Skip to main content

Advertisement

Log in

Efficient Bio-Nano Hybrid Solar Cells via Purple Membrane as Sensitizer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Bacteriorhodopsin is a heptahelical protein found in the purple membrane of Halobacterium salinarum. The performance of bacteriorhodopsin was evaluated as a sensitizer in dye-sensitized solar cells (DSSCs). Bacteriorhodopsin was efficiently immobilized on the titanium dioxide nanoparticles and then tested for its ability to convert solar radiation to electricity. The photovoltaic performance of DSSC based on the bacteriorhodopsin sensitizer has been examined. Under AM1.5 irradiation, a short-circuit current of 0.28 mA cm−2, open-circuit voltages of 0.51 V, fill factor of 0.62, and an overall energy conversion efficiency of 0.09 % are achieved employing platinum as a counter electrode. Carbon was used as a counter electrode instead of platinum to reduce costs. Based on carbon electrode, a short-circuit current of 0.21 mA cm−2 and open-circuit voltages of 0.52 V were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740.

    Article  Google Scholar 

  2. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 11, 6595–6663.

    Article  Google Scholar 

  3. Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., et al. (1998). Solid state dye sensitized cell showing high photon to current conversion efficiencies. Nature, 395, 550.

    Article  Google Scholar 

  4. Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414, 338–344.

    Article  Google Scholar 

  5. Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164, 3–14.

    Article  Google Scholar 

  6. Park, N., & Kim, K. (2008). Transparent solar cells based on dye-sensitized nanocrystalline semiconductors. Physica Status Solidi, 205, 1895–1904.

    Article  Google Scholar 

  7. Miyasaka, T., & Koyama, K. (1992). Rectified photocurrents from purple membrane Langmuir–Blodgett films at the electrode–electrolyte interface. Thin Solid Films, 210(211), 146–149.

    Article  Google Scholar 

  8. Takei, H., Lewis, A., Chen, Z., Nebenzahi, I. (1991). Implementing receptive fields with excitatory and inhibitory opto-electrical responses of bacteriorhodopsin films. Applied Optics, 30, 500–509.

    Article  Google Scholar 

  9. Oesterhelt, D., & Stoeckenius, W. (1971). Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature-New Biology, 233, 149–152.

    Article  Google Scholar 

  10. Oesterhelt, D., & Stoeckenius, W. (1974). Isolation of the cell membrane of Halobacterium halobium and its fractionalization into red and purple membranes. Methods in Enzymology, 31, 667–678.

    Article  Google Scholar 

  11. Jin, Y. D., Honig, T., Ron, I., Friedman, N., Sheves, M., Cahen, D. (2008). Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews, 37, 2422–2432.

    Article  Google Scholar 

  12. Trissl, H. (1990). Photoelectric measurements of purple membranes. Photochemistry and Photobiology, 51, 793–818.

    Google Scholar 

  13. Varo, G., & Keszthelyi, L. (1983). Photoelectric signals from dried oriented purple membranes of Halobacterium halobium. Biophysical Journal, 43, 47–51.

    Article  Google Scholar 

  14. Groma, G. I., Szabó, G., Váró, G. (1984). Direct measurement of picosecond charge separation in bacteriorhodopsin. Nature, 308, 557–558.

    Article  Google Scholar 

  15. Allam, N., Yen, C. W., Near, R., El-Sayed, M. (2011). Bacteriorhodopsin/TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energy and Environmental Science, 4, 2909–2914.

    Article  Google Scholar 

  16. Ito, S., Murakami, T. N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M. K., et al. (2008). Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %. Thin Solid Films, 516, 4613–4619.

    Article  Google Scholar 

  17. Yamazaki, E., Murayama, M., Nishikawa, N., Hashimoto, N., Shoyama, M., Kurita, O. (2007). Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Solar Energy, 81, 512–516.

    Article  Google Scholar 

  18. Groma, G. I., Ráksi, F., Szabó, G., Váró, G. (1988). Picosecond and nanosecond components in bacteriorhodopsin light-induced electric response signal. Biophysics Journal Biophysical Society, 54, 77–80.

    Article  Google Scholar 

  19. Miercke, L. J., Ross, P. E., Stroud, R. M., Dratz, E. A. (1989). Purification of bacteriorhodopsin and characterization of mature and partially processed forms. Journal of Biological Chemistry, 264, 7531–7535.

    Google Scholar 

  20. Lee, S. Y., Chang, H. N., Um, Y. S., Hong, S. H. (1998). Bacteriorhodopsin production by cell recycle culture of Halobacterium halobium. Biotechnology Letters, 20, 763–765.

    Article  Google Scholar 

  21. Vikesland, P., & Wigginton, K. (2010). Nanomaterial enabled biosensors for pathogen monitoring—a review. Environmental Science and Technology, 44, 3656–3669.

    Article  Google Scholar 

Download references

Conflict of Interest

We declare that we have no conflicts of interest in the authorship or publication of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Molaeirad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janfaza, S., Molaeirad, A., Mohamadpour, R. et al. Efficient Bio-Nano Hybrid Solar Cells via Purple Membrane as Sensitizer. BioNanoSci. 4, 71–77 (2014). https://doi.org/10.1007/s12668-013-0118-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0118-1

Keywords

Navigation