Skip to main content

Advertisement

Log in

Obesity and aging affects skeletal muscle renin–angiotensin system and myosin heavy chain proportions in pre-diabetic Zucker rats

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

There is a gap in the knowledge regarding regulation of local renin–angiotensin system (RAS) in skeletal muscle during development of obesity and insulin resistance in vivo. This study evaluates the obesity- and age-related changes in the expression of local RAS components. Since RAS affects skeletal muscle remodelling, we also evaluated the muscle fibre type composition, defined by myosin heavy chain (MyHC) mRNAs and protein content. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps of 3- and 8-month-old male obese Zucker rats and their lean controls. The enzymatic activity of aminopeptidase A (APA) was determined flourometrically. Activation of renin receptor (ReR)/promyelocytic leukaemia zinc finger (PLZF) negative feedback mechanism was observed in obesity. The expression of angiotensinogen and AT1 was downregulated by obesity, while neutral endopeptidase and AT2 expressions were upregulated in obese rats with aging. Skeletal muscle APA activity was decreased by obesity, which negatively correlated with the increased plasma APA activity and plasma cholesterol. The expression of angiotensin-converting enzyme (ACE) positively correlated with MyHC mRNAs characteristic for fast-twitch muscle fibres. The obesity- and age-related alterations in the expression of both classical and alternative RAS components suggest an onset of a new equilibrium between ACE/AngII/AT1 and ACE2/Ang1–7/Mas at lower level accompanied by increased renin/ReR/PLZF activation. Increased APA release from the skeletal muscle in obesity might contribute to increased plasma APA activity. There is a link between reduced ACE expression and altered muscle MyHC proportion in obesity and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agoudemos MM, Greene AS (2005) Localization of the renin-angiotensin system components to the skeletal muscle microcirculation. Microcirculation 12:627–636. https://doi.org/10.1080/10739680500301664

    Article  CAS  PubMed  Google Scholar 

  2. Arbin V, Claperon N, Fournie-Zaluski MC, Roques BP, Peyroux J (2001) Acute effect of the dual angiotensin-converting enzyme and neutral endopeptidase 24-11 inhibitor mixanpril on insulin sensitivity in obese Zucker rat. Br J Pharmacol 133:495–502. https://doi.org/10.1038/sj.bjp.0704098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281:H2337–H2365

    Article  CAS  PubMed  Google Scholar 

  4. Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, Delafontaine P (2001) Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142:1489–1496. https://doi.org/10.1210/endo.142.4.8082

    Article  CAS  PubMed  Google Scholar 

  5. Chai W, Wang W, Liu J, Barrett EJ, Carey RM, Cao W, Liu Z (2010) Angiotensin II type 1 and type 2 receptors regulate basal skeletal muscle microvascular volume and glucose use. Hypertension 55:523–530. https://doi.org/10.1161/HYPERTENSIONAHA.109.145409

    Article  CAS  PubMed  Google Scholar 

  6. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G (2009) Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 53:1077–1082. https://doi.org/10.1161/HYPERTENSIONAHA.108.127258

    Article  CAS  PubMed  Google Scholar 

  7. Echeverria-Rodriguez O, Del Valle-Mondragon L, Hong E (2014) Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo. Peptides 51:26–30. https://doi.org/10.1016/j.peptides.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  8. Frisbee JC (2003) Impaired skeletal muscle perfusion in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 285:R1124–R1134. https://doi.org/10.1152/ajpregu.00239.200300239.2003

    Article  CAS  PubMed  Google Scholar 

  9. Fukushima A, Kinugawa S, Takada S, Matsushima S, Sobirin MA, Ono T, Takahashi M, Suga T, Homma T, Masaki Y, Furihata T, Kadoguchi T, Yokota T, Okita K, Tsutsui H (2014) (Pro)renin receptor in skeletal muscle is involved in the development of insulin resistance associated with postinfarct heart failure in mice. Am J Physiol Endocrinol Metab 307:E503–E514. https://doi.org/10.1152/ajpendo.00449.2013

    Article  CAS  PubMed  Google Scholar 

  10. Graf K, Grafe M, Bossaller C, Niehus J, Schulz KD, Auch-Schwelk W, Fleck E (1993) Degradation of bradykinin by neutral endopeptidase (EC 3.4.24.11) in cultured human endothelial cells. Eur J Clin Chem Clin Biochem 31:267–272

    CAS  PubMed  Google Scholar 

  11. Gross DN, Farmer SR, Pilch PF (2004) Glut4 storage vesicles without Glut4: transcriptional regulation of insulin-dependent vesicular traffic. Mol Cell Biol 24:7151–7162. https://doi.org/10.1128/MCB.24.16.7151-7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haugaard SB, Vaag A, Hoy CE, Madsbad S (2007) Desaturation of skeletal muscle structural and depot lipids in obese individuals during a very-low-calorie diet intervention. Obesity (Silver Spring) 15:117–125. https://doi.org/10.1038/oby.2007.508

    Article  CAS  Google Scholar 

  13. Healy DP, Wilk S (1993) Localization of immunoreactive glutamyl aminopeptidase in rat brain. II. Distribution and correlation with angiotensin II. Brain Res 606:295–303

    Article  CAS  PubMed  Google Scholar 

  14. Henriksen EJ, Prasannarong M (2013) The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Mol Cell Endocrinol 378:15–22. https://doi.org/10.1016/j.mce.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  15. Johnson PR, Stern JS, Horwitz BA, Harris RE Jr, Greene SF (1997) Longevity in obese and lean male and female rats of the Zucker strain: prevention of hyperphagia. Am J Clin Nutr 66:890–903. https://doi.org/10.1093/ajcn/66.4.890

    Article  CAS  PubMed  Google Scholar 

  16. Johnston AP, Baker J, De Lisio M, Parise G (2011) Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system. J Renin-Angiotensin-Aldosterone Syst 12:75–84. https://doi.org/10.1177/1470320310381795

    Article  CAS  PubMed  Google Scholar 

  17. Kemp BA, Bell JF, Rottkamp DM, Howell NL, Shao W, Navar LG, Padia SH, Carey RM (2012) Intrarenal angiotensin III is the predominant agonist for proximal tubule angiotensin type 2 receptors. Hypertension 60:387–395. https://doi.org/10.1161/HYPERTENSIONAHA.112.191403

    Article  CAS  PubMed  Google Scholar 

  18. King PA, Horton ED, Hirshman MF, Horton ES (1992) Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. J Clin Invest 90:1568–1575. https://doi.org/10.1172/JCI116025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krskova K, Filipcik P, Zilka N, Olszanecki R, Korbut R, Gajdosechova L, Zorad S (2011) Angiotensinogen and angiotensin-converting enzyme mRNA decrease and AT1 receptor mRNA and protein increase in epididymal fat tissue accompany age-induced elevation of adiposity and reductions in expression of GLUT4 and peroxisome proliferator-activated receptor (PPARgamma). J Physiol Pharmacol 62:403–410

    CAS  PubMed  Google Scholar 

  20. Malendowicz SL, Ennezat PV, Testa M, Murray L, Sonnenblick EH, Evans T, LeJemtel TH (2000) Angiotensin II receptor subtypes in the skeletal muscle vasculature of patients with severe congestive heart failure. Circulation 102:2210–2213

    Article  CAS  PubMed  Google Scholar 

  21. Mathe D (1995) Dyslipidemia and diabetes: animal models. Diabetes Metab 21:106–111

    CAS  Google Scholar 

  22. McBride TA (2006) AT1 receptors are necessary for eccentric training-induced hypertrophy and strength gains in rat skeletal muscle. Exp Physiol 91:413–421. https://doi.org/10.1113/expphysiol.2005.032490

    Article  CAS  PubMed  Google Scholar 

  23. Morais RL, Hilzendeger AM, Visniauskas B, Todiras M, Alenina N, Mori MA, Araujo RC, Nakaie CR, Chagas JR, Carmona AK, Bader M, Pesquero JB (2017) High aminopeptidase A activity contributes to blood pressure control in ob/ob mice by AT2 receptor-dependent mechanism. Am J Physiol Heart Circ Physiol 312:H437–H445. https://doi.org/10.1152/ajpheart.00485.2016

    Article  PubMed  Google Scholar 

  24. Nagatsu I, Nagatsu T, Yamamoto T, Glenner GG, Mehl JW (1970) Purification of aminopeptidase A in human serum and degradation of angiotensin II by the purified enzyme. Biochim Biophys Acta 198:255–270

    Article  CAS  PubMed  Google Scholar 

  25. Nilwik R, Snijders T, Leenders M, Groen BB, van Kranenburg J, Verdijk LB, van Loon LJ (2013) The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol 48:492–498. https://doi.org/10.1016/j.exger.2013.02.012

    Article  PubMed  Google Scholar 

  26. Phillips MI, Speakman EA, Kimura B (1993) Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regul Pept 43:1–20

    Article  CAS  PubMed  Google Scholar 

  27. Pinterova L, Krizanova O, Zorad S (2000) Rat epididymal fat tissue express all components of the renin-angiotensin system. Gen Physiol Biophys 19:329–334

    CAS  PubMed  Google Scholar 

  28. Roques BP, Noble F, Dauge V, Fournie-Zaluski MC, Beaumont A (1993) Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 45:87–146

    CAS  PubMed  Google Scholar 

  29. Rubio-Ruiz ME, Del Valle-Mondragon L, Castrejon-Tellez V, Carreon-Torres E, Diaz-Diaz E, Guarner-Lans V (2014) Angiotensin II and 1-7 during aging in metabolic syndrome rats. Expression of AT1, AT2 and Mas receptors in abdominal white adipose tissue. Peptides 57:101–108. https://doi.org/10.1016/j.peptides.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  30. Sabuhi R, Ali Q, Asghar M, Al-Zamily NR, Hussain T (2011) Role of the angiotensin II AT2 receptor in inflammation and oxidative stress: opposing effects in lean and obese Zucker rats. Am J Physiol Renal Physiol 300:F700–F706. https://doi.org/10.1152/ajprenal.00616.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, Pandolfi PP, Ruiz P, Unger T, Funke-Kaiser H (2006) A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 99:1355–1366. https://doi.org/10.1161/01.RES.0000251700.00994.0d

    Article  CAS  PubMed  Google Scholar 

  32. Schonke M, Bjornholm M, Chibalin AV, Zierath JR, Deshmukh AS (2018) Proteomics analysis of skeletal muscle from leptin-deficient Ob/Ob mice reveals adaptive remodeling of metabolic characteristics and fiber type composition. Proteomics 18. https://doi.org/10.1002/pmic.201700375

  33. Schweda F, Friis U, Wagner C, Skott O, Kurtz A (2007) Renin release. Physiology (Bethesda) 22:310–319. https://doi.org/10.1152/physiol.00024.2007

    Article  CAS  Google Scholar 

  34. Wang Y, Pessin JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16:243–250. https://doi.org/10.1097/MCO.0b013e328360272d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong V, Szeto L, Uffelman K, Fantus IG, Lewis GF (2006) Enhancement of muscle glucose uptake by the vasopeptidase inhibitor, omapatrilat, is independent of insulin signaling and the AMP kinase pathway. J Endocrinol 190:441–450. https://doi.org/10.1677/joe.1.06396

    Article  CAS  PubMed  Google Scholar 

  36. Yoshikawa A, Aizaki Y, Kusano K, Kishi F, Susumu T, Iida S, Ishiura S, Nishimura S, Shichiri M, Senbonmatsu T (2011) The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res 34:599–605. https://doi.org/10.1038/hr.2010.284

    Article  CAS  PubMed  Google Scholar 

  37. Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, Saku K (2003) The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 63:139–144

    Article  CAS  PubMed  Google Scholar 

  38. Zurmanova J, Soukup T (2013) Comparison of myosin heavy chain mRNAs, protein isoforms and fiber type proportions in the rat slow and fast muscles. Physiol Res 62:445–453

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants VEGA 2/0174/14 and APVV grants 15-0229 and 15-0565.

Author information

Authors and Affiliations

Authors

Contributions

V.L. prepared major parts of the manuscript. V.L. and L.B. carried out western blots analyses, measurements of enzyme activity, conducted real-time PCR analyses and data interpretation. M. S. and L.B. conducted glucose tolerance tests and biochemical analyses. L.H. carried out transcardial perfusion surgery. L.B., K.K. and S.Z. supervised and edited the manuscript. R. O. and S.Z. planned and organized the study and contributed to the revisions and the final drafts of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Viktória Lóry.

Ethics declarations

Experimental procedures involving animals were approved by the Jagiellonian University Ethical Committee on Animal Experiments.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lóry, V., Balážová, L., Kršková, K. et al. Obesity and aging affects skeletal muscle renin–angiotensin system and myosin heavy chain proportions in pre-diabetic Zucker rats. J Physiol Biochem 75, 351–365 (2019). https://doi.org/10.1007/s13105-019-00689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00689-1

Keywords

Navigation