Skip to main content
Log in

Effects of pioglitazone on the pharmacokinetics of nifedipine and its main metabolite, dehydronifedipine, in rats

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the possible effects of pioglitazone on the pharmacokinetics of nifedipine and its main metabolite, dehydronifedipine, in rats. The effects of pioglitazone on P-glycoprotein (P-gp) and cytochrome P450 (CYP)3A4 activities were also evaluated. Nifedipine was mainly metabolized by CYP3A4. The pharmacokinetic parameters of nifedipine and dehydronifedipine were determined after oral and intravenous administrations of nifedipine to rats in the presence and absence of pioglitazone (0.3 and 1.0 mg/kg). Pioglitazone inhibited the CYP3A4 enzyme activity in a concentration-dependent manner. Inhibitory concentration (IC50) was 12.1 μM. In addition, pioglitazone significantly increased the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. The areas under the plasma concentration–time curve (AUC0–∞) and the peak plasma concentration (C max) of nifedipine were significantly increased by 52.1 and 59.1 %, respectively, in the presence of pioglitazone (1.0 mg/kg) compared with control group. The total body clearance (CL/F) of nifedipine was significantly (1.0 mg/kg) decreased by pioglitazone (35.8 %). Consequently, the absolute bioavailability (AB) of nifedipine in the presence of pioglitazone (1.0 mg/kg) was significantly higher (25.3 %) than that of the control. The metabolite–parent AUC ratio (MR) in the presence of pioglitazone (1.0 mg/kg) significantly decreased (23.9 %) compared to that of the control group. The increased bioavailability of nifedipine in the presence of pioglitazone may be due to an inhibition of the P-gp-mediated efflux transporter in the small intestine and to the inhibition of the metabolism by inhibition of CYP3A4 in the small intestine and/or the liver, and/or to a reduction of CL/F of nifedipine by pioglitazone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benet LZ, Cummins CL, Wu CY (2003) Transporter–enzyme interactions: implications for predicting drug–drug interactions from in vitro data. Curr Drug Metab 4:393–398

    Article  CAS  PubMed  Google Scholar 

  • Blackshear JL, Orlandi C, Williams GH, Hollenberg NK (1986) The renal response to diltiazem and nifedipine: comparison with nitroprusside. J Cardiovasc Pharmacol 8:37–43

    Article  CAS  PubMed  Google Scholar 

  • Bogaards JJ, Bertrand M, Jackson P, Oudshoorn MJ, Weaver RJ, van Bladeren PJ, Walther B (2000) Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica 30:1131–1152

    Article  CAS  PubMed  Google Scholar 

  • Chilcott J, Tappenden P, Jones ML, Wight JP (2001) A systematic review of the clinical effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clin Ther 23:1792–1823

    Article  CAS  PubMed  Google Scholar 

  • Choi DH, Li C, Choi JS (2009) Effects of simvastatin on the pharmacokinetics of verapamil and its main metabolite, norverapamil, in rats. Eur J Drug Metab Pharmacokinet 34:163–168

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Choi JS, Choi DH (2014) Effects of licocharcone A on the bioavailability and pharmacokinetics of nifedipine in rats: possible role of intestinal CYP3A4 and P-gp inhibition by licochalcone A. Biopharm Drug Dispos 35:382–390

    Article  CAS  PubMed  Google Scholar 

  • Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at bloodbrain barrier sites. Proc Natl Acad Sci 86:695–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespi CL, Miller VP, Penman BW (1997) Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal Biochem 248:188–190

    Article  CAS  PubMed  Google Scholar 

  • Cummins CL, Jacobsen W, Benet LZ (2002) Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 300:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Doherty MM, Charman WN (2002) The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet 41:235–253

    Article  CAS  PubMed  Google Scholar 

  • Dorababu M, Nishimura A, Prabha T, Naruhashi K, Sugioka N, Takada K, Shibata N (2009) Effect of cyclosporine on drug transport and pharmacokinetics of nifedipine. Biomed Pharmacother 63:697–702

    Article  CAS  PubMed  Google Scholar 

  • Dresser GK, Spence JD, Bailey DG (2000) Pharmacokinetic–pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 38:41–57

    Article  CAS  PubMed  Google Scholar 

  • Funaki T, Soons PA, Guengerich FP, Breimer DD (1989) In vivo oxidative cleavage of a pyridine-carboxylic acid ester metabolite of nifedipine. Biochem Pharmacol 38:4213–4216

    Article  CAS  PubMed  Google Scholar 

  • Grundy JS, Kherani R, Foster RT (1994) Sensitive high-performance liquid chromatographic assay for nifedipine in human plasma utilizing ultraviolet detection. J Chromatogr B Biomed Appl 654:146–151

    Article  CAS  PubMed  Google Scholar 

  • Hamann SR, Piascik MT, McAllister RG Jr (1986) Aspects of the clinical pharmacology of nifedipine, a dihydropyridine calcium-entry antagonist. Biopharm Drug Dispos 7:1–10

    Article  CAS  PubMed  Google Scholar 

  • Han CY, Cho KB, Choi HS, Han HK, Kang KW (2008) Role of FoxO1 activation in MDR1 expression in adriamycin-resistant breast cancer cells. Carcinogenesis 29:1837–1844

    Article  CAS  PubMed  Google Scholar 

  • He F, Bi HC, Xie ZY, Zuo Z, Li JK, Li X, Zhao LZ, Chen X, Huang M (2007) Rapid determination of six metabolites from multiple cytochrome P450 probe substrates in human liver microsome by liquid chromatography/mass spectrometry: application to high-throughput inhibition screening of terpenoids. Rapid Commun Mass Spectrom 21:635–643

    Article  CAS  PubMed  Google Scholar 

  • Hong SP, Yang JS, Han JY, Ha SI, Chung JW, Koh YY, Chang KS, Choi DH (2011) Effects of lovastatin on the pharmacokinetics of diltiazem and its metabolite, desacetyldiltiazem, in rats: possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by lovastatin. J Pharm Pharmacol 63:129–135

    Article  CAS  PubMed  Google Scholar 

  • Kajosaari LI, Jaakkola T, Neuvonen PJ, Backman JT (2006) Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide. Eur J Clin Pharmacol 62:217–223

    Article  CAS  PubMed  Google Scholar 

  • Kelly PA, Wang H, Napoli KL, Kahan BD, Strobel HW (1999) Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur J Drug Metab Pharmacokinet 24:321–328

    Article  CAS  PubMed  Google Scholar 

  • Kuroha M, Kayaba H, Kishimoto S, Khalil WF, Shimoda M, Kokue E (2002) Effect of oral ketoconazole on first-pass effect of nifedipine after oral administration in dogs. J Pharm Sci 91:868–873

    Article  CAS  PubMed  Google Scholar 

  • Leveque D, Jehl F (1995) P-glycoprotein and pharmacokinetics. Anticancer Res 15:231–336

    Google Scholar 

  • Lewis DFV (1996) Cytochrome P450. Substrate specificity and metabolism. In: Cytochromes P450. Structure, function, and mechanism. Taylor & Francis, Bristol, p 123

  • Lin JH, Chiba M, Baillie TA (1999) Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev 51:135–158

    CAS  PubMed  Google Scholar 

  • Nishimura A, Fujimura M, Hasengawa F, Shibata N (2010) pharmacokinetic interaction between nifedipine and Coenzyme Q10. J Health Sci 56:310–320

    Article  CAS  Google Scholar 

  • Relling MV (1996) Are the major effects of P-glycoprotein modulators due to altered pharmacokinetics of anticancer drugs? Ther Drug Monit 18:350–356

    Article  CAS  PubMed  Google Scholar 

  • Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29:413–580

    Article  CAS  PubMed  Google Scholar 

  • Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW (2003) Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos 31:439–446

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    CAS  PubMed  Google Scholar 

  • Sorkin EM, Clissold SP, Brogden RN (1985) Nifedipine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy, in ischaemic heart disease, hypertension and related cardiovascular disorders. Drugs 30:182–274

    Article  CAS  PubMed  Google Scholar 

  • Sugawara I, Kataoka I, Morishita Y, Hamada H, Tsuruo T, Itoyama S, Mori S (1988) Tissue distribution of P-glycoprotein encoded by a multidrug resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res 48:1926–1929

    CAS  PubMed  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci 84:7735–7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1989) Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 37:159–164

    Article  CAS  PubMed  Google Scholar 

  • Wacher VJ, Wu CY, Benet LZ (1995) Overlapping substrate specificites and tissues distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 13:129–134

    Article  CAS  PubMed  Google Scholar 

  • Walsky RL, Gaman EA, Obach RS (2005) Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 45:68–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zou MJ, Zhao N, Ren JG, Zhou H, Cheng G (2011) Effect of diallyl trisulfide on the pharmacokinetics of nifedipine in rats. J Food Sci 76:30–34

    Article  Google Scholar 

  • Watkins PB (1994) Noninvasive tests of CYP3A enzymes. Pharmacogenetics 4:171–184

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Choi JS, Choi DH (2011) Effects of HMG-CoA reductase inhibitors on the pharmacokinetics of losartan and its main metabolite EXP-3174 in rats: possible role of CYP3A4 and P-gp inhibition by HMG-CoA reductase inhibitors. Pharmacology 88:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JS., Choi, I. & Choi, DH. Effects of pioglitazone on the pharmacokinetics of nifedipine and its main metabolite, dehydronifedipine, in rats. Eur J Drug Metab Pharmacokinet 41, 231–238 (2016). https://doi.org/10.1007/s13318-014-0249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-014-0249-y

Keywords

Navigation