Skip to main content
Log in

Non-linear model of nanoscale devices for memory application

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

COMSOL multiphysics software based model has been developed for the mem-devices comprising of undoped and doped CdSe/starch quantum dots and CdS/PVA nanocomposites as active layer. The assembly of quantum dots/nanocomposites can be represented by an equivalent structure comprising of almost infinitely alternating repetition of building blocks, each block having conducting and non-conducting regions. The time-dependent inductance (L) along with time-dependent resistance (R) and capacitance (C) are used as model input and the solutions are obtained using semiconductor, electric circuit and ordinary differential equation module. From this study it is clear that the mem-behaviour of the as-fabricated nanodevices having \(\frac{{R_{OFF} }}{{R_{ON} }} > 10\) can be well explained by the time-dependent R, C and L features of the nanoparticle assembly adopting COMSOL Multiphysics software. However, for devices with \(\frac{{R_{OFF} }}{{R_{ON} }}\) < 10, hysteresis behavior is governed by only time-dependent R and C features. As higher (> 10) \(\frac{{R_{OFF} }}{{R_{ON} }}\) values enhance efficiency of memory units, the present model incorporating time-dependent L in addition to time-dependent R and C will be useful for optimization in the device design for application as memory units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L O Chua IEEE Trans. Circuit Theory CT-18 507 (1971)

    Article  Google Scholar 

  2. G E Moore Electronics 38 114 (1965)

    Google Scholar 

  3. D B Strukov, G S Snider, D R Stewart and R S Williams Nature 453 80 (2008)

    Article  ADS  Google Scholar 

  4. R S Williams IEEE Spectr. 45 28(2008)

    Article  Google Scholar 

  5. T H Kim, E Y Jang, N J Lee, D J Choi, K-J Lee, J Jang, J Choi, S H Moon and J Cheon Nanoletters 9 2229(2009)

    Article  ADS  Google Scholar 

  6. D Schindel and M R Singh J. Phys.: Condens. Matter 27 345301 (2015)

    Google Scholar 

  7. F Carreño, M A Anton, S Melle, O G Calderon, E Cabera-Granado, J Cox, M R Singh and A Eqatz-Gonez J. Appl. Phys. 115 064304 (2014)

    Article  ADS  Google Scholar 

  8. M J Brzozowski and M R Singh Plasmonics 12 1021(2017)

    Article  Google Scholar 

  9. M R Singh, M C Sekhar, S Balakrishnan and S Masood J. Appl. Phys. 122 034306 (2017)

    Article  ADS  Google Scholar 

  10. M R Singh, J Guo, J M J Cid and J E D H Martinez J. Appl. Phys. 121 094303(2017)

    Article  ADS  Google Scholar 

  11. M D Ventra, Y V Pershin, and L O Chua Proc. IEEE 9 1717 (2009)

    Article  Google Scholar 

  12. N Sai, N Bushong, R Hatcher and M D Ventra Phys. Rev. B 75 115410 (2007)

    Article  ADS  Google Scholar 

  13. S Sarma, B M Mothudi, M S Dhlamini J. MaterSci: Mater. Electron. 27 4551 (2016)

    Google Scholar 

  14. R Bhadra PhD thesis titled: Synthesis and characterization of some Semiconductor nanocystallites with emphasis on quantum dots for application in electronics (2009)

  15. S Sarma J Poly. Engi. (2015) https://doi.org/10.1515/polyeng-2015-0115

    Article  Google Scholar 

  16. Z Biolek, D Biolek and V Biolkova Radioengineering 18 210 (2009)

    Google Scholar 

  17. Y N Joglekar and S J Wolf Eur. J. Phys. 30 661(2009)

    Article  Google Scholar 

  18. P S Georgiou, M Barahona, S N Yaliraki and E M Drakakis Microelectron. J. 45 1363 (2014)

    Article  Google Scholar 

  19. R E Pino, J W Bohl, N McDonald, B Wysocki, P Rozwood, K A Campbell, A Obela and ATimilsina et al. IEEE/ACM Int. Symp. Nanoscale Archit. 1 (2010)

  20. Z Biolek, D Biolek and V Biolkova Radioengineering 24 369 (2015)

    Article  Google Scholar 

  21. H Das and P Datta J. Exp. Nanoscie. 11 901 (2016)

    Article  Google Scholar 

  22. V Mladenov and S Kirilov ISTET 2013: International Symposium on Theoretical Electrical Engineering: Pilsen, Czech Republic, p. II-13–II-14 24th–26th June 2013

  23. B Das, J Devi, P K Kalita and P Datta J. Mater. Sci.: Mater. Electron. 29 546 (2017)

    Google Scholar 

  24. Z Wang AIP Conf. Proc. 1839 020048 (2017)

    Article  Google Scholar 

  25. LW Wang and A Zunger Phys. Rev. B 53 15 (1996)

    Google Scholar 

  26. D Yu, B L Wehrenberg, P Jha, J Ma and P Guyot-Sionnesta J. Appl. Phys. 99 104315 (2006)

    Article  ADS  Google Scholar 

  27. P Cheng, K Sun and Y H Hu Nano Lett. 16 572 (2016)

    Article  ADS  Google Scholar 

  28. L O Chua Proc. IEEE 91 1830 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The First Author J. Devi would like to acknowledge Department of Science and Technology, Govt. of India and third author S. Sarma would like to acknowledge University of South Africa, South Africa.

Funding

This study was funded by Department of Science and Technology, Govt. of India (Grant Number SR/WOS-A/ET-1102/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Devi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, J., Das, B., Sarma, S. et al. Non-linear model of nanoscale devices for memory application. Indian J Phys 92, 1541–1550 (2018). https://doi.org/10.1007/s12648-018-1255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1255-8

Keywords

PACS Nos.

Navigation