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Abstract
Purpose of Review Vitamin K is a fat-soluble vitamin re-
quired for the activation of several vitamin K-dependent pro-
teins to confer functioning. A growing body of evidence sup-
ports that vitamin K has beneficial effects on bone and cardio-
vascular health. This review summarizes key evidence on vi-
tamin K status as measured by circulating measures and car-
diovascular outcomes.
Recent Findings Overall, observational studies indicate that
low vitamin K status as measured by high dephosphorylated
uncarboxylated matrix gla protein concentrations plays a po-
tential role in cardiovascular disease development, particularly
in high-risk and chronic kidney disease populations. Very few
vitamin K intervention trials have been conducted with
cardiovascular-related outcomes. A couple of intervention tri-
als studied the effect of the combination of vitamin D + K
supplementation, which might have synergistic effects com-
pared to vitamin K supplementation alone.
Summary Assessing vitamin K status in prospective studies
and well-designed randomized trials would provide important

insight whether vitamin K is causally related to vascular cal-
cification and cardiovascular disease.

Keywords VitaminK .Matrix gla protein . Vascular
calcification . Cardiovascular disease

Introduction

Vitamin K is a fat-soluble vitamin and is mostly known for its
function in blood coagulation. Vitamin K was discovered in
1939 by Henrick Dam, who named the molecule vitamin K
according to the Danish word for blood clotting koagulation.

Vitamin K occurs in our diet in two forms: vitamin K1

(phylloquinone) mostly found in green leafy vegetables and
vitamin K2 (menaquinones) mainly found in animal foods,
fermented dairy such as cheese, and natto (fermented soy
beans). Vitamin K2 includes a range of vitamin K forms and
differs from vitamin K1 in its side-chain length and degree of
saturation. VitaminK2 is the most biologically active form and
has a longer half-life than (days vs. hours) vitamin K1 [1].

Vitamin K is required as a co-factor in the process of
gamma-carboxylation of several vitamin K-dependent pro-
teins turning inactive uncarboxylated proteins into active car-
boxylated forms to confer functioning. The most well-known
vitamin K-dependent proteins are the hepatic coagulation fac-
tors prothrombin and factor X. However, other extra-hepatic
vitamin K-dependent proteins have been identified as well.
Matrix gla protein (MGP) is a small extracellular matrix pro-
tein, synthesized in smooth muscle cells, that binds Ca2+ ions
in the vascular wall and functions as a potent inhibitor of
vascular calcification [2]. Vitamin K deficiency results in the
synthesis of under-carboxylated, biologically inactive gla pro-
teins—a risk factor for vascular calcification and cardiovascu-
lar disease (CVD) [3–6].
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Previous studies mostly relied on dietary intake measures
of vitamin K such as vitamin K1, vitamin K2, and natto intake
to study the relationship with chronic diseases and CVD [3, 7,
8]. These studies indicated that a high vitamin K intake is
associated with improved cardiovascular health. However,
self-reported dietary intake is imprecise and inherent to limi-
tations to estimate nutrient intakes [9, 10]. New assay devel-
opment allows the quantification of various circulating vita-
min K status markers such as plasma vitamin K1 and K2

(menaquinones 4 and 7) and dephosphorylated uncarboxylated
MGP (dp-ucMGP) [11]. The purpose of this review is to sum-
marize key evidence on vitamin K status as measured by circu-
lating measures and cardiovascular-related outcomes in
humans. Further, novel insights into the combination of vitamin
D and vitamin K suggest synergistic effects for cardiovascular
health. Vitamin D may preserve vitamin K-dependent protein
activity and can thereby contribute to vascular health.
Additionally, the interaction with vitamin D is discussed and
future research recommendations are given.

Circulating Vitamin K Status Markers

Circulating nutrient biomarkers are considered more objective
measures of nutrient status compared to dietary intake mea-
sures and reflect both intake and metabolism. Multiple bio-
markers are available to measure vitamin K status, but none of
them is robust enough to be considered “gold standard” [12].
Circulating vitamin K1 concentrations decrease during vita-
min K1 depletion and increase with vitamin K1 supplementa-
tion [13]. An important limitation of the measurement of plas-
ma vitamin K1 is that it mainly reflects the intake of the pre-
vious days due to its relatively short half-life time of 1–3 h
[14].

Menaquinone can be produced by intestinal gut microbio-
ta; however, very little is known about the absorption in the
gut and the contribution of the microbiome to vitamin K status
[1, 14]. Moreover, the vast majority of the gut menaquinone
pool is located in bacterial membranes and is probably not
available for absorption; however, data is very limited and a
better understanding of how and where menaquinone absorp-
tion takes place is urgently needed [14].

Circulating menaquinone concentrations have been rarely
studied because specific menaquinones are highly dependent
on intake of certain foods, which differs per geographical lo-
cation. For instance, in a normalWestern diet, menaquinone-4
is the only vitamin K2 form that is detectable. In a diet without
natto intake, menaquinone-7 is often below the limit of detec-
tion due to very low concentrations and [11] is only detectable
after natto supplementation or menquinone-7 supplementation.

Vitamin K status can also be estimated by measuring the
uncarboxylated fractions of certain vitamin K-dependent pro-
teins such as osteocalcin (a marker of bone formation) or

MGP, which is the most studied vitamin K-dependent protein
in the regulation of vascular calcification. MGP is synthesized
by smooth muscle cells in the arterial wall, and higher
uncarboxylated concentrations of MGP reflect lower vitamin
K status. Since MGP is the main vitamin K status marker of
vascular calcification, studies that used osteocalcin concentra-
tions as a marker of vitamin K status with cardiovascular-
related outcomes have not been taken into account.

Assays that measure total circulating MGP (regardless of
its carboxylation status) have been available for some time [4,
5]. Recently, assays that measure different fractions ofMGP in
circulation have been developed, of which dephosphorylated
uncarboxylated MGP (dp-ucMGP) best reflects vitamin K
status [6]. It is considered as a functional marker of bioactivity
of both vitamin K1 and vitamin K2 over multiple weeks to
months [15]. Nowadays, dp-ucMGP is available as a fully
automated commercial assay, which makes it a feasible mark-
er as routine laboratory assessment in clinical practice. Dp-
ucMGP has been proposed as an extra-hepatic vitamin K sta-
tus marker; however, evidence is currently insufficient to sup-
port what levels of dp-ucMGP are required for optimal func-
tioning and more research is needed.

Proteins induced by vitamin K absence factor II (PIVKA-
II) uncarboxylated prothrombin are another functional marker
of vi tamin K sta tus , a lso known as des-gamma
carboxyprothrombin (DCP). PIVKA-II/DCP is detectable in
people with deficiency of vitamin K (due to poor nutrition or
malabsorption) and in those taking warfarin or other medica-
tion that inhibits the action of vitamin K. PIVKA-II/DCP has
recently been used in general population studies [16, 17];
however, the commercially available assays have low sensi-
tivity for detecting enough variation in PIVK-II concentra-
tions in healthy populations [12]. The exploration of the bio-
chemistry and physiology of vitamin K biomarkers is ongo-
ing, and relationships with vascular calcification and CVD
will be clarified by longitudinal analyses of vitamin K bio-
markers in large population-based studies. Possibly, vitamin K
status may be estimated more accurately if multiple bio-
markers, or biomarkers in combination with dietary intake,
are used.

Cardiovascular-Related Outcomes

Vascular calcification, regardless of its anatomical site, is a
strong risk factor for cardiovascular death [18]. Calcification
in the vasculature leads to arterial stiffening, elevated systolic
pressure, and increased cardiac workload [19]. There is cur-
rently no effective treatment available for vascular calcifica-
tion, and treatment is targeted to relieve symptoms. Therefore,
understanding underlying mechanisms driving these process-
es is urgently needed to lower the burden of vascular calcifi-
cation and associated health-care costs.
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A strong body of evidence from experimental animal
models indicates that vitamin K is involved in vascular calci-
fication through carboxylation of MGP [2, 20]. An MGP
knock-out model showed extensive calcification in coronary
arteries leading to aortic rupture and premature mortality [2].
Further, vitamin K antagonism due to warfarin antagonizes
vitamin K-dependent carboxylation of MGP leading to rapid
arterial calcification [21]. In addition, a high vitamin K diet is
able to reverse aortic calcification after warfarin treatment in
rats [22].

The relationship between circulating vitamin K status
biomarkers with cardiovascular-related outcomes re-
ceived growing research interest in the last 5 years.
We examined human evidence of circulating vitamin K
status and cardiovascular health, with a particular focus
on chronic kidney disease (CKD) patients, a group char-
acterized with a disproportional high risk for vascular
calcification and CVD death.

Circulating Vitamin K and CVD-Related Outcomes

A growing amount of studies assessed the cross-
sectional relationship between circulating vitamin K sta-
tus and CVD-related outcomes [17, 23–29] as depicted
in Table 1. In two studies from Norway, univariate cor-
relations were found between higher plasma dp-ucMGP
and unfavorable echocardiographic measures; however,
multivariable statistical analyses were lacking [28, 29].
The study by Dalmeijer et al. [23] showed that higher
plasma dp-ucMGP concentrations indicated a higher
trend for a higher coronary artery calcification (CAC)
score β 0.091 (95% confidence interval, −0.01, 0.19)
among post-menopausal women. Liabeuf et al. indicated
that higher dp-ucMGP was significantly associated with
a higher odds of peripheral arterial calcification score:
odds ratio 1.88 (1.14, 3.11) [24]. Higher plasma dp-
ucMGP was consistently associated with higher
carotid-femoral pulse wave velocity (cf-PWV) in popu-
lations from different countries [25–27]. In the MESA
study, no association between circulating DCP and car-
diovascular calcification was observed in healthy partic-
ipants [17].

In a case-control study from the MESA cohort, lower plas-
ma vitamin K1 concentrations were associated with greater
coronary artery calcification (CAC) progression in anti-
hypertensive medication users (OR 2.37 (1.38, 4.09)), mean-
ing that vitamin K may mediate vascular calcification among
high-risk participants [30••].

Also, longitudinal studies assessed the relationship
between circulating vitamin K status and coronary cal-
cification or incident CVD [16, 31•, 32–35]. Among
type 2 diabetes patients, higher dp-ucMGP was

associated with incident CVD hazard ratio (HR) 1.21
(1.06, 1.38) [31•]. Also, in a general older population,
higher plasma dp-ucMGP was associated with a higher
risk of incident CVD: HR 2.69 (1.09, 6.62) [34]; how-
ever, this could not be confirmed in a cohort of middle-
age adults: HR 0.94 (0.79, 1.13) [35].

In a cohort of post-menopausal women, higher plas-
ma dp-ucMGP showed a trend for higher coronary cal-
cification risk (RR 1.07 (0.99, 1.15)), but was border-
line significant [32]. On the contrary, in the same co-
hort, higher plasma vitamin K1 was not associated with
a reduced CAC score but was associated with a higher
CAC prevalence ratio, 1.36 (1.02, 1.81) [33].

In a multi-ethnic cohort study, higher circulating DCP
was associated with a higher risk of ischemic CVD in a
population enriched for ankle-brachial pressure ≥1.4
[16]. In a Flemish population study, Mendelian random-
ization was applied using genetic variation associated
with dp-ucMGP concentrations [36]. Dp-ucMGP corre-
lated significantly with rs2098435, rs4236, and
rs2430692, major allele carriers having higher dp-
ucMGP concentrations. The instrumental variable analy-
sis did not support a causal association for all-cause and
cardiovascular mortality; however, for rs2098435, the
HR for coronary events was 0.75 (0.59, 0.96). The au-
thors suggest that the inverse association might be due
to inhibition of calcified plaques by active MGP, which
is a risk factor in the coronary circulation.

Several prospective studies investigated the relation-
ships between dp-ucMGP concentrations and all-cause
mortality among cardiac patients. The studies were per-
formed in Norway and Czech Republic and indicated
that higher plasma dp-ucMGP was strongly associated
with a higher risk of all-cause mortality [28, 29, 37•].
Further, the study by Mayer et al. indicates that the
association is stronger among participants with high B-
type natriuretic peptide and dp-ucMGP concentrations
for all-cause mortality: HR 2.57 (1.60, 4.10) [26]. This
means that high-risk patients may be more prone to the
detrimental effects of vitamin K deficiency. In total,
growing evidence points out that a low circulating vita-
min K status as measured by high dp-ucMGP is related
to a higher cardiovascular risk; however, this was not
consistent in all studies.

So far, vitamin K intervention trials with hard clinical
endpoints are missing. One intervention trial studied the
effect of vitamin K vs. placebo on arterial stiffness in
healthy post-menopausal women [38]. After 3 years, the
beta stiffness index as a measure of mechanical arterial
properties decreased significantly in the menquinone-7
group compared to that of the placebo. More studies
are clearly needed to investigate whether vitamin K sup-
plementation improves cardiovascular health.
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Chronic Kidney Disease Populations

Vascular calcification is highly prevalent in CKD patients and
is a strong predictor of cardiovascular mortality [39, 40].
Vitamin K deficiency is also highly prevalent among CKD
populations [41, 42]. In experimental CKD models, vitamin
K is key to the susceptibility of vascular calcification [43]. In
rats with CKD, the administration of therapeutic doses of vi-
tamin K antagonists or the use of low vitamin K1 intake mark-
edly increased the degree of vascular calcification. Further,
treatment with high doses of vitamin K increases vitamin K
tissue concentrations, attenuates development of calcification,
and restores tissue calcium content comparable to that of non-
CKD animals [43].

In observational studies among CKD patients, circulating
vitamin K is related to cardiovascular-related outcomes as
depicted in Table 2. It should be noted that most studies are
small (n = 40–518) and are conducted among patients that are
often restricted in potassium-rich foods that are good sources
of vitamin K. PIVKA-II is a good marker for vitamin K defi-
ciency in CKD populations, since it is not affected by kidney
function; however, studies are very scarce [46].

In cross-sectional studies, higher uncarboxylated MGP
[44] and dp-ucMGP [45, 47] were associated with higher cal-
cification scores and prevalent calcification in CKD patients;
however, another cross-sectional study could not confirm this

[46]. Longitudinal studies from France, Serbia, and the
Netherlands studied relationships between plasma dp-
ucMGP and mortality risk [48, 49, 50••] among different
CKD populations. The study by Schurgers et al. did not ob-
serve a significant relationship between dp-ucMGP and all-
cause mortality [48], while the study by Schlieper et al. ob-
served a positive relationship with all-cause mortality: HR
2.16 (1.1, 4.3), which was more pronounced for cardiovascu-
lar mortality: HR 2.74 (1.2, 6.2) [49]. Among kidney trans-
plant recipients, Keizer et al. observed a strong association
between higher dp-ucMGP concentrations and a higher risk
of all-cause mortality over 9.8 years of follow-up [50••].
Taken together, in most CKD populations, higher dp-
ucMGP concentrations are associated with vascular calcifica-
tion and all-cause mortality, although this was not consistent
in all studies. Future studies would benefit from using long-
term CVD outcomes in populations with different stages of
kidney disease.

Interaction with Vitamin D

Vitamin D is a fat-soluble vitamin that can be acquired by
ingesting foods such as fatty fish, dairy products, and eggs,
but is mainly synthesized by the human skin when exposed to
sunlight. Vitamin D is metabolized by the kidney for full

Table 2 Summary of observational studies of circulating vitamin K status and cardiovascular-related outcomes in chronic kidney disease populations

Author, year Country Study design Participants Vitamin K
status exposure

Outcome Results for highest vs. lowest
quantile

Cross-sectional CKD studies

Cranenburg, 2009
[44]

Netherlands Cross-sectional N = 40 hemodialysis patients Plasma ucMGP
(pmol/L)

CAC scores β = 0.004, P = 0.02

Delanaye, 2014
[45]

Belgium Cross-sectional N = 160 hemodialysis
patients, age 74 years, 56%
female

Plasma
dp-ucMGP
(pmol/L)

Calcification
score

β = 0.19 P = 0.021

Meuwese, 2015
[46]

Sweden Cross-sectional N = 97 end-stage renal disease
patients, 65% dialysis, age
45.1 years, 63% female

Dp-ucMGP
(pmol/L),
PIVKA-II
(mAU/ml)

Coronary
calcification
score, arterial
stiffness

Not associated with
calcification, aortic
augmentation pressure β
2.2 (−1, 5.4) NS

Thamratnopkoon,
2016 [47]

Thailand Cross-sectional N = 83 CKD 3–5 patients, age
64.8 years, 44% female

Plasma
dp-ucMGP
(pmol/L)

Abdominal
aorta
calcification

OR 1.002 (1.001, 1.004)

Longitudinal CKD studies

Schurgers, 2010
[48]

France Longitudinal
2.2 years
follow-up

N = 107 CKD patients stage
2–5, age 67 years, 40%
female

Plasma
dp-ucMGP
(pmol/L)

All-cause
mortality

HR 1.57 (0.67, 3.67)

Schlieper, 2011
[49]

Serbia Longitudinal
3 years
follow-up

N = 188 hemodialysis patients Plasma
dp-ucMGP
(pmol/L)

All-cause
mortality and
CVD
mortality

HR 2.16 (1.1, 4.3) all-cause
mortality, 2.74 (1.2, 6.2)
CVD mortality

Keyzer, 2015
[50••]

Netherlands Longitudinal,
9.8 years
follow-up

N = 518 kidney transplant
recipients

Plasma
dp-ucMGP
(pmol/L)

All-cause
mortality

HR 2.00 (1.20, 3.35), Q4 vs.
Q1

Dp-ucMGP dephosphorylated uncarboxylated matrix gla protein, CKD chronic kidney disease, NS non-significant, OR odds ratio, HR hazard ratio
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biological activity into its most active form 1,25-
dihydroxyvitamin D also known as calcitriol. The role of vi-
tamin K in cardiovascular health has mainly been studied in
isolation; however, new insights suggest a synergistic effect of
vitamin K combined with vitamin D [51–56]. These findings
cannot be explained by our current understanding of the bio-
chemical role of vitamin K, but suggest that vitamin D may
influence MGP concentrations.

Some animal studies indicate that calcitriol has direct ef-
fects on the γ-carboxylase system by stimulating vitamin K-
dependent proteins [51–53], which means that the amount of
vitamin K-dependent proteins available for carboxylation is
vitamin D dependent. This may lead to higher circulating
levels of under-carboxylated MGP and calcium deposition in
the vasculature, which could further increase the risk of vas-
cular calcification and CVD. In vitro studies also support the
concept of a synergistic effect of vitamin K and vitamin D.
These studies found that the matrix gla protein gene promoter
contains a vitamin D response element, capable of a two- to
threefold enhanced matrix gla protein expression after vitamin
D binding [54–56]. The effect of vitamin D combined with
vitamin K on dp-ucMGP is therefore expected to be larger
than that of solely vitamin K; however, this should be further
explored.

Clinical Trials with Combined Vitamin D and K
Supplementation

So far, two human intervention studies in healthy populations
have investigated the combined effect of vitamins D and K on
vascular function and calcification [57, 58]. In post-
menopausal women after 3 years of supplementation
(1000 μg/day vitamin K1 + 320 IU vitamin D), the vitamin
D + K group maintained vessel wall characteristics of the
carotid artery, whereas the control group and the vitamin D-
only group significantly worsened over 3 years of follow-up
[57]. However, vitamin K status was not measured as a marker
of compliance to investigate what occurs following supple-
mentation. Further, in a 3-year, double-blind, randomized con-
trolled trial in older men and women free of clinical CVD,
daily supplemental vitamin K in amounts achievable by high
dietary intake of green, leafy vegetables (500 μg/day) com-
bined with 600 mg calcium carbonate and 10 μg (400 IU)
vitamin D did not result in lower CAC progression compared
to the calcium + vitamin D group. In a subgroup analysis of
participants who were ≥85% adherent to supplementation,
there was less CAC progression in the vitamin K + calcium
and vitamin D group than in the calcium and vitamin D group
alone [58]. These data are hypothesis generating, and further
studies are warranted to clarify the mechanism.

Two trials studied the effect of vitamin D vs. vitamin D + K
in non-dialyzed CKD patients on vascular calcification and

cardiovascular risk factors for 9 months [59, 60]. In 42 CKD
patients, the increase in common carotid intima-media thick-
ness (CCA-IMT) was significantly lower in the K (90 μg
menaquinone-7) + D (10 μg vitamin D) compared with the
D-only group after 9 months [59]. Another small trial (n = 38)
from the same research group did not show differences be-
tween the D vs. D + K group on cardiovascular risk markers
[60]. These few studies show some potential for the combined
effect of vitamin D + K vs. D alone on cardiovascular-related
outcomes. It should be noted that very few clinical studies
have been conducted and vitamin D and K are combined with
different micronutrients making it difficult to solely pinpoint
the effect to vitamin D + K.

Recommendation for Future Research

& Study the effect of different vitamin K forms in relation to
cardiovascular-related outcomes

& Define the clinical cutoff value for various vitamin K sta-
tus markers and define vitamin K deficiency

& Deepen the knowledge on the interaction between vita-
mins D and K and cardiovascular-related outcomes

Conclusions

Overall, observational studies indicate that vitamin K has a
potential role in cardiovascular health particularly in high-
risk and chronic kidney disease populations. Vitamin K inter-
vention trials with subclinical cardiovascular endpoints are
scarce. Most clinical studies investigated the combination of
vitamin D + K supplementation, which might have synergistic
effects compared to vitamin K supplementation. Vitamin D
may preserve vitamin K-dependent protein activity and can
thereby contribute to vascular health. Assessing vitamin K
status using multiple biomarkers in prospective studies and
well-designed randomized trials would provide important in-
sight whether vitamin K is causally related to vascular calci-
fication and CVD.
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