Skip to main content
Log in

Administration of coenzyme Q10 to a diabetic rat model: changes in biochemical, antioxidant, and histopathological indicators

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus is a metabolic disorder caused by impaired glucose metabolism. Coenzyme Q10 is an endogenous vitamin with significant antioxidant properties.

Aims and objective

The aim of our study is to investigate the protective effect of coenzyme Q10 against streptozotocin-induced diabetic rats.

Materials and methods

Five groups of rats were used as follows: normal control (given normal saline), diabetic control (STZ 50 mg/kg b.w., i.p.), coenzyme Q10-treated diabetic rats (10 mg/kg b.w.), glibenclamide-treated diabetic rats (0.6 mg/kg b.w.) as standard group, and drug alone-treated group (coenzyme Q10 10 mg/kg b.w.). The rats were sacrificed after the study duration of 30 days. Biochemical and antioxidant parameters and histopathological evaluation were carried out in experimental rats.

Results and discussion

The diabetic control group showed significant alterations in biochemical and histological parameters. Coenzyme Q10 was able to bring back the altered parameters to normal levels which were similar to that of the glibenclamide-treated group.

Conclusion

Coenzyme Q10 could, therefore, be used as an adjunct in the management of diabetes.

Antidiabetic activity of conenzyme Q10

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong L, Qin W, Shuzhen G, Juncheng H, Hanju S, Xiaoxiang Z, et al. The protective effect of MT-α-glucan against streptozotocin (STZ)-induced NIT-1 pancreatic β-cell damage. Carbohydr Polym. 2013;92:1211–7.

    Article  Google Scholar 

  2. Staels W, Heremans Y, Heimberg H. Reprogramming of human exocrine pancreas cells to beta cells. Best Pract Res Clin Endocrinol Metab. 2015;29:849–57.

    Article  Google Scholar 

  3. Elsherbiny NM, Al-Gayyar MMH. The role of IL-18 in type 1 diabetic nephropathy: the problem and future treatment. Cytokine. 2016;81:15–22.

    Article  CAS  Google Scholar 

  4. Cheng Y, Zhang J, Guo W, Li F, Sun W, Chen J, et al. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radic Biol Med. 2016;93:94–109.

    Article  CAS  Google Scholar 

  5. Wild SH, Morling JR, McAllister DA, et al. Type 2 diabetes and risk of hospital admission or death for chronic liver diseases. J Hepatol. 2016;64:1358–64.

  6. Bagchi KK, Udo GJ, Kirs PJ, Choden K. Internet use and human values: analyses of developing and developed countries. Comput Hum Behav. 2015;50:76–90.

    Article  Google Scholar 

  7. Pazos-Couselo M, García-López JM, González-Rodríguez M, Gude F, Mayán-Santos JM, Rodríguez-Segade S, et al. High incidence of hypoglycemia in stable insulin-treated type 2 diabetes mellitus: continuous glucose monitoring vs. self-monitored blood glucose. Observational prospective study. Can J Diabetes. 2015;39:428–33.

    Article  Google Scholar 

  8. Ghonemy TA, Farag SE, Soliman SA, Amin EM, Zidan AA. Vascular access complications and risk factors in hemodialysis patients: a single center study. Alex J Med. 2016;52:67–71.

    Article  Google Scholar 

  9. Adly AAM, Ismail EA, Tawfik LM, Ebeid FSE, Hassan AAS. Endothelial monocyte activating polypeptide II in children and adolescents with type 1 diabetes mellitus: relation to micro-vascular complications. Cytokine. 2015;76:156–62.

    Article  CAS  Google Scholar 

  10. Mumaw JL, Schmiedt CW, Breidling S, Sigmund A, Norton NA, Thoreson M, et al. Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils. Res Vet Sci. 2015;103:60–9.

    Article  CAS  Google Scholar 

  11. Espinosa A, Henríquez-Olguín C, Jaimovich E. Reactive oxygen species and calcium signals in skeletal muscle: a crosstalk involved in both normal signaling and disease. Cell Calcium. 2016;60:172–9.

  12. Milligan S. Combination therapy for the improvement of long-term macrovascular and microvascular outcomes in type 2 diabetes: rationale and evidence for early initiation. J Diabetes Complicat. 2016:30:1177–85.

  13. Jamison DT, Summers LH, Alleyne G, Arrow KJ, Berkley S, Binagwaho A, Bustreo F, Evans D, Feachem RG, Frenk J, Ghosh G, Goldie SJ, Guo Y, Gupta S, Horton R, Kruk ME, Mahmoud A, Mohohlo LK, Ncube M, Pablos-Mendez A, Reddy KS, Saxenian H, Soucat A, Ulltveit-Moe KH, Yamey G. Global health 2035: a world converging within a generation. Lancet. 2013;382:1898–955.

  14. Mustafa HN, Hegazy GA, Awdan SAE, AbdelBaset M. Protective role of CoQ10 or L-carnitine on the integrity of the myocardium in doxorubicin induced toxicity. Tissue Cell. 2017;49:410–26.

  15. Prosek M, Butinar J, Lukanc B, Fir MM, Milivojevic L, Krizman M, Smidovnik A. Bioavailability of water-soluble CoQ10 in beagle dogs. J Pharm Biomed Anal. 2008;47:918–22.

  16. Erejuwa OO, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salleh MSM, Gurtu S. Glibenclamide or metformin combined with honey improves glycemic control in streptozotocin-induced diabetic rats. Int J Biol Sci. 2011;7:244–52.

    Article  CAS  Google Scholar 

  17. Maheshwari RA, Balaraman R, Sen AK, Seth AK. Effect of coenzyme Q10 alone and its combination with metformin on streptozotocin-nicotinamide-induced diabetic nephropathy in rats. Indian J Pharmacol. 2014;46:627–32.

    Article  CAS  Google Scholar 

  18. Classics Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  CAS  Google Scholar 

  20. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem FEBS. 1974;47:469–74.

    Article  CAS  Google Scholar 

  21. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.

    Article  CAS  Google Scholar 

  22. Lee J-J, Yang I-H, Kuo H-K, Chung MS, Chen YJ, Chen CH, et al. Serum uric acid concentration is associated with worsening in severity of diabetic retinopathy among type 2 diabetic patients in Taiwan—a 3-year prospective study. Diabetes Res Clin Pract. 2014;106:366–72.

    Article  CAS  Google Scholar 

  23. Lv M, Chen Z, Hu G, Li Q. Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov Today. 2015;20:332–46.

    Article  CAS  Google Scholar 

  24. Hjellestad ID, Søfteland E, Nilsen RM, Husebye ES, Jonung T. Abdominal aortic aneurysms – glycaemic status and mortality. J Diabetes Complicat. 2016;30:438–43.

    Article  Google Scholar 

  25. Srinivasan BT, Davies M. Glycaemic management of type 2 diabetes. Medicine (Baltimore). 2014;42:711–7.

    Article  Google Scholar 

  26. Russell SJ, Hillard MA, Balliro C, Magyar KL, Selagamsetty R, Sinha M, et al. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016;4:233–43.

    Article  Google Scholar 

  27. Pierre W, Gildas AJH, Ulrich MC, Modeste W-N, Benoît NT, Albert K. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complement Altern Med. 2012;12:264.

  28. Eleazu CO, Eleazu KC, Chukwuma SC, Okoronkwo J, Emelike CU. Effect of livingstonepotato (Plectranthus esculenthus N.E.Br) on hyperglycemia, antioxidant activity and lipid metabolism of streptozotocin induced diabetic rats. Toxicol Rep. 2014;1:674–81.

    Article  CAS  Google Scholar 

  29. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2016;1862:576–91.

    Article  CAS  Google Scholar 

  30. Abdella Baragob AE, AlMalki WH, Farag Alla HEH, Ibrahim A, Muhammed SK, Abdella S. Investigate evaluation of oxidative stress and lipid profile in STZ-induced rats treated with antioxidant vitamin. Pharmacol Pharm. 2014;5:272–9.

    Article  Google Scholar 

  31. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr. 2005;135:2299–304.

    Article  CAS  Google Scholar 

  32. Ozbek E. Induction of oxidative stress in kidney. Int J Nephrol. 2012;2012:1–9.

    Article  Google Scholar 

  33. Mohammadi J, Naik PR. The histopathologic effects of Morus alba leaf extract on the pancreas of diabetic rats. Turk J Biol. 2012;36:211–6.

    Google Scholar 

  34. Sharma BR, Kim MS, Rhyu DY. Nelumbo Nucifera leaf extract attenuated pancreatic ß-cells toxicity induced by interleukin-1ß and interferon-γ, and increased insulin secrection of pancreatic ß-cells in streptozotocin-induced diabetic rats. J Tradit Chin Med. 2016;36:71–7.

    Article  Google Scholar 

  35. Dutra RC, Campos MM, Santos ARS, Calixto JB. Medicinal plants in Brazil: pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res. 2016;112:4–29.

  36. Oguanobi NI, Chijioke CP, Ghasi S. Anti-diabetic effect of crude leaf extracts of Ocimum gratissimum in neonatal streptozotocin-induced type-2 model diabetic rats. Int J Pharm Pharm Sci. 2012;4:77–83.

    Google Scholar 

  37. Saini S, Sharma S. Antidiabetic effect of Helianthus annuus L., seeds ethanolic extract in streptozotocin nicotinamide induced type 2 diabetes mellitus. Int J Pharm Pharm Sci. 2013;5:382–7.

    Google Scholar 

  38. Wang Y-W, He S-J, Feng X, Cheng J, Luo YT, Tian L, et al. Metformin: a review of its potential indications. Drug Des Devel Ther. 2017;11:2421–9.

    Article  CAS  Google Scholar 

  39. Siavash M, Tabbakhian M, Sabzghabaee AM, Razavi N. Severity of gastrointestinal side effects of metformin tablet compared to metformin capsule in type 2 diabetes mellitus patients. J Res Pharm Pract. 2017;6:73–6.

    Article  CAS  Google Scholar 

  40. Nasri H, Rafieian-Kopaei M. Metformin: current knowledge. J Res Med Sci Off J Isfahan Univ Med Sci. 2014;19:658–64.

    Google Scholar 

  41. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44.

  42. Israili ZH. Advances in the treatment of type 2 diabetes mellitus. Am J Ther. 2011;18:117–52.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to VIT University for providing the necessary facilities to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Evan Prince.

Ethics declarations

The experiment was carried out under the guidelines of CPCSEA, and the ethical clearance number is VIT/IAEC/11th/October 10th/No. 26.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, J.S., Shalini M, Giridharan R et al. Administration of coenzyme Q10 to a diabetic rat model: changes in biochemical, antioxidant, and histopathological indicators. Int J Diabetes Dev Ctries 40, 143–152 (2020). https://doi.org/10.1007/s13410-019-00752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-019-00752-z

Keywords

Navigation