Skip to main content

Advertisement

Log in

Surfactant-mediated solvothermal synthesis of CuSbS2 nanoparticles as p-type absorber material

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The novel chalcostibite CuSbS2 had gained unique attention due to their dynamic nature as less toxic, cost-effective and earth abundant materials for the synthesis of an absorber layer in solar cell application. Herein, a facile and effective solvothermal method was used to enhance the sphere-like grain growth in the presence of polyvinylpyrrolidone (PVP) along with other precursor’s, followed by the deposition of CuSbS2 thin films using drop casting method. The synthesized nanoparticles and the deposited films were characterized for their structural, morphological, optical and electrical properties using different characterization techniques. X-ray diffraction (XRD) and Raman analysis revealed that as the amount of PVP increased, the crystallinity improved and the impurity phase formation reduced. High-resolution transmission electron microscope (HRTEM) with reduced crystallite size in the range of 2–5 nm and field emission scanning electron microscope (FESEM), exhibited sphere-shaped grains indicating the effect of PVP as surfactant for the growth of CuSbS2 nanomaterials. The average elemental composition of the nanoparticles had been determined using EDX analysis, and the result yielded Cu rich in all the samples. Optical studies using UV–Vis-NIR diffuse reflectance spectroscopy revealed that obtained CuSbS2 nanoparticles were having the absorption in the entire visible region and the direct band gap energy was in the range of 1.25 eV to 1.53 eV and that of photoluminescence spectrum gave the emission in the near IR region. The hall measurement studies showed that the deposited CuSbS2 films exhibited p-type conductivity. Devices were fabricated with the configuration of FTO/n-TiO2/p-CuSbS2/Ag, and the electrical properties were studied by recording the current- voltage (I-V) characteristics of the heterojunction device structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R B Balow, E J Sheets, M M Abu-Omar, and R Agrawal Chem. Mater. 27 2290 (2015)

    Article  Google Scholar 

  2. S Suehiro, K Horita, M Yuasa, T Tanaka, K Fujita, Y Ishiwata, K Shimanoe, and T Kida Inorg. Chem. 54 7840 (2015)

    Google Scholar 

  3. L Shi, Y Li, C Wu, and Y Dai J. Alloys Compd. 648 507 (2015)

    Article  Google Scholar 

  4. B Shu and Q Han 13 46 (2016)

    Google Scholar 

  5. A Wei, Z Yan, Y Zhao, M Zhuang, and J Liu Int. J. Hydrogen Energy 40 797 (2015)

    Article  Google Scholar 

  6. M X Zhuang, A X Wei, Y Zhao, J Liu, Z Q Yan, and Z Liu Int. J. Hydrogen Energy 40 806 (2015)

    Article  Google Scholar 

  7. S M McLeod, C J Hages, N J Carter, and R Agrawal Prog. Photovoltaics Res. Appl. 23 1550 (2015)

    Article  Google Scholar 

  8. S Ahn, S Rehan, D G Moon, Y-J Eo, S Ahn, J H Yun, A Cho, and J Gwak Green Chem. 19 1268 (2017)

    Article  Google Scholar 

  9. C K Miskin, W-C Yang, C J Hages, N J Carter, C S Joglekar, E A Stach, and R Agrawal Prog. Photovoltaics Res. Appl. 23 654 (2015)

    Article  Google Scholar 

  10. C Wadia, A P Alivisatos and D M Kammen, Environ. Sci. Technol. 43 2072 (2009)

    Article  ADS  Google Scholar 

  11. D B Mitzi, O Gunawan, T K Todorov, K Wang, and S Guha Sol. Energy Mater. Sol. Cells 95 1421 (2011)

    Article  Google Scholar 

  12. S Chen, X G Gong, A Walsh, and S H Wei Appl. Phys. Lett. 96 4 (2010)

    Google Scholar 

  13. K Biswas, S Lany, and A Zunger Appl. Phys. Lett. 96 94 (2010)

    Google Scholar 

  14. Y Cao, M S Denny, J V Caspar, W E Farneth, Q Guo, A S Ionkin, L K Johnson, M Lu, I Malajovich, D Radu, D H Rosenfeld, K R Choudhury, and W Wu J. Am. Chem. Soc. 134 15644 (2012)

    Article  Google Scholar 

  15. J Bincy, G Genifer Silvena, and A Leo Rajesh Phys. B Condens. Matter 537 243 (2018)

    Article  ADS  Google Scholar 

  16. C L McCarthy, P Cottingham, K Abuyen, E C Schueller, S P Culver, and R L Brutchey J. Mater. Chem. C 4 6230 (2016)

    Article  Google Scholar 

  17. K Ramasamy, H Sims, W H Butler, and A Gupta J. Am. Chem. Soc. 136 1587 (2014)

    Article  Google Scholar 

  18. S Ikeda, S Sogawa, Y Tokai, W Septina, T Harada, and M Matsumura RSC Adv. 4 40969 (2014)

  19. Z Zhang, C Zhou, Y Liu, J Li, Y Lai, and M Jia Int. J. Electrochem. Sci. 8 10059 (2013)

    Google Scholar 

  20. Y Zou and J Jiang Mater. Lett. 123 66 (2014)

    Article  Google Scholar 

  21. Y Rodríguez-Lazcano, M T S Nair, and P K Nair J. Cryst. Growth 223 399 (2001)

    Article  ADS  Google Scholar 

  22. J A Ramos Aquino, D L Rodriguez Vela, S Shaji, D A Avellaneda, and B Krishnan Phys. Status Solidi Curr. Top. Solid State Phys. 13 24 (2016)

  23. A C Rastogi and N R Janardhana Thin Solid Films 565 285 (2014)

    Article  ADS  Google Scholar 

  24. A Rabhi, M Kanzari, and B Rezig Mater. Lett. 62 3576 (2008)

    Article  Google Scholar 

  25. D Colombara, L M Peter, K D Rogers, J D Painter, and S Roncallo Thin Solid Films 519 7438 (2011)

    Article  ADS  Google Scholar 

  26. S Banu, S J Ahn, S K Ahn, K Yoon, and A Cho Sol. Energy Mater. Sol. Cells 151 14 (2016)

    Article  Google Scholar 

  27. Z Liu, J Huang, J Han, T Hong, J Zhang, and Z Liu Phys. Chem. Chem. Phys. 18 16615 (2016)

    Article  Google Scholar 

  28. K M Koczkur, S Mourdikoudis, L Polavarapu, and S E Skrabalak Dalt. Trans. 44 17883 (2015)

    Article  Google Scholar 

  29. S V. Jadhav, D S Nikam, V M Khot, N D Thorat, M R Phadatare, R S Ningthoujam, A B Salunkhe, and S H Pawar New J. Chem. 37 3121 (2013)

    Article  Google Scholar 

  30. G Lu, S Li, Z Guo, O K Farha, B G Hauser, X Qi, Y Wang, X Wang, S Han, X Liu, J S Duchene, H Zhang, Q Zhang, X Chen, J Ma, S C J Loo, W D Wei, Y Yang, J T Hupp, et al. Nat. Chem. 4 310 (2012)

    Article  Google Scholar 

  31. D Liu, L Lin, S Ren, and S Fu J. Mater. Sci. 51 3111 (2016)

    Article  ADS  Google Scholar 

  32. M Liu, Y Gong, Z Li, M Dou, and F Wang Appl. Surf. Sci. 387 790 (2016)

    Article  ADS  Google Scholar 

  33. C Yan, Z Su, E Gu, T Cao, J Yang, J Liu, F Liu, Y Lai, J Li, and Y Liu RSC Adv. 2 10481 (2012)

  34. T Rath, A J Maclachlan, M D Brown, and S A Haque J. Mater. Chem. A Mater. Energy Sustain. 3 24155 (2015)

    Article  Google Scholar 

  35. K Ramasamy, R K Gupta, H Sims, S Palchoudhury, S Ivanov, and A Gupta J. Mater. Chem. A 3 13263 (2015)

    Article  Google Scholar 

  36. J Bincy, G Genifer Silvena, and A Leo Rajesh, AIP Conf. Proc. 1832 50007 (2017)

    Article  Google Scholar 

  37. H C Gupta, M K Singh, and L M Tiwari J. Phys. Chem. Solids 64 531 (2003)

    Article  ADS  Google Scholar 

  38. X Y Ye, Y M Zhou, Y Q Sun, J Chen, and Z Q Wang J. Nanoparticle Res. 11 1159 (2009)

    Article  ADS  Google Scholar 

  39. C An, K Tang, Q Yang, and Y Qian Inorg. Chem. 42 8081 (2003)

    Article  Google Scholar 

  40. S Thiruvenkadam and A Leo Rajesh Int. J. Sci. Technol. Res. 3 38 (2014)

    Google Scholar 

  41. S Thiruvenkadam and A Leo Rajesh Ijser.Org 5 248 (2014)

    Google Scholar 

  42. J Bincy, G Genifer Silvena, and A Leo Rajesh Mater. Res. Bull. 95 267 (2017)

    Article  Google Scholar 

  43. F Long, S Chi, J He, J Wang, X Wu, S Mo, and Z Zou J. Solid State Chem. 229 228 (2015)

    Article  ADS  Google Scholar 

  44. S Moosakhani, A A Sabbagh Alvani, R Mohammadpour, P M Hannula, Y Ge, and S P Hannula Mater. Lett. 215 157 (2018)

    Article  Google Scholar 

  45. K Takei, T Maeda, and T Wada Thin Solid Films 582 263 (2015)

    Article  ADS  Google Scholar 

  46. A G Kannan, T E Manjulavalli, and J Chandrasekaran Procedia Eng. 141 15 (2016)

  47. F E Loranca-Ramos, C J Diliegros-Godines, R Silva González, and M Pal Appl. Surf. Sci. 427 1099 (2018)

    Article  ADS  Google Scholar 

  48. S A Manolache, L Andronic, A Duta, and A Enesca J. Optoelectron. Adv. Mater. 9 1269 (2007)

    Google Scholar 

Download references

Acknowledgements

One of the authors Ms. Bincy John thanks the University Grants Commission of India, for providing research fellowship (Maulana Azad National Fellowship, Grant No: F1-17.1/2016-17/MANF-2015-17-KER-53161). The authors would like to thank Dr. G. Amarendra, Scientist-In-Charge, and Dr. G. M. Bhalerao, Scientist-E UGC-DAE Consortium for Scientific Research, Kalpakkam, Tamilnadu, India, for providing sophisticated instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leo Rajesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, B., Genifer Silvena, G., Hussain, S. et al. Surfactant-mediated solvothermal synthesis of CuSbS2 nanoparticles as p-type absorber material. Indian J Phys 93, 185–195 (2019). https://doi.org/10.1007/s12648-018-1288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1288-z

Keywords

PACS Nos.

Navigation