Skip to main content
Log in

Organic-Inorganic Hybrid Nanoflowers as Potent Materials for Biosensing and Biocatalytic Applications

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Flower-shaped organic-inorganic hybrid nanostructures, termed nanoflowers, have received considerable recent attention as they possess greatly enhanced activity, stability, durability, and even selectivity of entrapped organic biomolecules, which are much better than those from the conventional methods. They can be synthesized simply via co-incubation of organic and inorganic components in aqueous buffer at room temperature and yield hierarchical nanostructures with large surface-to-volume ratios, allowing for low-cost production by easy scale-up, as well as the high loading capacity of biomolecules without severe mass transfer limitations. Since a pioneering study reported on hybrid nanoflowers prepared with protein and copper sulfate, many other organic and inorganic components, which endow nanoflowers with diverse functionalities, have been employed. Thanks to these features, they have been applied in a diverse range of areas, including biosensors and biocatalysis. To highlight the progress of research on organic-inorganic hybrid nanoflowers, this review discusses their synthetic methods and mechanisms, structural and biological characteristics, as well as recent representative applications. Current challenges and future directions toward the design and development of multi-functional nanoflowers for their widespread utilization in biotechnology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, R. et al. Functional protein-organic/inorganic hybrid nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5, 320–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Ge, J., Lu, D.N., Liu, Z.X. & Liu, Z. Recent advances in nanostructured biocatalysts. Biochem. Eng. J. 44, 53–59 (2009).

    Article  CAS  Google Scholar 

  3. Sassolas, A., Blum, L.J. & Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489–511 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Luckarift, H.R., Spain, J.C., Naik, R.R. & Stone, M.O. Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 22, 211–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, M.I., Shim, J., Li, T., Lee, J. & Park, H.G. Fabrication of Nanoporous Nanocomposites Entrapping Fe3O4 Magnetic Nanoparticles and Oxidases for Colorimetric Biosensing. Chem. Eur. J. 17, 10700–10707 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, J., Grate, J.W. & Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017–1026 (2006).

    Article  CAS  Google Scholar 

  7. Kim, J.B., Grate, J.W. & Wang, P. Nanobiocatalysis and its potential applications. Trends Biotechnol. 26, 639–646 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, P. Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17, 574–579 (2006).

    Article  CAS  Google Scholar 

  9. Ge, J. et al. Molecular fundamentals of enzyme nanogels. J. Phys. Chem. B 112, 14319–14324 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Heredia, K.L. et al. In situ preparation of protein-“Smart” polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 127, 16955–16960 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Ge, J., Lei, J. & Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 7, 428 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Sun, Z.Q. et al. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 133, 19314–19317 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Mohanty, A., Garg, N. & Jin, R.C. A Universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem. Int. Ed. 49, 4962–4966 (2010).

    Article  CAS  Google Scholar 

  14. Jia, W.Z., Su, L. & Lei, Y. Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosens. Bioelectron. 30, 158–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Kharisov, B.I.A. Review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2, 190–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S.W., Cheon, S.A., Kim, M.I. & Park, T.J. Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. J. Nanobiotechnol. 13, 54 (2015).

    Article  CAS  Google Scholar 

  17. Lei, Z.X. et al. Recent advances in biomolecule immobilization based on self-assembly: organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates. J. Mater. Chem. B 6, 1581–1594 (2018).

    Article  CAS  Google Scholar 

  18. Zhao, Z. et al. Structure advantage and peroxidase activity enhancement of deuterohemin-peptide-inorganic hybrid flowers. RSC Adv. 6, 104265–104272 (2016).

    Article  CAS  Google Scholar 

  19. Wu, Z.-F. et al. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Sci. Rep. 6, 22412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, K.S. et al. A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA-inorganic hybrid nanoflowers. J. Mater. Chem. B 5, 2231–2234 (2017).

    Article  CAS  Google Scholar 

  21. Wang, L.B. et al. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J. Am. Chem. Soc. 135, 1272–1275 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, B. et al. Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 291, 287–297 (2016).

    Article  CAS  Google Scholar 

  23. López-Gallego, F. & Yate, L. Selective biomineralization of Co3(PO4)2-sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chem. Commun. 51, 8753–8756 (2015).

    Article  CAS  Google Scholar 

  24. Zhang, Z. et al. Manganese (II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sens. Actuat. B: Chem. 211, 310–317 (2015).

    Article  CAS  Google Scholar 

  25. Altinkaynak, C., Tavlasoglu, S. & Ocsoy, I. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb. Technol. 93, 105–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Batule, B.S., Park, K.S., Kim, M.I. & Park, H.G. Ultrafast sonochemical synthesis of proteininorganic nanoflowers. Int. J. Nanomed. 10, 137–142 (2015).

    CAS  Google Scholar 

  27. Cui, J., Zhao, Y., Liu, R., Zhong, C. & Jia, S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 6, 27928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, H.R., Chung, M., Kim, M.I. & Ha, S.H. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Enzyme Microb. Technol. 105, 24–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, L. et al. Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem. Asian J. 8, 2358–2360 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Li, M. et al. Biomimetic copper-based inorganic-protein nanoflower assembly constructed on the nanoscale fibrous membrane with enhanced stability and durability. J. Phys. Chem. C 120, 17348–17356 (2016).

    Article  CAS  Google Scholar 

  31. Xie, W.-Y., Song, F., Wang, X.-L. & Wang, Y.-Z. Development of copper phosphate nanoflowers on soy protein toward a superhydrophobic and self-cleaning film. ACS Sustain. Chem. Eng. 5, 869–875 (2016).

    Article  CAS  Google Scholar 

  32. Wang, L.-B. et al. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performanc. J. Am. Chem. Soc. 135, 1272–1275 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Yin, Y. et al. An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J. Mater. Chem. B 3, 2295–2300 (2015).

    Article  CAS  Google Scholar 

  34. Ke, C., Fan, Y., Chen, Y., Xu, L. & Yan, Y. A new lipase-inorganic hybrid nanoflower with enhanced enzyme activity. RSC Adv. 6, 19413–19416 (2016).

    Article  CAS  Google Scholar 

  35. Ye, R. et al. Bioinspired synthesis of all‐in‐one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on‐site detection of food pathogen. Small 12, 3094–3100 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., Zhang, Y., Li, X., Yuan, Q. & Liang, H. Self-repairing metal-organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability. Chem. Commun. 53, 3216–3219 (2017).

    Article  CAS  Google Scholar 

  37. Zhang, B. et al. Papain/Zn3(PO4)2 hybrid nanoflower: preparation, characterization and its enhanced catalytic activity as an immobilized enzyme. RSC Adv. 6, 46702–46710 (2016).

    Article  CAS  Google Scholar 

  38. Zhang, B. et al. Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: preparation and application to adsorption of heavy metal ions. Appl. Surf. Sci. 366, 328–338 (2016).

    Article  CAS  Google Scholar 

  39. Zhang, Z. et al. A feasible synthesis of Mn3(PO4)2@ BSA nanoflowers and its application as the support nanomaterial for Pt catalyst. J. Power Sources 284, 170–177 (2015).

    Article  CAS  Google Scholar 

  40. Li, W. et al. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose. Biosens. Bioelectron. 99, 603–611 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, M. et al. In situ reduction of silver nanoparticles on hybrid polydopamine-copper phosphate nanoflowers with enhanced antimicrobial activity. J. Mater. Chem. B 5, 5311–5317 (2017).

    Article  CAS  Google Scholar 

  42. Wang, X. et al. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers. ACS Appl. Mater. Interfaces 6, 14522–14532 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Sun, J. et al. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale 6, 255–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Chung, M., Jang, Y.J. & Kim, M.I. Convenient colorimetric detection of cholesterol using multi-enzyme co-incorporated organic-inorganic hybrid nanoflowers. J. Nanosci. Nanotechnol. 18, 6555–6561 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Z.X. et al. Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes. Chem. Commun. 50, 12465–12468 (2014).

    Article  CAS  Google Scholar 

  46. Wei, T.X., Du, D., Zhu, M.J., Lin, Y.H. & Dai, Z.H. An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl. Mater. Interfaces 8, 6329–6335 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Y.C. et al. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens. Bioelectron. 92, 68–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Li, H. et al. Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. J. Hazard. Mater. 338, 93–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Ariza-Avidad, M., Salinas-Castillo, A. & Capitán-Vallvey, L. A 3D μPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor. Biosens. Bioelectron. 77, 51–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, Z. et al. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Appl. Mater. Interfaces 6, 10775–10782 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Altinkaynak, C. et al. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int. J. Biol. Macromol. 84, 402–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Zeinhom, M.M.A. et al. Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water. Sens. Actuators B Chem. 261, 75–82 (2018).

    Article  CAS  Google Scholar 

  53. Ye, R. et al. One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. coli O157: H7 from milk. Nanoscale 8, 18980–18986 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. He, L. et al. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosens. Bioelectron. 79, 553–560 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Peng, T. et al. Fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Microchim. Acta 185, 366 (2018).

    Article  CAS  Google Scholar 

  56. Lin, Z. et al. Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion. RSC Adv. 4, 13888–13891 (2014).

    Article  CAS  Google Scholar 

  57. Xu, Z. et al. A new l-arabinose isomerase with copper ion tolerance is suitable for creating protein-inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC Adv. 6, 30791–30794 (2016).

    Article  CAS  Google Scholar 

  58. He, X. H. et al. Self-assembled metalloporphyrins-inorganic hybrid flowers and their application to efficient epoxidation of olefins. J. Chem. Technol. Biotechnol. 92, 2594–2605 (2017).

    CAS  Google Scholar 

  59. Yan, T., Cheng, F., Wei, X., Huang, Y. & He, J. Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis. Carbohydr. Polym. 170, 271–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, Y.Y., Ran, X., Lin, Y.H., Ren, J.S. & Qu, X.G. Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem. Commun. 51, 4386–4389 (2015).

    Article  CAS  Google Scholar 

  61. Yilmaz, E., Ocsoy, I., Ozdemir, N. & Soylak, M. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples. Anal. Chim. Acta 906, 110–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Chung, M. et al. Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell. Appl. Surf. Sci. 429, 203–209 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Il Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.D., Kim, M.I. Organic-Inorganic Hybrid Nanoflowers as Potent Materials for Biosensing and Biocatalytic Applications. BioChip J 12, 268–279 (2018). https://doi.org/10.1007/s13206-018-2409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-018-2409-7

Keywords

Navigation