Skip to main content
Log in

Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Five novel Cu(II) complexes derived from the condensation between 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine, l-phenylalanine, L-aspartic acid, L-histidine and L-arginine) were synthesized and characterized by their elemental analyses, thermogravimetric analysis, IR, mass and electronic spectra, conductance and magnetic measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically using continuous variation and molar ratio methods. The obtained results indicated that the Schiff bases of the amino acids: L-alanine, L-phenylalanine, L-histidine and L-arginine behave as tridentate ligands. The ligands are coordinating with the Cu(II) via azomethine nitrogen, deprotonated carboxylate oxygen and phenolic oxygen. However, in the case of L-aspartic, the ligand acts as tetradentate due to the coordination of the second carboxylate group. Based on the studies of magnetic moments and electronic spectra, a square planar geometry has been proposed for all Cu(II) complexes except bromsalicylaldehydine aspartate complex which has a distorted tetrahedral structure. The representative Schiff bases and their Cu(II) complexes were tested in vitro for their antibacterial activity against two Gram-positive bacteria (Micrococcus luteus and Bacillus cereus) and one Gram-negative bacteria (Pseudomonas aeruginosa). All the complexes showed activity against the organisms more than the free Schiff base ligands and the activity increases with the increase in concentration of test solution containing the new complexes. Moreover, the interaction of the prepared Schiff base amino acid Cu(II) complexes with calf thymus DNA has been investigated by absorption spectra, viscosity and gel electrophoresis measurement and the mode of CT-DNA binding to the complexes has been explored. The investigated complexes exhibit cooperative binding and presumably intercalate into DNA and follow the trend: bsarc>bshc>bsalc>bsphalc>bsasc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.H. Abdel-Rahman, R.M. El-Khatib, L.A.E. Nassr, A.M. Abu-Dief, J Mole. Struct 1040, 9 (2013)

    Article  CAS  Google Scholar 

  2. Q.L. Zhang, J.G. Liu, H. Chao, G.Q. Xue, L.N. Ji, J. Inorg. Biochem. 83, 49 (2001)

    Article  CAS  Google Scholar 

  3. L.H. Abdel-Rahman, R.M. El-Khatib, L.A.E. Nassr, A.M. Abu-Dief, F.E. Lashin, Spectrochim. Acta 111, 266 (2013)

    Article  CAS  Google Scholar 

  4. J.G. Liu, B.H. Ye, Q.L. Zhang, X.H. Zou, Q.X. Zhen, X. Tian, L.N. Ji, Biol. Inorg. Chem. 5, 119 (2000)

    Article  CAS  Google Scholar 

  5. L.H. Abdel-Rahman, R.M. El-Khatib, L.A.E. Nassr, A.M. Abu-Dief, M. Ismail, A.A. Seleem, Spectrochim. Acta. 117, 366 (2014)

    Article  CAS  Google Scholar 

  6. Q.L. Zhang, J.G. Liu, H. Chao, G.Q. Xue, L.N. Ji, J. Inorg. Biochem. 83, 49 (2001)

    Article  CAS  Google Scholar 

  7. P.A.N. Reddy, B.K. Santra, M. Nethaji, A.R. Chakravarty, J. Inorg. Biochem. 98, 377 (2004)

    Article  CAS  Google Scholar 

  8. S. Khan S. A. A. Nami, K. S. Siddiqi, E. Husain, I. Naseem, Spectrochimica Acta Part A, 72, 421 (2009)

  9. N. Raman, K. Pothiraj, T. Baskaran, J. Mol. Struct. 1000, 135 (2011)

    Article  CAS  Google Scholar 

  10. L.N. Ji, X.H. Zou, J.G. Liu, Coord. Chem. Rev. 216, 513 (2001)

    Article  Google Scholar 

  11. J.A. Cowan, Curr. Opin. Chem. Biol. 5, 634 (2001)

    Article  CAS  Google Scholar 

  12. E. Wong, C.M. Giandomenica, Chem. Rev. 99, 2451 (1999)

    Article  CAS  Google Scholar 

  13. [13] S. Deepalatha, P. Sambasiva Rao, R. Venkatesan, Spectrochim. Acta Part A, 64 823 (2006)

  14. M. Kathryn, T. Deck, A. Tseng, J.N. Burstyn, Inorg. Chem. 41, 669 (2002)

    Article  Google Scholar 

  15. L.Z. Li, C. Zhao, T. Xu, H.W. Ji, Y.H. Yu, G.Q. Guo, H. Chao, J. Inorg. Biochem. 99, 1076 (2005)

    Article  CAS  Google Scholar 

  16. A. Rezaeifard, M. Jafarpour, M.A. Nasseri, R. Haddad, Helvetica Chimica Acta 93, 711 (2010)

    Article  CAS  Google Scholar 

  17. H.L. Singh, M. Sharma, M.K. Gupta, A.K. Varshney, Synth. React.Ino.r Met-Org. Chem 30(3), 445 (2000)

    Article  CAS  Google Scholar 

  18. M.Z. Wang, Z.X. Meng, B.L. Liu, G.L. Cai, C.L. Zhang, X.Y. Wang, Inorg. Chem. Comun. 8, 368 (2005)

    Article  CAS  Google Scholar 

  19. L.Z. Li, Z.H. Guo, Q.F. Zhang, T. Xu, D.Q. Wang, Inorg. Chem. Commun. 13, 1166 (2010)

    Article  CAS  Google Scholar 

  20. H.T.S. Britton, Hydrogen Ions, 4th edn. (Chapman and Hall, London, 1952)

    Google Scholar 

  21. A. Wolf, G.H. Shimer, T. Meehan, Biochemistry 26, 6392 (1987)

    Article  Google Scholar 

  22. D. Sabolová, M. Kozˇurková, T. Plichta, Z. Ondrušová, D. Hudecová, M. Simkovicˇ, H. Paulíková, A. Valent, Inter. J. Bio. Macromol. 48, 319 (2011)

    Article  Google Scholar 

  23. S. Satyanarayana, J.C. Dabroniak, J.B. Chaires, Biochemistry 31, 9319 (1992)

    Article  CAS  Google Scholar 

  24. M. Vujcic, S. Tufegdzic, Z. Vujcic, M.J. Gašic, D. Sladic, J. Serb. Chem. Soc. 72, 1265 (2007)

    Article  CAS  Google Scholar 

  25. N. Raman, A. Kulandaisamy, K. Jeyasubramanian, Synth. React. Inor. Met. Org. Chem. 31(7), 1249 (2001)

    Article  CAS  Google Scholar 

  26. M. Liang, W.Z. Wang, Z.Q. Liu, D.Z. Liao, Z.H. Jiang, S.P. Yan, P. Cheng, J. Coord. Chem. 56(17), 1473 (2003)

    Article  CAS  Google Scholar 

  27. W.P. Griffith, S.I. Mostafa, Polyhedron 11, 2997 (1992)

    Article  CAS  Google Scholar 

  28. B. Jezowska, J. Lisowski, P. Chmielewski, Polyhedron 7, 337 (1988)

    Article  Google Scholar 

  29. M.S.A. Begum, S. Saha, M. Nethaji, A.R. Chakravarty, J. Inorg. Bio. Chem. 104, 477 (2010)

    Article  Google Scholar 

  30. G. Ibrahim, E. Chebli, M.A. Khan, G.M. Bouet, Transit. Met. Chem. 24(3), 294 (1999)

    Article  CAS  Google Scholar 

  31. M. Thomas, M.K.M. Nair and R.K. Radhakrishan Synth. React. Inorg. Met. Org. Chem., 25, 471(1995)

  32. A.B.P. Lever, Inorganic Electronic spectroscopy (Elsevier, New York, 1984)

    Google Scholar 

  33. R. Ramesh, S. Maheswaran, J. Inorg. Biochem. 96, 457 (2003)

    Article  CAS  Google Scholar 

  34. D.X. West, A.A. Nasar, Transit. Met. Chem. 24, 617 (1999)

    Article  CAS  Google Scholar 

  35. B.T. Thaker, K.R. Surati, P. Patel, S.D. Parmar, J. Ira, Chem. Soc. 3(4), 371 (2006)

    CAS  Google Scholar 

  36. J.H. Yoe, A.L. Jones, Ind. Eng. Chem. (Analyst. Ed.), 16, 111 (1944)

  37. R. El-Shiekh, M. Akl, A. Gouda, W. Ali, J. Am. Sci. 7(4), 797 (2011)

    Google Scholar 

  38. P. Job, Ann. Chem. 9, 113 (1928)

    CAS  Google Scholar 

  39. R.M. Issa, A.A. Hassanein, I.M. El-Mehasseb, R.I. Abed, El-Wadoud. Spectrochim. Acta A 65, 206 (2006)

    Article  Google Scholar 

  40. J.M. Kelly, A.B. Tossi, D.J. McConnell, C.O. Uigin, Nucl. Acids Res. 13, 6017 (1985)

    Article  CAS  Google Scholar 

  41. A. Hartwig, Chemico-Biological Interact. 184, 269 (2010)

    Article  CAS  Google Scholar 

  42. B.C. Baguley, M. LeBret, Biochem. 23, 937 (1984)

    Article  CAS  Google Scholar 

  43. S. Shi, J. Liu, J. Li, K.C. Zheng, X.M. Huang, C.P. Tan, L.M. Chen, L.N. Ji, J. Inorg. Biochem. 100, 385 (2006)

    Article  CAS  Google Scholar 

  44. K.Y. Lua, A. Mayer, K.K. Cheung, Inorg. Chim. Acta 285, 223 (1999)

    Article  Google Scholar 

  45. P.G. Avajia, C.H.V. Kumarb, S.A. Patilc, K.N. Shivanandad, C. Nagaraju, Eur. J. Med. Chem 44(9), 3552 (2009)

    Article  Google Scholar 

  46. S.U. Rehman, Z.H. Chohan, F. Naz, C.T. Supuran, J. Enzy, Inhib. Med. Chem 20, 333 (2005)

    Article  CAS  Google Scholar 

  47. K.D. Sen, D.M.P. Mingos, Structure and Bonding: Chemical Hardness, Springer, Berlin, 80. (1993)

Download references

Acknowledgments

The authors are grateful to Dr. Amin Abdo Seleem, Zoology Department, Faculty of Science, Sohag University, for his help in gel electrophoresis measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Abu-Dief.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Dief, A.M., Nassr, L.A.E. Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde. J IRAN CHEM SOC 12, 943–955 (2015). https://doi.org/10.1007/s13738-014-0557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0557-9

Keywords

Navigation