Skip to main content
Log in

Design Considerations for Enhanced Coupling Coefficient and Misalignment tolerance Using Asymmetrical Circular Coils for WPT System

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In case of misalignment, variation in the coupling coefficient between transmitting and receiving coils employed for wireless power transfer is obvious. During the design process of coil system, assurance of least affected coupling coefficient during misalignment is an important issue and can be addressed through appropriate coil structure. Asymmetrical circular spiral coils with unequal outer diameter and fixed self-inductance exhibits better tolerance to misalignment with the limitation of smaller averaged coupling coefficient. The present paper considers the analytical model of asymmetrical circular spiral coils to investigate the dependency of the coil system dimensions on mutual inductance and coupling coefficient with equal outer diameter. Based on the observations from analytical expressions, simulations are performed through finite element method approach using ANSYS MAXWELL. Outcome of the investigations has been used for the design consideration of coil system, which is less sensitive to the misalignment. Based on the proposed design considerations, experimental setup is developed and tested for the case study of E-Rickshaw with 400 mm outer diameter and 120-mm air gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Madawala, U.K.; Thrimawithana, D.J.: A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans. Ind. Electron. 58(10), 4789–4796 (2011)

    Article  Google Scholar 

  2. Villa, J.L.; Sallan, J.; Sanz Osorio, J.F.; Llombart, A.: High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans. Ind. Electron. 59(2), 945–951 (2012)

    Article  Google Scholar 

  3. Khaligh, A.; Dusmez, S.: Comprehensive topological analysis of conductive and inductive charging solutions for plug-in EVs. IEEE Trans. Veh. Technol. 61(8), 3475–3489 (2012)

    Article  Google Scholar 

  4. Covic, G.A.; Boys, J.T.: Inductive power transfer. Proc. IEEE 101(6), 1276–1289 (2013)

    Article  Google Scholar 

  5. Miller, J.M.; Onar, O.C.; Chinthavali, M.: Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Topics Power Electron. 3(1), 147–162 (2015)

    Article  Google Scholar 

  6. Vilathgamuwa, D.; Sampath, J.: Wireless power transfer (WPT) for electric vehicles (EVs) present and future trends. In: Plug in Electric Vehicles in Smart Grids, chap 2. Springer, Berlin, pp. 3360 (2015)

  7. Samanta, S.; Rathore, A.K.: A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: analysis, design, and experimental results. IEEE Trans. Transport. Electrif. 1(4), 357–368 (2015)

    Article  Google Scholar 

  8. Buja, G.; Bertoluzzo, M.; Mude, K.N.: Design and experimentation of WPT charger for electric city car. IEEE Trans. Ind. Electon. 62(12), 7436–7447 (2015)

    Article  Google Scholar 

  9. Kim, H.; et al.: Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage. IEEE Trans. Microw. Theory Tech. 64(2), 383–400 (2016)

    Google Scholar 

  10. Zhang, W.; Mi, C.C.: Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. 65(6), 4768–4778 (2016)

    Article  Google Scholar 

  11. Li, W.; Zhao, H.; Deng, J.; Li, S.; Mi, C.C.: Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers. IEEE Trans. Veh. Technol. 65(6), 4429–4439 (2016)

    Article  Google Scholar 

  12. Vaka, R.; Keshri, R.K.: Review on contactless power transfer for electric vehicle charging. Energies 10(5), 636 (2017)

    Article  Google Scholar 

  13. Ravikiran, V.; Keshri, R.K.; Santos, M.M.: Inductive characteristics of asymmetrical coils for wireless power transfer. In: Eighteenth annual IEEE international conference on industrial technology, ICIT, Toronto, ON, pp. 538–542 (2017)

  14. Aditya, K.; Williamson, S.S.: A review of optimal conditions for achieving maximum power output and maximum efficiency for a seriesseries resonant inductive link. IEEE Trans. Transport. Electrif. 3(2), 303–311 (2017)

    Article  Google Scholar 

  15. Samanta, S.; Rathore, A.K.; Thrimawithana, D.J.: Bidirectional Current-Fed Half-Bridge (C) (LC)(LC ) configuration for inductive wireless power transfer system. IEEE Trans. Ind. Appl. 53(4), 4053–4062 (2017)

    Article  Google Scholar 

  16. Wang, Y.; Yao, Y.; Liu, X.; Xu, D.: S/CLC compensation topology analysis and circular coil design for wireless power transfer. IEEE Trans. Transport. Electrif. 3(2), 496–507 (2017)

    Article  Google Scholar 

  17. Tejeda, A.; Carretero, C.; Boys, J.T.; Covic, G.A.: Ferrite-less circular pad with controlled flux cancelation for EV wireless charging. IEEE Trans. Power Electron. 32(11), 8349–8359 (2017)

    Article  Google Scholar 

  18. Zaheer, A.; Hao, H.; Covic, G.A.; Kacprzak, D.: Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging. IEEE Trans. Power Electron. 30(4), 1937–1955 (2015)

    Article  Google Scholar 

  19. Kim, S.; Covic, G.A.; Boys, J.T.: Tripolar pad for inductive power transfer systems for EV charging. IEEE Trans. Power Electron. 32(7), 5045–5057 (2017)

    Article  Google Scholar 

  20. Zhao, F.; Wei, G.; Zhu, C.; Song, K.: Design and optimizations of asymmetric solenoid type magnetic coupler in wireless charging system for electric vehicles. In: IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, pp. 157–162 (2017)

  21. Fujita, T.; Yasuda, T.; Akagi, H.: A moving wireless power transfer system applicable to a stationary system. In: IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, pp. 4943–4950 (2015)

  22. Boys, J.T.; Covic, G.A.: Inductive power transfer systems (IPT) fact sheet: No. 1 basic concepts. In: Qualcomm (2012)

  23. Budhia, M.; Boys, J.T.; Covic, G.A.; Huang, C.Y.: Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans. Ind. Electron. 60(1), 318–328 (2013)

    Article  Google Scholar 

  24. Liu, N.; Habetler, T.G.: Design of a universal inductive charger for multiple electric vehicle models. IEEE Trans. Power Electron. 30(11), 6378–6390 (2015)

    Article  Google Scholar 

  25. Ni, W.; et al.: Radio alignment for inductive charging of electric vehicles. IEEE Trans. Ind. Inf. 11(2), 427–440 (2015)

    Article  Google Scholar 

  26. Budhia, M.; Covic, G.A.; Boys, J.T.: Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26(11), 3096–3108 (2011)

    Article  Google Scholar 

  27. Covic, G.A.; Boys, J.T.: Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Topics Power Electr. 1(1), 28–41 (2013)

    Article  Google Scholar 

  28. Wu, H.H.; Gilchrist, A.; Sealy, K.D.; Bronson, D.: A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Trans. Ind. Inf. 8(3), 585–595 (2012)

    Article  Google Scholar 

  29. Bosshard, R.; Kolar, J.W.; Wunsch, B.: Accurate finite-element modeling and experimental verification of inductive power transfer coil design. In: IEEE Applied Power Electronics Conference and Exposition, APEC, Fort Worth, TX, pp. 1648–1653 (2014)

  30. Diekhans, T.; De Doncker, R.W.: A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load. IEEE Trans. Power Electron. 30(11), 6320–6328 (2015)

    Article  Google Scholar 

  31. Esteban, B.; Stojakovic, N.; Sid-Ahmed, M.; Kar, N.C.: Development of mutual inductance formula for misaligned planar circular spiral coils. In: IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, pp. 1306–1313 (2015)

  32. Zheng, C.; Ma, H.; Lai, J.S.; Zhang, L.: Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system. IEEE Trans. Power Electron. 30(11), 6108–6119 (2015)

    Article  Google Scholar 

  33. Conway, J.T.: Inductance calculations for circular coils of rectangular cross section and parallel axes using bessel and struve functions. IEEE Trans. Magn. 46(1), 75–81 (2010)

    Article  Google Scholar 

  34. Babic, S.I.; Akyel, C.: Calculating mutual inductance between circular coils with inclined axes in air. IEEE Trans. Magn. 44(7), 1743–1750 (2008)

    Article  Google Scholar 

  35. Fotopoulou, K.; Flynn, B.W.: Wireless power transfer in loosely coupled links: coil misalignment model. IEEE Trans. Magn. 47(2), 416–430 (2011)

    Article  Google Scholar 

  36. Wheeler, H.A.: Simple inductance formulas for radio coils. Proc. Inst. Radio Eng. 16(10), 13981400 (1928)

    Google Scholar 

  37. Wheeler, H.A.: Inductance formulas for circular and square coils. Proc. IEEE 70(12), 1449–1450 (1982)

    Article  Google Scholar 

  38. SAE TIR J2954 Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles (2016)

  39. Chopra, S.; Bauer, P.: Analysis and design considerations for a contactless power transfer system. In: IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, pp. 1–6 (2011)

  40. Niu, W.Q.; Chu, J.X.; Gu, W.; Shen, A.D.: Exact analysis of frequency splitting phenomena of contactless power transfer systems. IEEE Trans. Circuits Syst. I Regul. Pap. 60(6), 1670–1677 (2013)

    Article  MathSciNet  Google Scholar 

  41. Mude, K.N.; Bertoluzzo, M.; Buja, G.; Pinto, R.: Design and experimentation of two-coil coupling for electric city-car WPT charging. J. Electromagn. Waves Appl. 30(1), 70–78 (2016)

    Article  Google Scholar 

  42. Palandoken, M.; Aksoy, M.; Tumay, M.: A fuzzy-controlled single-phase active power filter operating with fixed switching frequency for reactive power and current harmonics compensation. Electr. Eng. 86(1), 9–16 (2003)

    Article  Google Scholar 

  43. Palandoken, M.; Aksoy, M.; Tumay, M.: Application of fuzzy logic controller to active power filters. Electr. Eng. 86(4), 191–198 (2004)

    Article  Google Scholar 

  44. Palandoken, M.; Tumay, M.; Aksoy, M.: A novel approach to active power filter control. Electr. Eng. 87(1), 33–39 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Department of Science and Technology SERB and Ministry of Electronics and Information Technology, Government of India for financial support under projects DST/ECR/2016/002029 and MLA/MUM/GA/10(37)B respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Keshri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaka, R., Keshri, R.K. Design Considerations for Enhanced Coupling Coefficient and Misalignment tolerance Using Asymmetrical Circular Coils for WPT System. Arab J Sci Eng 44, 1949–1959 (2019). https://doi.org/10.1007/s13369-018-3219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3219-x

Keywords

Navigation