration [70, 71•]. Similar results have been reported for

fentanyl (4 mcg/kg) administered through a standard nebu-

lizer [72]. Studies in adults using a pectin-based gelling agent

that modulates fentanyl absorption while limiting nasal drip or

runoff hold promise and have proven useful in controlling

breakthrough pain in adult cancer patients [73]. However,

there remain few studies investigating the usefulness of

intraoperative nasal fentanyl in children. It might be used in

anesthesia where intravenous access is not always secured

(e.g., myringotomy and ventilation tube placement). How-

ever, opioids are uncommonly required for such procedures

and there remain concerns that intranasal drugs may pass

through the posterior nasopharynx and irritate the vocal cords

or through the cribriform plate and cause neurotoxicity [74•].

Advances in aerosol delivery devices have improved

dosing accuracy. Administration of ketorolac 15 mg (weight

\50 kg) or 30 mg (weight[50 kg) by the intranasal route

resulted in a rapid increase in plasma concentration (time to

peak (mean ± SD) concentration was 52 ± 6 min) and may

be a useful therapeutic alternative to IV injection in adoles-

cents because plasma concentrations attained with the device

are likely to be analgesic. A target concentration of 0.37 mg/L

in the effect compartment was achieved within 30 min and

remained above that target for 10 h [75•]. It is somewhat

concerning that these nasal doses are inconsistent with an

adult meta-analysis that demonstrated that a single dose of

systemic ketorolac is an effective adjunct in multimodal

regimens to reduce postoperative pain and reduce postop-

erative nausea and vomiting. The 60-mg dose offered ben-

efits, but there was a lack of current evidence that the 30-mg

dose offered significant benefits on postoperative pain out-

comes [76•]. The nasal dose may require revision.

Clonidine administered as a nasal aerosol (3–8 mcg/kg)

did not achieve adequate preoperative sedation within

30 min of administration. Despite its sedative properties,

postoperative sedation was not prolonged compared with

placebo [77]. The oral bioavailability of clonidine is also

poor (F = 0.55) in children 3–10 years. Consequently,

larger oral doses (per kg) are required when this formula-

tion is used to achieve concentrations similar to those

reported in adults [78].

Similarly, oral ketamine needs to be given in doses of up

to 10 mg/kg to achieve therapeutic effects in children

1–8 years with burns [79•]. This contrasts with a dose of

4–6 mg/kg oral ketamine for premedication in healthy

children. These differing dose requirements may be

explained by differences in the absorption characteristics of

children with burns. Not only was bioavailability reduced

(F = 0.45) but absorption was also slow; absorption half-

time was 59 min and inter-subject variability was large in

this cohort. Dose simulation in a burned child (3.5 years,

15 kg) suggested a dosing regimen of oral ketamine,

10 mg/kg, followed by intravenous ketamine, 1 mg/kg at

45 min for a brief surgical dressing change [79•].

Drug Interactions

Acetaminophen-Ibuprofen

Acetaminophen and NSAIDs can be safely combined

without increasing their associated adverse-effect profiles.
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As a result, combination therapy has become very popular.

A review of randomized controlled studies identified six

studies that compared combined acetaminophen and ibu-

profen therapy for postoperative pain [80]. Of these, three

were conducted in pediatric populations: oral premedica-

tion with the combination was superior to acetaminophen

alone for pain after tonsillectomy in children and after

tooth extraction, while rectal administration of the combi-

nation did not differ from acetaminophen alone for pain

after adenoidectomy. However, in the latter study, the need

for rescue analgesia was reduced in the combination group

at home.

These disparate results may be explained as follows.

Dose–response curves for the combination therapy in

adults suffering dental pain have been published [81].

Analysis of those data using a response surface area

allowed dose interpretation in children [82•]. Simulation

for a 20-kg child showed that the addition of acetamino-

phen to ibuprofen in doses less than 5 mg/kg reduced the

pain response, whereas acetaminophen added to ibuprofen

in doses greater than 5 mg/kg had minimal effect in the

immediate postoperative period. A more sustained anal-

gesic effect was noted at 4–8 h after combination therapy.

Combination therapy achieves effective analgesia with a

reduced daily dose of acetaminophen (e.g., 60 mg/kg/day),

and therefore reduced concern of hepatotoxicity. Unfortu-

nately, combination therapy does not provide prolonged

analgesia sufficient to maintain adequate analgesia over-

night [83].

Ketamine-Phenobarbital

Drug interactions may also be the consequence of pro-

longed therapy. Phenobarbital, used for seizure control,

induces CYP3A4 [84], an enzyme responsible for ketamine

clearance. Ketamine, which is metabolized by CYP3A4,

has a reduced sedative effect in children who are receiving

long-term phenobarbital therapy [85, 86].

Combination Therapy for Tracheal Intubation Without

Neuromuscular Blocking Drugs

Although succinylcholine is considered the golden standard

for optimizing intubating conditions, tracheal intubation

without prior administration of muscle relaxants is com-

mon. A systematic review identified several drug combi-

nations for induction of anesthesia with sevoflurane or

propofol in children aged 1–9 years. One combination used

sevoflurane and propofol (3 mg/kg) without premedication,

and spontaneous breathing showed that propofol may be

the adjuvant of choice for a rapid sevoflurane induction.

The only adjuvant identified during a propofol induction

was IV remifentanil (4 mcg/kg) [87•].

Pharmacodynamic Considerations

Anesthesia Monitoring

Bispectral monitoring (BIS) has become acceptable in

adults as a measure of anesthesia depth. However, there

remains a need for specific neonate-derived algorithms if

EEG-derived anesthesia depth monitors are to be used in

neonates. Problems with BIS monitoring in young children

include a paradoxical increase when the sevoflurane con-

centrations exceed 3 %, differences between the right and

left side of the brain, discrepant BIS values among inha-

lational agents at equivalent MAC values, and BIS values

in children that exceeded those in adults at equivalent

MAC values [88]. An explanation for the last finding is that

brain structure sensitivities differ with brain maturation

[89]. Data also suggest that the spectral entropy for deep

sedation and surgical anesthesia in children 3–6 years

exceed those in children 6–16 years during propofol-rem-

ifentanyl infusion [90]. However, these results are also

consistent with dose scaling based on allometry. Because

clearance is increased in children, younger children have

lower drug concentrations when the same infusion (per

kilogram) is administered in all ages, as was the case in that

study.

Pharmacodynamic Covariates

Considerable strides have been made identifying pharma-

codynamic covariates. Bradycardia during anesthetic

induction with sevoflurane was common in children with

Down syndrome [91]. Critical illness is a major determi-

nant for the clearance of midazolam [92•]. Opioid admin-

istration was reduced in otherwise healthy children with

altitude-induced chronic hypoxia when compared with

non-hypoxic children undergoing similar operations under

similar anesthetic regimens [93]. Opioid dose also appears

to vary geographically; that is, children in Central and

South America receive less opioid intraoperatively than do

children in Africa and India, under standardized anesthesia

for cleft surgeries [94•]. Ethnicity may contribute to this

observation. There were differences in the occurrence of

adverse effects after morphine administration between

Latino and non-Latino Caucasian children. Neither differ-

ences in morphine or metabolite concentrations, nor the

genetic polymorphisms examined, explained these findings

[95•].

The management of postoperative pain can only

improve with greater understanding of its severity and

duration. Children experience significant pain and severe

functional limitation up to 7 days after tonsillectomy or

orchidopexy; effects that may persist into the second

postoperative week [96]. Substantial pain persists on day 2
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even after laparoscopic appendicectomy [97]. Children

with intellectual disability (e.g., Trisomy 21) suffer post-

operative pain to a similar effect as unaffected children,

leading many to advocate similar perioperative analgesia

care for the two groups [98, 99•].

‘‘Jet lag’’ After Anesthesia

Children often experience sleep disturbance after anesthe-

sia. Part of this effect may be attributed to disruption of the

internal circadian clock. The honey bee has a circadian

clock that is similar to that found in humans. After a 6 h

anaesthetic, bees showed a delay in the start of foraging

and whole-hive locomotor-activity rhythms that were

delayed by an average of 4.3 h. Messenger RNA of cir-

cadian clock genes was altered by anesthetic exposure,

suggesting that general anesthesia alters the circadian clock

in a manner consistent with jet lag [100••].

Conclusion

Our knowledge of pediatric pharmacology as it pertains to

the anesthesiologist continues to expand. However, trans-

lation of this knowledge into practical anesthesia has been

haphazard and incomplete. By investigating the complex

PK of a drug, interactions between drugs, and the phar-

macodynamic effects of these findings in different sub-

populations of infants and children, we can identify the key

covariates that will enable clinicians to prescribe effective

doses of drugs while limiting the adverse effects in the

individual child.
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