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Abstract
Wetlands are abundant across the African continent and provide a range of ecosystem services on different scales but are
threatened by overuse and degradation. It is essential that national governments enable and ensure the sustainable use of wetland
resources to maintain these services in the long run. As informed management decisions require reliable, up-to-date, and large
coverage spatial data, we propose a modular Earth observation-based framework for the geo-localisation and characterization of
wetlands in East Africa. In this study, we identify four major challenges in spatial data supported wetland management and
present a framework to address them.We then apply the framework comprisingWetland Delineation, SurfaceWater Occurrence,
LandUse/Land Cover classification andWetland Use Intensity for the whole of Rwanda and evaluate the ability of these layers to
meet the identified challenges. The layers’ spatial and temporal characteristics make them combinable and the information
content, of each layer alone as well as in combination, renders them useful for different wetland management contexts.

Keywords Wetland delineation .Wetland characterization . Copernicus . Rwanda . Food security . Environmental protection

Introduction

African wetland landscapes provide a range of ecosystem ser-
vices, such as water provision, food provision, and climate

regulation (Langan et al. 2018). Besides water purification,
flood attenuation, carbon storage and sequestration, and the
provision of fodder, fibre, and fuel wood, they provide unique
and highly productive landscapes. These landscapes have
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great ecological value, and are recognized as biodiversity
hotspots of global importance, often harbouring endemic flora
and fauna (Keddy et al. 2009; Junk et al. 2013). Wetlands
often have greater water availability and more fertile soils than
adjacent traditionally farmed and degraded uplands.
Therefore, their agricultural potential is considerable and can
support agricultural development in sub-Saharan Africa
(SSA) (Dixon and Wood 2003; Rebelo et al. 2009;
Rodenburg et al. 2014). Food security strategies in SSA have
targeted wetlands for further cropland expansion and agricul-
tural intensification to reach self-sufficiency. Lowland rice
agriculture in particular is strongly promoted in wetlands with
the hope to reduce dependency on food imports, boost food
security and alleviate poverty (Demont 2013). A dual strategy
of use and protection is needed to conserve ecosystem integ-
rity (van Oort et al. 2015; van Ittersum et al. 2016).
Inappropriate agricultural use is a major threat to wetlands
and, among other impacts, has already caused tremendous
losses of wetland area in Africa (Chapman et al. 2001; Junk
et al. 2013; Mitchell 2013; Darrah et al. 2019). This is partic-
ularly detrimental to livelihoods in SSA, where local popula-
tions often directly depend on wetland ecosystem services
(Nabahungu and Visser 2011; Namaalwa et al. 2013).

Due to the range of ecosystem services wetlands provide at
different scales, their use is a cross-cutting issue. They are
targeted by national policies as well as by regionally concerted
strategies like the National Rice Development Strategies
(NRDS) established through the Coalition for African Rice
Development (CARD), which aimed at doubling rice produc-
tion in SSA between 2008 and 2018 (Demont 2013). Also,
wetland landscapes are increasingly part of national to global
protection efforts. Among those, Multilateral Environmental
Agreements (MEAs) like the Convention on Biological
Diversity (CBD) with its associated Aichi targets (Petrou
et al. 2015), and the Ramsar Convention onWetlands towards
their sustainable use are making an important contribution to
wetland conservation worldwide (Finlayson et al. 2011).

There is no simple remedy to achieve sustainable wet-
land management with increased food security and envi-
ronmental protection at the same time, but there is con-
sensus that the first step towards informed policy making
and planning for wetland landscapes requires quantified
information on wetland location, state, and dynamics
through detailed inventorying, as well as the possibility
to repeat those analyses over time to track changes
(Ozesmi and Bauer 2002; Rodenburg et al. 2014;
Perennou et al. 2018). However, there are still major data
limitations affecting the informed management and plan-
ning of wetlands in Africa. Remote sensing data have the
potential to contribute to this information requirement by
providing detailed and frequent spatial information that is
consistent across administrative boundaries and can thus
support management, policy making, and policy

implementation (Merot et al. 2006; MacKay et al. 2009;
Rebelo et al. 2009; Amler et al. 2015; Leemhuis et al.
2017; Perennou et al. 2018). In the following, we list four
of the most common problems of wetland management in
East Africa which are related to spatial information.

Lack of Spatially Explicit Information

Detecting the location and size of wetlands are prerequisites
for planning interventions, both for agricultural development
and for conservation measures (Rodenburg et al. 2014), but
spatially explicit data on wetlands is often lacking or inade-
quate, particularly in Africa (Davidson 2014; Amler et al.
2015). Earth observation (EO) can play a vital role in closing
this data gap (MacKay et al. 2009). However, the lack of
comprehensive datasets can be understood as the result of
the various challenges that wetland detection poses.
Wetlands usually do not have crisp boundaries, but are located
in the transition zone between terrestrial and aquatic ecosys-
tems (Dronova 2015). Also, wetlands of the same type may
show large spectral, temporal, and spatial differences in reflec-
tance or backscatter values, whereas the same land cover with-
in and outside wetlands may even have similar values, which
makes them difficult to detect and classify (Mahdavi et al.
2018). Although satellite imagery and aerial photography
from coarse to very fine spatial resolutions are used in wetland
research (Guo et al. 2017; Perennou et al. 2018; Mahdavi et al.
2018), existing large-scale EO-based datasets are of limited
suitability for use in wetland landscapes, both regarding their
delineation and their characterization. For instance, the
Copernicus Global Land Service Land Cover product
(Buchhorn et al. 2020) contains one class herbaceous
wetlands, but the spatial resolution of 100 m fails to account
for narrow wetland features. A high level of spatial detail is
required to adequately map wetland landscapes and particu-
larly their seasonally flooded areas (Rebelo et al. 2011). In
addition, such global products are not focussed on wetland
ecosystems and hence are not suited to adequately character-
ize different wetland types.We therefore classify the availabil-
ity of up-to-date, large-coverage and high spatial resolution
data on wetland location and extent as an issue and require-
ment for wetland mapping at the national scale.

Representation of Spatio-temporal Variability

Also regional products with higher spatial resolution, such as
the 30 m resolution Landsat based Africover (FAO 2013) or
the more recent 20m resolution Sentinel-2 based S2 Prototype
Land Cover Map of Africa 2016 (Lesiv et al. 2017) alone do
not suffice to provide more detailed information about, for
example, land use characteristics and flooding regimes, which
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are essential for agricultural development and ecosystemmon-
itoring. Additionally, wetlands are not only subjected to
medium- and long-term variability caused by climatic fluctu-
ations and land use, but are highly dynamic landscapes char-
acterized by inter-seasonal change in inundation and vegeta-
tion in response to the hydrological cycle (Guo et al. 2017;
Perennou et al. 2018; Mahdavi et al. 2018). Water presence is
the core element of wetlands and the reason for their floral and
faunal composition, as well as a central contributing factor to
their agricultural use potential. Therefore, both the presence
and the variability of water need to be reflected in wetland
related mapping (Perennou et al. 2018). In recent years, sev-
eral large-scale surface water datasets that cover Africa have
been developed. Among these is the Global Inundation Extent
from Multi-Satellites – Downscaled 15 arcseconds (GIEMS-
D15). The global inundation map was created by downscaling
coarse-resolution EO based data to a spatial resolution of
500 m, including mean annual minimum, mean annual max-
imum and long-term maximum inundation (Fluet-Chouinard
et al. 2015). The Global WaterPack provides daily informa-
tion on global inland water bodies derived from Moderate
Resolution Imaging Spectroradiometer (MODIS) data at
250 m spatial resolution (Klein et al. 2017). The Joint
Research Centre’s (JRC) Global Surface Water product
(Pekel et al. 2016) provides information about long-term sur-
face water changes and to some extent about surface water
seasonality at 30 m resolution from Landsat data, recently
additionally incorporating Sentinel-2 imagery. Such high spa-
tial resolution data is necessary to characterize water dynamics
in the often narrow wetland landscapes, but optical data is
problematic in the tropics where high air moisture and fre-
quent and extensive cloud cover interfere with image acquisi-
tion (Dronova et al. 2015). The second issue identified is
therefore the robust representation of spatio-temporal wetland
variability, with an emphasis on water cycle-related land cov-
er, making use of multi-temporal data at adequately high spa-
tial and temporal resolution.

Comparability of Data and Repeatability
of Approaches

Many African countries have national wetland datasets. The
Rwanda Environment Management Authority (REMA), for
example, published a national wetland dataset which was
manually digitized from Landsat and ASTER imagery in
2008 (REMA 2008). However, the dataset has not been up-
dated since, with manual digitization as a central step in its
creation being one potential reason for this lack of update, as it
is a time consuming and partly subjective process. Amler et al.
(2015) found that available wetland datasets for Kenya,
Tanzania, Uganda, and Rwanda are inconsistent. Therefore,
recommendations for future work on wetlands include

introducing a higher degree of automation and shared nomen-
clature to enhance comparability between datasets of the same
area, as well as between different areas (Leemhuis et al. 2017;
Perennou et al. 2018; Mahdavi et al. 2018). Regional and
topical initiatives such as GlobWetland Africa, GEO-
Wetlands, and the Satellite-based Wetland Observation
Service (SWOS) have laid the foundation towards harmo-
nized approaches (Strauch et al. 2016; Weise et al. 2020).
To assess trends over time and make mapping results compa-
rable across African wetland landscapes, the third identified
issue is therefore the need for consistent, comparable, and
repeatable mapping approaches.

Lack of Quantified Information on Drivers
of Wetland Change

In global comparison, natural wetland loss occurred at high rates
in Africa throughout the 20th and 21st centuries (Davidson
2014). Natural wetland area in SSA declined by an estimated
42% between 1970 and 2014, whereas globally 35% of the
natural wetland area was lost in the same period (Darrah et al.
2019). Land conversion, particularly to agriculture, and overuse
are among the main proximate causes for wetland degradation
and loss (MEA 2005; Junk et al. 2013; Asselen et al. 2013).
Although the quality of interlinkages between pressure through
land use and wetland ecosystem integrity are largely known, the
quantification of drivers of change in a spatially explicit way is
barely addressed, particularly for African wetland landscapes. A
land-cover based method for the quantified rapid assessment of
anthropogenic disturbances of wetlands was developed in South
Africa by Kotze et al. (2012) and adapted for East Africa whilst
integrating satellite imagery by Beuel et al. (2016). However,
consistent large-coverage methods to assess land cover and use
intensity as indicators for modelling ecosystem change still have
to be developed (Erb et al. 2013; Beuel et al. 2016). The need for
quantified data on drivers of change is thus the fourth issue we
identify.

The objective of this study is to address the need for
accurate spatial data for informed national wetland man-
agement in Africa by proposing a layered, remote sensing-
based information framework for wetland characterization.
First, we address the above challenges by presenting the
respective spatial data layers and methodologies to gener-
ate them using satellite data from the European Space
Agency’s (ESA) Copernicus Programme. Then, we apply
our framework in a case study on wetlands management in
Rwanda. Finally, we discuss the use of the generated data
and the applicability of the framework in the context of
wetland management in East Africa, accounting for the
capacity of the approach to support wetland management
in African countries.
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Materials and Methods

Study Site

Rwanda is a landlocked country in the Great Lakes Region of
Africa and is located between 1°4’ and 2°51’ S and 28°53’
and 30°53’ E. It measures 26,338 km² and borders Uganda to
the north, Tanzania to the east, Burundi to the south and the
Democratic Republic of the Congo to the west. It is located at
the divide of the Congo and Nile basins (REMA 2008) and
can be sub-divided into 10 distinct agro-climatic zones
(ICRAF 2015), as shown in Fig. 1. The long rainy season
spans from March to May, whereas the short rainy season
starts in September and ends in November (Muhire and
Ahmed 2015). Mean annual rainfall is 1160 mm and the trop-
ical climate is attenuated to an average temperature of 18.8 °C
(Fick and Hijmans 2017) by the relatively high altitudes of
900 m in the east and up to 4,500 m in the mountainous
Albertine Rift region in the west. Wetlands in Rwanda can
be classified into three major categories (Cambrezy 1981):

& large wetland complexes characterized by low relief and
low drainage, and partly by the occurrence of lakes
through damming, e.g., the Akagera wetland complex in-
cluding Akanyaru and Akagera, Nyabugogo, and Lake
Muhazi;

& discontinuous wetlands of differing size found in valley
bottoms, where they formed in areas of accentuated relief
due to anomalies like trench formation, local subsidence,
or lava flows, e.g., Bugarama, Kamiranzovu, Rugezi,
Buberuka, and some wetlands in the southwestern part
of Rwanda;

& small, seasonally inundated valley bottom wetlands that
are associated with adjacent hills, are spatially continuous,
but have less pronouncedwetland characteristics; as found
in the Cyangugu region at the foot of Nyungwe.

Current Wetland Management in Rwanda

According to REMA’s wetland delineation dataset from 2008,
approximately 10.6% of the country is covered by wetlands,
with 41% of this wetland area being covered with natural
vegetation, 53% being under cultivation and 6% being fallow
(REMA 2008). 13.5% of the wetland landscapes are at least
partially enclosed within national parks or reserves, and
14.4% constitute source wetlands or wetlands acting as dams,
which are under special protection (REMA 2008). The delin-
eation forms a baseline wetland inventory but has not been
updated since. Also, the dataset is a static binary one not

accounting for interseasonal or interannual fluctuations related
to the water cycle. Overuse was identified as a main driver of
wetland degradation (REMA 2009), but quantitative informa-
tion on potential hotspots of wetland degradation and loss is
missing. A range of laws, policies, and agreements relate to
wetland use and protection. Yet, without a consistent, com-
prehensive, and up-to-date database of wetland location and
state, both food production in wetland landscapes and their
protection remain a challenge. For national wetland manage-
ment and monitoring wetland status, assessments need to be
conducted on a regular basis and be comparable across coun-
try boundaries for effective reporting towards international
conventions.

Rwanda’s reliance on wetlands for food security can be
explained by the country’s high population density, esti-
mated at 491 inhabitants/km² in 2020, making Rwanda one
of the most densely populated African countries (UN
DESA 2019). The food security level of Rwanda according
to the Global Hunger Index (GHI) is still serious, although
the score reduced by 43.1 % since 2000 (von Grebmer
et al. 2020). Therefore, in addition to their historically in-
creasing use over time (Meschy 1989), wetlands have be-
come an integral part of policies for increasing agricultural
production in order to sustain and improve food security,
as well as serve the export market. Rwanda’s Irrigation
Master Plan identifies by far the highest irrigation potential
in wetlands as compared to runoff, direct river and flood
water, and other water sources, with a prospect of almost
doubling rice yields and more than tripling sugarcane
yields under optimal irrigation (Malesu et al. 2010).
Accordingly, Rwanda’s (NRDS) for 2010–2018 aimed to
raise rice production through expansion into wetlands and
by increasing productivity levels from 5.8 to 7.0 t/ha, for
example through the installation of irrigation structures in
wetlands which are already under cultivation (MINAGRI
2011).

Wetland use and protection are organized by a number of
institutions, laws, and strategies. The Rwandan central gov-
ernment plays the most important role in wetlandmanagement
to balance increased agricultural production and wetland pro-
tection. Although decentralized wetland management entities
are stipulated by the Organic Law on the Environment 2005,
these entities are undefined and wetland related activities must
be approved by the Prime Minister with the following institu-
tions involved in their management (Heermans and Ikirezi
2015): the Ministry of Natural Resources (MINIRENA), the
Rwanda Natural Resources Authority (RNRA), the Rwanda
Environmental Management Authority (REMA), and the
Ministry of Agriculture and Animal Resources (MINAGRI).
MINIRENA is the ministry in charge of legislation regarding
land use and the environment and is the superior institution
concerning wetland management. Its sub-agencies RNRA and
REMA are responsible for the management of water, forests,
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and mineral resources, and the implementation of environ-
mental regulations, respectively. REMA also approves all
Environmental Impact Assessments (EIA) that precede wet-
land use. MINAGRI is less explicitly involved in wetland
governance itself, but MINIRENA and MINAGRI coordinate
concerning larger wetland development projects for agricul-
ture (Heermans and Ikirezi 2015). The named institutions im-
plement national legislation like the Organic Law on Land
2005, which was replaced by the Land Law 2013, defining
protected wetlands as public state domain and unprotected
wetlands as private state domain with the possibility of lease-
hold. The Organic Law on the Environment contains environ-
mental protection policies, including wetland protection mea-
sures. These, for example, prohibit: waste disposal in wet-
lands; their burning; development within a buffer zone of
20 m around wetlands; and wetland use without an EIA.
The Land Policy 2005 and the Environmental Policy 2004
similarly stress the need for careful and sustainable manage-
ment of wetlands, with the latter emphasizing the need for
wetland inventorying towards their good management under
state domain (Heermans and Ikirezi 2015). Rwanda’s
Nationally Determined Contribution to the Paris Agreement
includes wetland restoration as a means to ensure water secu-
rity (GoR 2020). Apart from national laws and policies,
Rwanda is involved in several wetland relevant international

agreements. Among these are the MEAs Ramsar Convention
and the CBD, as well as the United Nations Sustainable
Development Goals (SDGs).

Rwanda has the ambitious aim to develop a national and
mostly centralized approach to wetland management. The im-
portance of wetlands as a resource along with the subsequent
need for more sustainable use is clearly identified, as is the
need for a respective nation-wide wetland inventory and clas-
sification (REMA 2009).

Framework for Multi-layer Characterization of
Wetlands

Our approach can be seen as an extension of the valley bottom
wetland categorization for wetland management by Merot
et al. (2006), who classify wetland definition into three levels:
potential, existing, and efficient wetlands (PEEW approach).
The potential for wetland occurrence depends on enabling
factors such as topography and climate, whereas the existence
of wetlands is linked to actual land cover and hydrological
conditions. The efficient wetland category describes ecosys-
tem properties (Merot et al. 2006). In wetland monitoring and
management, this categorization can deliver information on
wetland loss and on changes in wetland functional categories
and was adopted in a remote sensing based study of wetlands

Fig. 1 Topography of Rwanda and agro-climatic zones (ICRAF 2015):
BH=Buberuka Highlands, CND =Congo Nile Watershed Divide, CP =
Central Plateau, EL = Eastern Lowland, ERP = Eastern Ridge and

Plateau, IMB = Imbo, IMP = Impala, KS = Kivu Lake Shore, MPB =
Mayaga Plateau & Central Bugesera, VHP =Virunga Summit and High
Plains
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in north-eastern France (Rapinel et al. 2019). Accordingly, the
basis of our wetland characterization framework consists of a
potential wetlands map (potential wetlands), from which ac-
tual wetland boundaries are derived (existing wetlands). In the
next step, they are described in terms of land cover, flooding
frequency, and use intensity (efficient wetlands). Each layer is
evaluated using qualitative and quantitative methods accord-
ing to its temporal extent and reference data availability, and
the results for Rwanda are presented. We employ the Ramsar
definition for inland wetlands, which includes “areas of
marsh, fen, peatland or water, whether natural or artificial,
permanent or temporary, with water that is static or flowing,
fresh, brackish or salt” (Matthews 2013, p. 38). This broad
definition allows us to include all types of water-based eco-
systems that occur across Rwanda. Our emphasis lies on the
conceptualization of a wetland delineation and characteriza-
tion framework based on the coherence of the datasets at
scales beyond case studies. It is supposed to allow for a com-
prehensive national wetland assessment and provide
Rwandan institutions with solutions to their manifold spatial
data needs, with the option to extend these analyses beyond
country boundaries. The framework’s potential use for wet-
land management will be evaluated against these information
needs.

The major EO data sources are the Sentinel-1 and Sentinel-
2 satellites from the European Copernicus Programme. Their
spatial resolutions are 20 m for the Sentinel-1 Ground Range
Detected (GRD) product in Interferometric Wide swath (IW)
mode and 10 to 60 m for Sentinel-2 imagery. Both satellite
constellations consist of A- and B-units, with a revisit time of
5 days at the equator for Sentinel-2 (Berger et al. 2012; Drusch
et al. 2012) and 12 days in ascending or descending mode (or
6 days for both) for Sentinel-1 (ESA 2019). These high spatial
and temporal resolutions make them suitable for the creation
of data products to capture the temporal dynamics and spatial
variation of wetland landscapes. The data are available free of
charge, which is also true for the additional data we used, the
Digital Elevation Model (DEM) of the Shuttle Radar
Topography Mission (SRTM) (Lehner et al. 2008) and high-
resolution remote sensing imagery from Google Earth.
Commercial RapidEye satellite imagery at 5 m spatial resolu-
tion was used for validation purposes (RapidEye AG 2007).
Four data products were created: (1) a Wetland Delineation,
(2) Surface Water Occurrence (SWO), (3) a Land Use/Land
Cover classification (LULC), and (4) Wetland Use Intensity
(WUI) (Fig. 2).

Wetland Delineation

To tackle the challenges described in Introduction, an ap-
proach to delineation is required that is robust against confu-
sion between similar land covers in upland and lowland areas,

while providing spatial detail and information on wetland size
and location. Therefore, our delineation approach depicted in
Fig. 3 consists of two stages, first defining the potential wet-
land area based on topographic indices following the approach
described for wetland delineation in Albania by Weise et al.
(2020), and then delineating actual wetlands with additional
optical satellite data. Thus, confusion due to similar spectral
signals inside and outside wetlands is reduced. The potential
wetland map is based on the combination of topographic in-
dices derived from the SRTM DEM. The result shows prob-
abilities (values from 0 to 1) to find wetland ecosystems ac-
cording to topographic and hydrological criteria.

Three global DEMs of high spatial resolution were consid-
ered for the creation of the Potential Wetlands layer: The
SRTM 1 Arc-Second Global DEM, the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
Global DEM Version 2 (ASTER GDEMV2), and the
TerraSAR-X-Add-on for Digital Elevation Measurements
DEM (TanDEM-X DEM). The Shuttle Radar Topography
Mission was flown in 2000 and acquired data in C-band
Synthetic Aperture Radar (SAR) to produce a near-global
DEM with an absolute vertical accuracy of under 9 m. The
greatest errors occur in steep terrain and above smooth sandy
surfaces (Farr et al. 2007). In 2014, the SRTM DEM was
released globally at approximately 30 m spatial resolution at
the Equator (JPL 2014) and is available free of charge.
Likewise, the ASTER GDEMV2 is free and has a spatial
resolution of approximately 30 m. The ASTER GDEM
Version 1 is based on the ASTER optical stereo image archive
from 2000 to 2008 (Urai et al. 2012). For Version 2, released
in 2011, an increased number of input images and an im-
proved algorithm were applied. However, the resulting verti-
cal accuracy of 17m (Tachikawa et al. 2011) is lower than that
of the SRTM DEM. Also, several local comparative studies
suggest that there has been an improvement between versions,
but that the ASTER GDEMV2 quality and accuracy remain
below those of the different SRTM DEM versions

Potential Wetlands

Wetland Delineation

Surface Water Occurrence (SWO)

Wetland Use Intensity (WUI)

Land U
se/Land C

over (LU
LC

)

Fig. 2 Scheme for modular wetland characterization including Potential
Wetlands, (1) Wetland Delineation, (2) Surface Water Occurrence
(SWO), (3) Wetland Use Intensity (WUI) and (4) Land Use/Land
Cover (LULC) classification
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(Suwandana et al. 2012; Athmania and Achour 2014;
Grohmann 2018; Carrera-Hernández 2021). From 2010 to
2015, the TanDEM-X mission delivered elevation data from
X-band single-pass radar interferometry towards a consistent
global DEM at 12 m spatial resolution (Krieger et al. 2007;
Martone et al. 2012; Rizzoli et al. 2017). Its vertical accuracy
requirement of under 2 m for flat and under 4 m for steep
terrain is largely met and thus outperforms the SRTM DEM
(Rizzoli et al. 2017; Wessel et al. 2018). However, its com-
mercial distribution by the public private partnership of the
German Aerospace Center (DLR) and Airbus Space and
Defence may, as outlined by Grohmann (2018), hamper its
wider adoption. Additionally, areas classified as sensitive, like
the border between Rwanda and the Democratic Republic of
the Congo, may lead to delayed availability or unavailability
of DEM tiles. For the objective of developing coherent and
adoptable methods towards wetland mapping, we therefore
valued the accessibility and availability of the SRTM DEM,
substantiated with a large body of literature successfully using
it for large-scale wetland mapping (e.g. Bwangoy et al. 2010;
Ndayisaba et al. 2017; Ludwig et al. 2019) over the higher
performance of the TanDEM-X DEM.

The methodology by Weise et al. (2020) was adjusted to
the landscape characteristics of Rwanda to produce a potential
wetland map with a spatial resolution of 30 m. The
Topographic Wetness Index (TWI) (Beven and Kirkby
1979; Böhner and Selige 2006), the Multi-resolution Index
of Valley Bottom Flatness (MrVBF) (Gallant and Dowling
2003), and a floodplain index (FPI) were derived from the
SRTM DEM. The TWI is based on the slope and the specific
catchment area (Beven and Kirkby 1979; Böhner and Selige
2006) and the MrVBF defines and distinguishes valley bot-
toms from hill slopes (Gallant and Dowling 2003). Both indi-
ces were calculated using the GIS software System for
Automated Geoscience Analyses (SAGA). For the FPI, flood-
plains were derived by combining the slope with the river
stream network and applying a cost distance calculation.
Cost distance was rescaled to values between 0 and 1 (high
to low cost distance). TWI, MrVBF and FPI were combined
with the weights 1-2-1 to reflect the probability to find wet-
land habitats.

The delineation of actual wetlands follows the proposition
of defining wetlands relative to their surroundings instead of
in absolute terms (Semeniuk and Semeniuk 1995). Object-
based image analysis (OBIA) was already successfully ap-
plied by Fitoka et al. (2020) in the context of large-scale clas-
sification of wetlands in Greece, using the potential to distin-
guish between wetlands and uplands with contextual informa-
tion. We developed a methodology that conducts an automat-
ed, object-based pre-classification in eCognition, followed by
manual post-classification of false-positives and false-
negatives against RapidEye images taken in 2017. In the first
step, the single most cloud-free Sentinel-2 image of 2017 per

tile (in total 7 images) was selected and cloud-masked. Also, a
time series of all available Sentinel-2 scenes in 2017 with less
than 20% cloud cover were cloud masked and used to calcu-
late the mean Normalized Difference Water Index (NDWI)
(Gao 1996) and the mean Normalized Difference Vegetation
Index (NDVI) (Tucker 1979) per pixel for 2017 across the
study area. The Potential Wetlands layer, mean NDWI, mean
NDVI, and Sentinel-2 mosaic were stacked and segmented
into objects. These objects were created using homogeneity
criteria, which group neighbouring pixels with similar spectral
characteristics together. Including the mosaic of curated and
cloud masked Sentinel-2 images as opposed to multi-temporal
mean values across 2017 yielded greater sharpness in the dif-
ferentiation between image objects along the wetland bound-
aries. The segments were then classified based on the assump-
tions that wetlands occur where wetland probability according
to the Potential Wetlands layer is high, and where mean
NDWI and mean NDVI are higher compared to surrounding
areas. Accordingly, thresholding and neighbourhood condi-
tions were applied and iteratively adjusted through compari-
son with high-resolution Google Earth imagery and true- and
false-colour composites of the 2017 RapidEye images across
the study area. This resulted in an initial delineation threshold
of 0.55 for potential wetland, to which bordering elongated
objects were added as riparian vegetation. Subsequently, im-
age objects with a mean NDWI below − 0.1 were unclassified
to reflect high-wetland potential areas that do not have wet-
land characteristics, e.g., because they have fallen dry.
Additionally, objects with a potential wetland value below
0.4 were unclassified if the mean NDVI was negative or if
the mean NDWI was below 0.3. The manual editing of errors
was done along the boundaries of the wetlands where adjacent
objects like agricultural plots with high NDVI can be
misclassified as wetland. In turn, some objects were initially
not classified as wetland, as their NDWI was comparably low.
These objects were added to the wetland class. During the
post-processing, the shape and the surrounding landscape of
true- and false-colour RapidEye scenes were compared to the
delineation. Further, NDVI and NDWI values from the
RapidEye imagery were considered along with the water oc-
currence map described below to determine whether objects
were misclassified. In this approach, such post-processing in-
creases the accuracy of the product along wetland boundaries.
The final delineation product reflects wetland and non-
wetland areas with a minimum mapping unit (MMU) of
0.5 ha.

Surface Water Occurrence

To account for water presence, we included an element de-
scribing spatio-temporal surface water variability into the
characterization framework, as described in Fig. 4. Although
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the Global Surface Water Dynamics dataset by Pekel et al.
(2016) represents surface water variability at a high spatial
resolution of 30 m, it omits a number of water bodies in
Rwanda. This is likely because optical data was used for the
product, while frequent and extensive cloud cover over
Rwanda obscures such observations. Since cloud cover occur-
rence increases during the rainy season, water products using
optical data are likely to miss peak values during this time.
Our product is therefore based on active radar data, which is
often used in inundation mapping, because of its sensitivity to
surface water and its capability to penetrate cloud and vegeta-
tion cover to some extent (Kasischke et al. 1997; De Grandi
et al. 2000; Hess et al. 2015).Wemake use of data acquired by
the Sentinel-1 satellites, which have greatly increased the sup-
ply of high spatial resolution Synthetic Aperture Radar (SAR)
data since the mission’s launch in 2014. The GRD product in
IW mode employed in this study has a spatial resolution of
20 m (Berger et al. 2012). The free-of-charge data has the
potential to cater for a number of water-related assessments,
e.g. inundation mapping (Pham-Duc et al. 2017; Huang et al.
2018; Borah et al. 2018; Markert et al. 2020).

To capture water presence variability in wetlands, we used
a threshold-based method to map open water using Sentinel-1
backscatter over three years and created a dataset of surface
water dynamics. The SWO layer for Rwanda represents sur-
face water that was detected between November 2014 and

December 2017. The information was derived from 60
Sentinel-1 SAR images acquired in this period in ascending
mode. Until February 2017, the repeat interval over the study
area was 24 days and then increased to 12 days with the
imagery from Sentinel-1B becoming available. The layer pro-
vides information on surface water dynamics as a measure-
ment of water presence frequency within the three years. In
order to reduce processing time and increase automation, the
individual water masks were extracted in the remote sensing
cloud computing platform Google Earth Engine (GEE)
(Gorelick et al. 2017). Only images acquired in IW in ascend-
ing mode, VV polarization, and acquired in the same orbit
were used. The GEE GRD Sentinel-1 image collection is al-
ready processed to provide backscatter coefficient (Sigma
nought σ°) in decibels (dB) by applying the orbit file, thermal
noise removal (from July 2015 onwards), radiometric calibra-
tion and terrain correction (orthorectification) using the 30 m
SRTM DEM to the Level-1 GRD scenes. The scenes were
transformed to Gamma nought (γ°) through angle-correction
as described by Hird et al. (2017). The focal mean with a
circular radius of 30 m was calculated to filter noise. Surface
water was then detected in each of the 60 images using an
individual threshold which was calculated from the image
statistics using the Otsu method, which minimizes intra-class
variability between backscatter values for land and water
(Otsu 1979). The results were exported from GEE, combined

SRTM DEM

MrVBF

S2 scenes 2017 
(1 per tile, 7 tiles)

Cloud masking

Mosaicking

Decision tree
classification

Potential wetlands Pre-processing

Manual
post-processing

Stacking

Segmentation

Mean 
NDVI

TWI FPI

Weighted 
combination

Wetland 
probability 0 to 1

Mean 
NDWI

Classification

Post-processing

S2 time series 2017 
(<20% cloud cover)

Cloud masking

Fig. 3 Processing steps for the Wetland Delineation layer, including
the calculations for Potential Wetlands with a combination of the Multi-
resolution Index of Valley Bottom Flatness (MrVBF), the Topographic
Wetness Index (TWI) and a floodplain index (FPI), pre-processing of

Sentinel-2 (S2) images and the calculation of the Normalized
Difference Vegetation Index (NDVI) and the Normalized Difference
Water Index (NDWI), classification and post-processing
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into a time stack, and the sum of water presence per pixel was
calculated. We assumed that a per-pixel detection of water at
least four times within the three-year observation period
means the robust detection of regularly flooded pixels and
the reduction of outliers due to overestimation. Therefore,
pixels with a flooding frequency < 4 were excluded. Open
water bodies like Lake Kivu had higher backscatter coefficient
variability due to wind-generated waves.

Land Use/Land Cover Classification

To reliably characterize the diverse wetland ecosystems and to
identify different vegetation types and land uses at sufficiently
high spatial resolution, we generated a (LULC) map for
Rwanda at 10 m spatial resolution. This was achieved using
a hierarchical classification scheme which follows the Food
and Agriculture Organization’s (FAO) Land Cover
Classification System (LCCS) (Di Gregorio and Jansen
2001) for non-wetland classes and the Ramsar nomenclature
(Ramsar Convention Secretariat 2000) for wetland classes in a
semi-automatic unsupervised classification approach. These
classification systems were selected to ensure both compara-
bility with existing LULC classifications, and to adequately
account for both temporally static and temporally dynamic
classes derived from the SWO product. The full extent of
Rwanda was classified to account for the importance of
catchment-wetland interconnectivity which impacts hydrolo-
gy and ecosystem integrity (e.g. von der Heyden and New
2003; Kotze et al. 2012; Leemhuis et al. 2017), and dictates
that uplands play a crucial role in wetland management
(Wood and Thawe 2013). The workflow is depicted in
Fig. 5. We used Sentinel-2 images from 2016 to 2017 from
the seven tiles that cover Rwanda. Only scenes with low cloud
cover and from the dry season were selected, the latter to
reduce the impact of phenological variability on the

classification. The scenes were corrected for atmospheric ef-
fects using the European Space Agency’s stand-alone
Sen2Cor processor (ESA 2018), and cloud and cloud shadow
were masked with a semi-automatic approach. Per-tile, a mo-
saic was created by filling the gaps of the most cloud-free
image from 2017with the information from the images closest
to the acquisition date. Preference was given to images from
2017, and only remaining unfilled gaps were closed with im-
ages from 2016. Each of the mosaics was stacked with the
Potential Wetlands, SWO and Wetland Delineation layers
and processed using OBIA. A multiresolution segmentation
algorithm was applied in eCognition and the image objects
were assigned to classes according to decision tree rules which
were based on spectral, spatial, and geometric criteria. The
Potential Wetlands, SWO and Wetland Delineation layers
were incorporated in the ruleset to better account for a variety
of wetland vegetation types. Temporally variable classes, such
as seasonally flooded or wet agricultural land, seasonal/in-
termittent freshwater marshes, and seasonal/intermittent
freshwater lakes (over 8 ha), were designated using the
SWO, while other classes depended on assumptions such as
the absence of cropland in national parks (shrubland class).
The minimum mapping unit was 0.5 ha for all vegetation
classes, whereas non-vegetation classes with typically smaller
extent were mapped at 0.01 ha.

Wetland Use Intensity

WUI differentiates intensively used wetland areas, such as crop
cultivation, burned areas, peat extraction, etc. from less inten-
sively used areas, such as grazing areas for livestock farming as
well as natural/semi-natural areas and permanent water. Land
use intensity can be described in the dimensions of inputs (e.g.
cropping frequency), outputs (e.g. yield), and changes in sys-
tem properties (Erb et al. 2013). We assumed that these dimen-
sions translate into a spectral change signal related to reflec-
tance intensity over time and hence used a modified algorithm
for time series analysis from Franke et al. (2012), the Mean
Absolute Spectral Dynamics (MASD) which we adapted for
wetland ecosystems. Since the aim was to analyse wetland use
intensity in vegetated areas, only vegetation-sensitive bands
were selected to calculate the MASD. To additionally account
for a good balance between the spectral ranges, we considered:
the green and red bands in the visible spectrum (band 3, ~
560 nm and 4, ~ 665 nm); two bands in the red-edge and near
infrared (NIR) (band 6, ~ 740 nm and 8, ~ 833 nm); and two
bands in the short-wave infrared (SWIR) (band 11, ~ 1610 nm
and 12, ~ 2190 nm) (Drusch et al. 2012). Hence, six bands were
used in total for calculating the MASD from the time series
(three bands with 10 m and three bands with 20 m spatial
resolution). The formula for calculating the MASD from
Franke et al. (2012) is as follows:

60 S1 scenes 
2014-2017

Angle correction

Otsu 
thresholding

Per-pixel sum

Truncation at 
<4x flooded

Pre-processing

Layer
calculation

Focal mean 
filtering

Fig. 4 Processing steps for the creation of the surface water occurrence
(SWO) consisting of pre-processing and layer calculation
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whereby, m = number of observation dates, t = observation
date, n = number of spectral bands, b = spectral band, ρ = pixel
reflectance.

The processing steps for the creation of the WUI layer are
shown in Fig. 6. Cloud and cloud shadow can cause artifacts in
the resulting WUI layer. Due to frequent and extensive cloud
cover over Rwanda, only a maximum of eight Sentinel-2 images
per tile with very low cloud cover was selected for the year 2017.
The WUI product was created per Sentinel-2 tile whereby cloud
and cloud shadow were first masked in each image in the time
series using a semi-automatic approach. As a threshold, the min-
imum number of cloud-free observations per pixel was set to
three, meaning that the WUI product was only produced for
those pixels with three to eight cloud-free observations in 2017.

Accuracy Assessment

The accuracy of each of the wetland delineating and charac-
terizing layers was assessed in a different way according to
their specific characteristics, main sources of error and data
availability. Table 1 summarises the error sources and assess-
ment approaches followed.

The assumption that wetland landscapes can be distin-
guished from uplands through a significant difference in
topography and vegetation cover forms the basis of the ap-
plied delineation approach. This assumption was verified
during a field survey in July 2018 with 12 transects through
wetlands between Kigali and the eastern border of Rwanda,
between Kigali and the Rugezi wetland in the far north, and
along the western-lying route between Ruhengeri and
Kigali. Coordinates were recorded with a handheld GPS,
while digital photos were taken, and sketches were made

7 S2 tiles 2 016/2017

Semi-automatic cloud/ cloud
shadow masking

Stacking

Segmentation

Decisiontree
classification

Pre-processing

Classification
Potential 
Wetlands

Delineated
Wetlands

Mosaicking of results

Atmospheric 
correction

SWO

Mosaicking

Fig. 5 Processing steps for the
creation of the Land Use/Land
Cover (LULC) classification lay-
er consisting of pre-processing
of Sentinel-2 (S2) images and
their classification, incorporating
the Potential Wetlands, the
Wetland Delineation and the
Surface Water Occurrence
(SWO) layers

8 S2 scenes 2017

Semi-automatic cloud/ 
cloud shadow masking

Band selection
(3, 4, 6, 8, 11, 12)

MASD

Pre-processing

Indicator
calculation

Fig. 6 Processing steps for the creation of the Wetland Use Intensity
(WUI) layer consisting of pre-processing and Mean Absolute Spectral
Dynamics (MASD) calculation
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at points of interest. As a quantitative assessment, a conven-
tional random sampling-based confusion matrix was found
to not account well for the actual issue of over- and under-
estimation of area at the wetland boundaries. Therefore, a
validation strategy comparing randomly selected slices of
the delineation product with manually derived wetland from
high-resolution satellite imagery was adopted. Centrelines,
defining the linear centre locations within the delineation
polygons, were calculated and subdivided into segments
of 200 m length. Then, a random sample of the size of 1 %
of all segments was drawn. After cleaning the overlapping
wetland slices, a total of 255 segments was considered.
Perpendicular to the centreline segments, we generated rect-
angles with the width of the delineation plus 100 m.
Wetland boundaries were manually extracted within the
rectangles using RapidEye imagery pre-processed to the
3A product, acquired between June and August 2017. The
delineated wetland area was then compared to the manually
extracted one and the percentage of over- and underestima-
tion was determined. Over- and underestimation are defined
as the positive or negative deviation in area of the delineated
from the manually determined wetland per wetland segment
in percent.

Since detailed hydrological information was not avail-
able for the whole country for the period 2014 to 2017,
the SWO layer was validated with a simplified version of
the validation approach applied to the Global Surface
Water Dynamics product by Pekel et al. (2016). Their
accuracy assessment included the comparison of random-
ly selected individual water masks with high spatial reso-
lution remote sensing imagery as well as ancillary hydro-
logical data. For the water masks produced in this study,
manually digitized surface water from cloud-free
RapidEye tiles from 20/06/2017, 10/07/2017, and 11/07/
2017 were compared to the closest dates of water extrac-
tion, namely 15/06/2017 and 09/07/2017. The tiles were

selected to cover different wetland landscape types across
Rwanda as explained in Introduction and taking the agro-
climatic zones for guidance (cf. Figure 7). The validation
thus included areas of flat topography with large water
bodies such as Lake Kivu and the Akagera wetland com-
plex in the far west and far east of Rwanda (tiles 5 and 4),
relatively wide and continuously flooded wetlands such as
the Muhazi wetland east of Kigali (tile 2), as well as
narrower wetlands west of the Capital (tiles 1 and 3).
The overlap of digitized and detected surface water was
calculated for the respective tiles. As the LULC classifi-
cation intentionally comprises temporally dynamic classes
which cannot be validated at one particular point in time,
for the accuracy assessment, all subclasses were aggregat-
ed to the main classes bare soil, broad-leaved forest, mo-
saic cropland, needle-leaved forest, sand, built-up, and
water. They were validated against 1,258 points from a
stratified random sampling scheme which were visually
interpreted against a cloud-free RapidEye mosaic from
June to July 2017. The classified and reference points
were compared in a confusion matrix and user’s, pro-
ducer’s, and overall accuracy were determined.

Being a multi-temporal product, the WUI could not be
validated quantitatively, but was assessed for plausibility
through comparison to distinct land uses such as lowland rice
agriculture, sugarcane cultivation (high use intensity), and
protected natural/semi-natural areas (low use intensity).

Results and Discussion

The wetland delineation and characterization layers are shown
in Fig. 8 and presented in the following section.

Table 1 Summary of the layer’s main sources of error and the validation approach selected accordingly

Layer Main sources of error Validation approach

Wetland Delineation Over- and underestimation of wetland width along
the boundaries where object characteristics inside
and outside of wetlands are similar.

Comparison of automatically derived to manually
delineated wetland surface area in a random sample
of 255 wetland segments of 200 m length.

Surface Water
Occurrence

Non-detection of surface water presence in the backscatter
signal (waves, mixed pixels in narrow water bodies)
and false detection of surface water presence due to an
inaccurate threshold value.

Comparison of detected water surface on 15/06/2017
and 09/07/2017 to manually delineated water surfaces
in five RapidEye tiles from 20/06/2017, 10/07/2017,
and 11/07/2017.

Land Use/Land
Cover

Confusion of land use/land cover classes. Confusion matrix for aggregated stable classes, using
a stratified random sample of points interpreted against
a mosaic of RapidEye images from June and July 2017.

Wetland Use
Intensity

Inaccurate representation of use intensity in areas
with few clear-sky observations.

Plausibility assessment through comparison of layer value
patterns for different land uses with distinct use intensities
(e.g., lowland rice with high and protected areas with low
use intensities).
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Wetland Delineation

The wetland extent delineated using the two-step approach is
471,458 ha, which accounts for 18.6 % of Rwanda’s total
area. With major water bodies derived from the Global
Lakes and Wetlands Database (GLWD) Level-1 data
(Lehner and Döll 2004) excluded, it is 14.3% of Rwanda’s

area. This number exceeds the extent determined through the
2008 wetland survey (222,421 ha, REMA 2008) bymore than
a third. The comparison of the 255 randomly selected wetland
slices and reference wetland area digitized from 2017
RapidEye imagery resulted in a median overestimation of
wetland area of 15.3%. This slight tendency for overestima-
tion is also reflected in the median producer’s accuracy of

Fig. 7 Surface Water Occurrence
(SWO) validation layout based on
the comparison with manually
delineated surface water from
RapidEye reference tiles from 20/
06/2017, 10/07/2017 and 11/07/
2017 with zoom-ins on the tiles
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90.8 % against the median user’s accuracy of 73.9 % (see
boxplots in Fig. 9).

Surface Water Occurrence

The overlap of digitized and detected surface water differs
between the selected RapidEye tiles, as depicted in Table 2.
The percentage overlap was highest for the large water bodies
in tiles 4 and 5, whereas it was lowest for the narrow wetlands
and water bodies in tiles 1 and 3, although the accuracy of

surface water detection in tile 3 was as high as 79.7%. The
total percentage overlap is high with 93.8%.

Figure 10 shows a zoom on the SWO layer in an area south
of Kigali (a and b) compared to the JRC Global SurfaceWater
Dynamics dataset (c) (Pekel et al. 2016). The latter is derived
from the Landsat and Sentinel-2 archives until 2019. In com-
parison, the continuously flooded parts are represented rela-
tively similarly. In contrast, the representation of seasonally or
periodically flooded wetland areas is more nuanced in the
SWO layer.

Fig. 8 Wetland delineation and
characterization framework
products created for Rwanda: (a)
Wetland Delineation (2017), (b)
Surface Water Occurrence
(SWO) (2014–2017), (c) Land
Use/Land Cover (LULC) classi-
fication according to the Ramsar
classification scheme (2017), and
(d) Wetland Use Intensity (WUI)
(2017)
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Land Cover Classification

User’s and producer’s accuracies for each class of the aggre-
gated LULC classification are high with only the sand class
dropping below 80% for both accuracies, and urban for the
user’s accuracy. This can be explained by the mostly small
patches covered by these classes relative to the spatial resolu-
tion of the input satellite imagery. Individual class accuracies
are displayed in Table 3 and amount to an overall accuracy of
93.2%. The classification shows that 304,324 ha of all wet-
land area is occupied by seasonally flooded or wet agricultural
land, which is 64.6% of wetland area and 84.0% excluding
lakes. This high percentage reflects Rwanda’s increased use of
wetlands for agricultural activities, which is driven by govern-
ment policies aimed at the progressive exploitation of wet-
lands. These percentages exceed the numbers given by the
2008 wetland survey, which describe 53% of wetlands as
under cultivation and 6 % as fallow (REMA 2008).
However, the wetland agriculture class used here includes
intensively managed as well as grazed wet meadow and
pasture.

Wetland Use Intensity

The WUI layer is a deduced indicator showing changes in
reflectance in the selected wetland-relevant bands across mul-
tiple satellite scenes. It is a time series product and could not
be validated quantitatively, but only qualitatively. On the local
scale, upon verification for known locations such as the rice
irrigation scheme in Fig. 8d), this layer reflects intensive ag-
ricultural use with high values, as well as stable semi-natural
areas.

On the national scale, a comparison of WUI and wetland
area aggregated to gridded values at 8 × 8 km in Fig. 11 shows
that south of Kigali and in the northeast of the country the use
is most intensive relative to wetland extent. On both scales, the
indicator is therefore suited as a basis for further detailed in-
vestigation. As a comparison between time steps, the increase
or decrease of land use pressure, mostly through agriculture,
onto wetlands can be derived on both scales.

Framework Application for Informed Decision-making

We designed this Copernicus-based framework to address
four major problems of geodata-related tropical wetland man-
agement, using Rwanda as a demonstrator. We laid out a
conceptual framework that can be adapted and deployed in
other countries and regions and that can be applied according
to respective user needs. Despite the variability of wetland
boundaries, they could be detected with relatively high confi-
dence. This was facilitated by the distinct appearance of

Fig. 9 Boxplots of (a) user’s and
(b) producer’s accuracy for the
generated wetland delineation
evaluated against manually
digitized wetland area

Table 2 Percentage overlap of detected surface and water digitized
from the 5 RapidEye tiles

Tile no. 1 2 3 4 5 1–5

Overlap (%) 47.3 88.6 79.7 94.8 95.9 93.8
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Rwandan wetland landscapes with respect to their use. Since
the vegetation zonation is particular and reflected in high spa-
tial resolution satellite imagery, it could be considered a valid
indicator for wetland delineation. The combination of

topographic and surface reflectance data makes the approach
robust. Depending on whether wetland landscapes are situated
in more accentuated topography or are more characterized by
their vegetation and use compared to their surroundings, the

Fig. 10 (a) and (b) show SurfaceWater Occurrence (SWO) compared to (c), the Joint Research Center (JRC) Global SurfaceWater seasonality based on
the Landsat archive and Sentinel-2 imagery until 2019 (Pekel et al. 2016)

Table 3 Confusion matrix of the LULC classification’s aggregated classes bare soil, broad-leaved forest, mosaic cropland, needle-leaved forest, sand,
built-up and water, giving per-class user’s, producer’s accuracy, mean user’s and producer’s accuracy, and overall accuracy

Bare soil Broad-leaved
forest

Mosaic
cropland

Needle-leaved
forest

Sand Built-up Water User’s
accuracy

User’s accuracy
(%)

Bare soil 25 2 1 0 0 1 0 29 86.2

Broad-leaved forest 0 282 18 4 2 0 0 306 92.2

Mosaic cropland 3 1 529 2 4 10 3 552 95.8

Needle-leaved forest 0 5 0 44 0 0 0 49 89.8

Sand 0 0 4 0 20 1 1 26 76.9

Built-up 0 0 19 0 0 72 0 91 79.1

Water 0 0 2 0 0 2 201 205 98.1

Producer’s accuracy 28 290 573 50 26 86 205 1258

Producer’s accuracy (%) 89.3 97.2 92.3 88.0 76.9 83.7 98.1

Mean user’s accuracy (%): 88.3

Mean producer’s accuracy (%): 89.4

Overall accuracy (%): 93.2

The bold entries should visually help distinguish between the class shares (Bare soil,..., Water) and the accuracy measures
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approach can rely slightly more on the one or on the other
aspect. It thus allowed the delineation both in the flatter
Eastern Lowland and in the Congo-Nile Watershed Divide
with its accentuated topography. Additionally, an object-
based approach accounting for the relative difference in spec-
tral characteristics of lowland and upland addresses the chal-
lenge of trying to describe wetlands with a concise spectrum
of reflectance values and to classify them accordingly. It can
therefore be expected that the delineation approach is applica-
ble in a wide variety of wetland landscapes across East Africa.
However, the thresholds set in the decision tree classification
have to be adjusted for other areas. Also, the manual post-
processing requires additional user input. That said, the scope
of the post-processing along the wetland boundaries as a qual-
ity control step is limited. It can therefore be considered as a
cost-efficient approach compared to comprehensive field sur-
veys or manual delineation. The use of a higher spatial reso-
lution DEM, if available, is optional. The SRTM DEM’s spa-
tial resolution was found to be sufficiently high across the
different wetland landscapes.

The advantage of defining wetland boundaries before char-
acterizing wetlands is clear for the SWO, for which false pos-
itives caused by topographic effects in the surrounding hilly
landscape could thus be eliminated. That said, inaccuracies
arise from the use of the automatic Otsu thresholding algo-
rithm. Over our observation period of more than three years,
these could efficiently be reduced by only taking regularly
flooded pixels into account. A shorter observation period
may cause outliers to have a stronger impact on the product.
Although the SWO layer generally captures surface water
dynamics in more detail than other commonly used products,
the lowest accuracies are achieved in narrow and elongated
water features. Also, wind-generated waves hinder correct
water detection on large water bodies. The latter issue can be
addressed by combining the SWO layer with water body data
like the GLWD by Lehner and Döll (2004). For the former,

the lack of available and accessible higher spatial resolution
SAR data is a limitation.

The use of the Ramsar classification scheme for LULC
mapping fills a gap in large-scale wetland assessment, since
the LULC products available for East Africa do not account
well for wetland ecosystems. The Ramsar wetland classes are
inherently relevant in ecosystem assessment and can be direct-
ly used for the respective reporting purposes. However, al-
though the LULC classification shows good accuracies, the
accuracy assessment represents a validation of a summary of
all classes but does not specifically account for the temporally
dynamic classes created by incorporating the SWO layer.
Error propagation should therefore be considered.

The WUI layer is not related to specific wetland manage-
ment or agricultural practices. But it reflects all forms of man-
agement practices that affect vegetation reflectance character-
istics through time. Its biggest drawback in this study was the
reliance on the availability of multi-temporal optical imagery
consistently throughout 2017. In order to prevent the impact
of cloud and cloud shadow on the result, they were masked
thoroughly and each of the scenes was quality controlled. In
the future, this should be done using improved masking algo-
rithms, to increase automation and include more observations
per pixel. This will improve the layer’s capacity to capture
change in reflectance and therefore more accurately map wet-
land use intensity.

The use of satellite data with comparable spatial resolution
and within the same time span supports the consistency of the
produced information throughout all layers. Thus, the layers
can be used individually or combined, depending on user
needs. Several processing steps still require some manual
work or cost-intensive and complex software, such as the
post-classification of the wetland delineation, the LULC clas-
sification, and the calculation of the WUI layer. However, the
automation of most steps, and in the case of the SWO imple-
mentation in the GEE environment, facilitates the reproduc-
tion of the layers for shorter or longer periods than presented

Fig. 11 (a) Total wetland area in
km and (b) mean Wetland Use
Intensity (WUI) within grid cells
of 8 × 8 km size across Rwanda
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in this study. Also, with a repeat production of the layers,
changes in the physical characteristics of wetlands can be
tracked and monitoring schemes developed. Based on the
static potential wetlands layer, actual wetland area can be re-
delineated after some years. Since changes in use intensity and
resulting hydrological effects typically occur within shorter
timespans, the analysis of SWO and WUI should be repeated
on a regular basis, for example annually or separately for
growing seasons. Medium- and short-term changes can be
analysed against the longer-term trend. To derive the latter,
Landsat imagery could be used for the LULC andWUI layers
to be able to go back further in time. Nevertheless, the issue of
little or non-existing validation data needs to be solved to
ensure sufficiently high layer accuracy.

The spatial data requirements arising from the problem
statements formulated in Introduction could all be addressed
by the four layers. The differing degree to which each layer
responds to the respective requirement is visualized in
Table 4, using parentheses for a lower degree, regular font,
and bold font for the highest degree. While all layers provide
spatially explicit and disaggregated information (requirement
1) across the whole country at a spatial resolution of 10 to
30 m, spatio-temporal variability (requirement 2) is most pre-
cisely reflected by the SWO and the WUI layers. Both the
Delineation and the LULC classification incorporate this var-
iability, the former through the fact that the distinctiveness of
vegetation-indicated boundaries is usually maintained
throughout the hydrological cycle, the latter as it incorporates
the SWO layer. SWO and WUI are a priori time-series prod-
ucts and can be adapted to user needs, by stretching out the
observation period to derive a longer-term baseline, or by
reducing it to focus on particularly limited periods, if suffi-
cient high-quality images exist to produce the respective layer.
The approaches used to create LULC classification, SWO,
and WUI contain a high degree of automation, allowing rep-
etition for the same area or application for another area of
interest while sustaining comparability (requirement 3). In
turn, to improve layer quality, it proved useful to include a
manual post-processing step in the delineation of wetland ar-
ea, slightly lessening the comparability to a re-assessment.
However, since more substantial changes in wetland bound-
aries often take years to manifest (unless caused by short-term
interventions), the uncertainty introduced by the application of
a manual step is likely to be outweighed by such underlying
trends. Because the delineation represents longer-term trends
as a consequence of drivers of wetland change, it is only of
limited suitability to quantify these drivers (requirement 4).
Altered hydrology is both a result of wetland change and a
variable whose modification leads to changes in wetland eco-
systems. The SWO layer allowed to identify various locations
across Rwanda where surface water hydrology is influenced
by damming for irrigation or to operate hydropower stations
and where further monitoring is advisable. The SWO layer

can therefore serve as an indirect indicator, whereas LULC
and WUI, as well as the combination of both, are capable of
directly depicting sites of intensive agricultural wetland use,
which is the main driver of wetland change. Large parts of the
wetland landscapes in the centre and in the northeast of
Rwanda could be characterized as being used for intensive
agriculture. This reflects the government’s efforts to counter-
act food insecurity by increasing wetland area under cultiva-
tion as well as by implementing large-scale irrigation
schemes. The adaptation of the WUI methodology for SAR
imagery could furthermore enhance its use potential for de-
tecting and monitoring such areal expansion of agricultural
land in wetlands and agricultural intensification.

The presented outputs for Rwanda cannot form the basis
for legally binding boundary setting without prior investiga-
tion at the place of interest, e.g., in the sense of a cadastral land
register. However, they enable incorporation of EO-derived
data at scales relevant to policy and planning. Our results
can update and expand the existing wetland inventory and
establish a continuous monitoring scheme, within which the
layers and layer combinations are re-evaluated on a regular
basis to detect trends pointing to the improvement or to the
degradation of wetlands. This is of particular importance for
the institutions and organisations concerned with wetland
management as named in Section 2.1. On the one hand, insti-
tutions involved in the agricultural development of the coun-
try can use such data to determine target areas for agricultural
exploitation and intensification. On the other hand, they and
their counterparts tasked with safeguarding environmental in-
tegrity, can monitor environmental impacts on a larger scale.
Beyond national wetland management, the SWO layer direct-
ly caters towards the SDG indicator 6.6.1.

Whereas in the context of development and certain applied
research projects, there has been a shift towards accounting for
the complexity of landscapes with their different land uses and
stakeholders (Wood et al. 2013), applied remote sensing re-
search seems to prefer sectoral approaches. With respect to
wetlands, this often concerns either their conservation (or deg-
radation) or their efficient use, particularly for agricultural
production. Despite the evident need for those studies and
development of specific methods for each application, a
change of perspective towards stronger inter-sectoral EO re-
search as regards content, and towards the flexible production
of spatial information products for wetlands as regards
methods, is beneficial. This is especially true in many sub-
Saharan African countries where environmental protection
and food security constitute a major field of conflict. Using
the example of Rwanda, a modular framework for wetland
characterization provided relevant information both for envi-
ronmental protection and for food production. These products
are available on the national scale and their consistency allows
for their combination with additional information, even more
so if complemented by further modules. Spatial information
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produced by sectoral or regional initiatives, such as through
the GEOclassifier or the GlobWetland Africa GW-A toolbox,
for example, can be integrated as optional modules or as an
additional data source. So far, a range of information needs
could be met with the provided dataset. Although not all fac-
tors were covered, these can serve as indicators of change in
the hydrology, agriculture, and ecology sub-groups. This na-
tional dataset represents a good basis for reporting to interna-
tional conventions and update wetland status. Nevertheless, to
understand changes in wetland landscapes, information on
underlying drivers, pressures and management responses are
essential and needed to frame all analyses.

Conclusions

Awareness of the importance of wetlands on all scales has
increased over the last decades because of their capacity to
sequester large amounts of carbon and thus contribute to cli-
mate change mitigation, as well as to moderate the effects of
climate change on hydrology and the international food sys-
tem. On the national level, operational tools for coherent and
comprehensive information generation are still lacking, leav-
ing a gap between general knowledge and actual spatial plan-
ning. This is particularly accentuated in sub-Saharan Africa
where the poorest are typically the first to suffer from the
mismanagement of resources.

A rapidly growing population have become one of the
biggest challenges in Rwanda and the need to reconcile envi-
ronmental protection with food production is paramount. The
political will has manifested in the ratification of several mul-
tilateral agreements as well as in national legislation. As a step
towards closing the policy-management gap, this study pre-
sents a conceptual framework based on spatial information
needs for large-scale agricultural planning and environmental
protection from remotely sensed data. The use of freely avail-
able imagery, mostly free software and automated workflows
lowers the barrier to integrate Earth observation into wetland
management. A modular setup of the framework provides the
basis for a range of applications, like the countrywide consis-
tent delineation of wetland landscapes and the identification of
wetlands intensively used for agriculture, or cropland expan-
sion in protected areas. In the tropical environments of East

Africa, the SAR-based SWO layer provides a viable and flex-
ible option to approach hydrological dynamics as compared to
products derived from optical data. The use of different well-
established LULC classification nomenclatures provides com-
parability and consistency with other LULC products on var-
ious scales and beyond country boundaries, whereas the WUI
layer introduces a dynamic product which can be used to
identify shorter-term changes in wetlands. Different combina-
tions of all data layers increase their robustness, versatility,
and allow deriving additional information. Furthermore, it is
encouraged to complement the presented data modules by
others with comparable characteristics concerning spatial
and temporal resolution, to address more specific questions.

In applied Earth observation science for wetlands, there is a
need to change perspectives from the sectoral view towards
more integrative approaches, including both the environmen-
tal protection and the food production aspects. This is a trend
in development projects and wetland management programs
and should be reflected in operational remote sensing ap-
proaches. As demonstrated for Rwanda, likewise there is a
need to change perspectives in wetland mapping from rigidly
defined wetland classes towards a flexible characterization
that is adaptable to multiple large-scale planning issues.
Thus, monitoring and guidance for targeted interventions
can be supported.
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