Skip to main content
Log in

Optimization of thermoelectric properties of n-type Bi2(Te,Se)3 with optimizing ball milling time

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The thermoelectric properties at elevated temperature were investigated for n-type Bi2(Te,Se)3 which is obtained from ball milling processed powder with various milling times. Electrical properties such as electrical resistivity and Seebeck coefficient are clearly dependent on milling time, in which the carrier concentration is attributed to the change of the electrical properties. The concentrations of the defects are also varied with the ball milling time, which is the origin of the carrier concentration variation. Even though finer grain sizes are obtained after the long ball milling time, the temperature dependence of the thermal conductivity is not solely understood with the grain size, whereas the electrical contribution to the thermal conductivity should be also considered. The highest figure of merit value of ZT = 0.83 is achieved at 373 K for the optimized samples, in which ball milling time is 10 h. The obtained ZT value is 48% improvement over that of the 0.5-h sample at 373 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  Google Scholar 

  2. Sales BC. Thermoelectric materials. Small is cooler. Science. 2002;295(5558):1248.

    Article  Google Scholar 

  3. Nolas GS, Sharp J, Goldsmid J. Thermoelectrics: Basic Principles and New Materials Developments. Heidelberg: Springer; 2001. 111.

    Google Scholar 

  4. Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater. 2015;5(17):1500411.

    Article  Google Scholar 

  5. Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.

    Article  Google Scholar 

  6. Hu L, Zhu T, Liu X, Zhao X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater. 2014;24(33):5211.

    Article  Google Scholar 

  7. Hu L, Gao H, Liu X, Xie H, Shen J, Zhu T, Zhao X. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. J Mater Chem. 2012;22(32):16484.

    Article  Google Scholar 

  8. Zhu T, Xu Z, He J, Shen J, Zhu S, Hu L, Tritt TM, Zhao X. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials. J Mater Chem A. 2013;38(1):11589.

    Article  Google Scholar 

  9. Hu L, Zhu T, Wang Y, Xie H, Xu Z, Zhao X. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 2014;6:e88.

    Article  Google Scholar 

  10. Seo S, Lee K, Jeong Y, Oh MW, Yoo B. Method of efficient Ag doping for Fermi level tuning of thermoelectric Bi0.5Sb1.5Te3 alloys using a chemical displacement reaction. J Phys Chem C. 2015;119(32):18038.

    Article  Google Scholar 

  11. Choi H, Kim SJ, Kim Y, We JH, Oh MW, Cho BJ. Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure. J Mater Chem C. 2017;5(33):8559.

    Article  Google Scholar 

  12. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.

    Article  Google Scholar 

  13. Kanatzia A, Papageorgiou C, Lioutas C, Kyratsi T. Design of ball-milling experiments on Bi2Te3 thermoelectric material. J Electron Mater. 2013;42(7):1652.

    Article  Google Scholar 

  14. Son JH, Oh MW, Kim BS, Park SD, Min BK, Kim MH, Lee HW. Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3. J Alloys Compd. 2013;566:168.

    Article  Google Scholar 

  15. Lin SS, Liao CN. Effect of ball milling and post treatment on crystal defects and transport properties of Bi2(Se,Te)3 compounds. J Appl Phys. 2011;110(9):093707.

    Article  Google Scholar 

  16. Kuo CH, Hwang CS, Jeng MS, Su WS, Chou YW, Ku JR. Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering. J Alloys Compd. 2010;496(1–2):687.

    Article  Google Scholar 

  17. Williamson GK, Hall WH. X-ray line broadnening from filed aluminium and wolfram. Acta Metall. 1953;1(1):22.

    Article  Google Scholar 

  18. Mittemeijer EJ, Welzel U. The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z Kristallogr. 2008;223(9):552.

    Article  Google Scholar 

  19. Dow HS, Oh MW, Kim BS, Park SD, Min BK, Lee HW, Wee DM. Effect of Ag or Sb addition on the thermoelectric properties of PbTe. J Appl Phys. 2010;108(11):113709.

    Article  Google Scholar 

  20. Miller GR, Li CY. Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J Phys Chem Solids. 1965;26(1):173.

    Article  Google Scholar 

  21. Cho S, Kim Y, DiVenere A, Wong GK, Ketterson JB. Antisite defects of Bi2Te3 thin films. Appl Phys Lett. 1999;75(10):1401.

    Article  Google Scholar 

  22. Oh MW, Son JH, Kim BS, Park SD, Min BK, Lee HW. Antisite defects in n-type Bi2(Te,Se)3: experimental and theoretical studies. J Appl Phys. 2014;115(13):133706.

    Article  Google Scholar 

  23. Navratil J, Stary Z, Piechacek T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull. 1996;31(12):1559.

    Article  Google Scholar 

  24. Slater JC. Atomic radii in crystals. J Chem Phys. 1964;41(10):3199.

    Article  Google Scholar 

  25. Kulbachinskii VA, Kaminskii AY, Kindo K, Narumi Y, Suga K, Lostak P, Svanda P. Ferromagnetism in new diluted magnetic semiconductor Bi2−xFe x Te3. Physica B. 2002;311(3–4):292.

    Article  Google Scholar 

  26. Kulbachinskii VA, Kaminskii AY, Kytin VG, Visser A. Thermoelectric power and Shubnikov–de Haas effect in magnetic impurity-doped Bi2Te3 and Bi2Se3. J Magn Magn Mater. 2004;272–276(3):1991.

    Article  Google Scholar 

  27. Seo S, Jeong Y, Oh MW, Yoo B. Effect of hydrogen annealing of ball-milled Bi0.5Sb1.5Te3 powders on thermoelectric properties. J Alloys Compd. 2017;706:576.

    Article  Google Scholar 

  28. Seo S, Oh MW, Jeong Y, Yoo B. A hybrid method for the synthesis of small Bi0.5Sb1.5Te3 alloy particles. J Alloys Compd. 2017;696:1151.

    Article  Google Scholar 

  29. Kim SJ, Choi H, Kim Y, We JH, Shin JS, Lee HE, Oh MW, Lee KJ, Cho BJ. Post ionized defect engineering of the screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator. Nano Energy. 2017;31:258.

    Article  Google Scholar 

  30. May AF, Fleurial JP, Snyder GJ. Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Phys Rev B. 2008;78(12):125205.

    Article  Google Scholar 

  31. Parrot JE, Stucks AD. Thermal Conductivity of Solids. London: Pion Limited; 1975. 44.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the research fund of Hanbat National University in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Wook Oh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, JH., Oh, MW., Kim, BS. et al. Optimization of thermoelectric properties of n-type Bi2(Te,Se)3 with optimizing ball milling time. Rare Met. 37, 351–359 (2018). https://doi.org/10.1007/s12598-018-1028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1028-8

Keywords

Navigation