Skip to main content
Log in

SnSe + Ag2Se composite engineering with ball milling for enhanced thermoelectric performance

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Earth-abundant IV–VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed by solid solution method followed by spark plasma sintering (SPS) and their thermoelectric properties in two directions were investigated, and then, the performance of composites was further optimized with an additional ball milling. The coexistence of SnSe and Ag2Se phases is clearly confirmed by energy-dispersive X-ray spectroscopy (EDX) in transmission electron microscopy (TEM). After ball milling, the size of SnSe grains as well as the incorporated Ag2Se particles reduces effectively, which synergistically optimizes the electrical and thermal transport properties at high temperature range. As a result, a maximum ZT of ~ 0.74 at 773 K for SnSe + 1.0%Ag2Se in the direction vertical to the pressing direction is achieved. Composite engineering with additional ball milling is thus proved to be an efficient way to improve the thermoelectric properties of SnSe, and this strategy could be applicable to other thermoelectric systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sootsman JR, Chung DY, Kanatzidis MG. New and old concepts in thermoelectric materials. Angew Chem. 2009;48(46):8616.

    Article  Google Scholar 

  2. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  Google Scholar 

  3. Qin P, Qian X, Ge ZH, Zheng L, Feng J, Zhao LD. Improvements of thermoelectric properties for p-type Cu1.8S bulk materials via optimizing the mechanical alloying process. Inorg Chem Front. 2017;4(7):1192.

    Article  Google Scholar 

  4. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.

    Article  Google Scholar 

  5. Pei YL, Wu H, Wu D, Zheng F, He J. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc. 2014;136(39):13902.

    Article  Google Scholar 

  6. Pei Y, Shi X, Lalonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

    Article  Google Scholar 

  7. Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.

    Article  Google Scholar 

  8. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG. Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater. 2010;22(36):3970.

    Article  Google Scholar 

  9. He J, Androulakis J, Kanatzidis MG, Dravid VP. Seeing is believing: weak phonon scattering from nanostructures in alkali metal-doped lead telluride. Nano Lett. 2012;12(1):343.

    Article  Google Scholar 

  10. Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun. 2014;5:4515.

    Google Scholar 

  11. Wu H, Carrete J, Zhang Z, Qu Y, Shen X, Wang Z, Zhao LD, He J. Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 2014;6(6):e108.

    Article  Google Scholar 

  12. Girard SN, He J, Zhou X, Shoemaker D, Jaworski CM, Uher C, Dravid VP, Heremans JP, Kanatzidis MG. High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc. 2011;133(41):16588.

    Article  Google Scholar 

  13. He J, Zhao LD, Zheng JC, Doak JW, Wu H, Wang HQ, Lee Y, Wolverton C, Kanatzidis MG, Dravid VP. Role of sodium doping in lead chalcogenide thermoelectrics. J Am Chem Soc. 2013;135(12):4624.

    Article  Google Scholar 

  14. Korkosz RJ, Chasapis TC, Lo SH, Doak JW, Kim YJ, Wu CI, Hatzikraniotis E, Hogan TP, Seidman DN, Wolverton C, Dravid VP, Kanatzidis MG. High ZT in p-type (PbTe)1−2x (PbSe) x (PbS) x thermoelectric materials. J Am Chem Soc. 2014;136(8):3225.

    Article  Google Scholar 

  15. Zhang Q, Cao F, Liu W, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1−y)Se(y). J Am Chem Soc. 2012;134(24):10031.

    Article  Google Scholar 

  16. Tan G, Shi F, Hao S, Chi H, Bailey TP, Zhao LD, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J Am Chem Soc. 2015;137(35):11507.

    Article  Google Scholar 

  17. Tan G, Zhao LD, Shi F, Doak JW, Lo SH, Sun H, Wolverton C, Dravid VP, Uher C, Kanatzidis MG. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. J Am Chem Soc. 2014;136(19):7006.

    Article  Google Scholar 

  18. Tan G, Shi F, Sun H, Zhao LD, Uher C, Dravid VP, Kanatzidis MG. SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity. J Mater Chem A. 2014;2(48):20849.

    Article  Google Scholar 

  19. Chen Y, Nielsen MD, Gao YB, Zhu TJ, Zhao X, Heremans JP. SnTe–AgSbTe2 thermoelectric alloys. Adv Energy Mater. 2012;2(1):58.

    Article  Google Scholar 

  20. Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci USA. 2013;110(33):13261.

    Article  Google Scholar 

  21. Qian XF, Fu L, Li J. Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res. 2015;8(3):967.

    Article  Google Scholar 

  22. Antunez PD, Buckley JJ, Brutchey RL. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale. 2011;3(6):2399.

    Article  Google Scholar 

  23. Chun D, Walser RM, Bené RW, Courtney TH. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl Phys Lett. 1974;24(10):479.

    Article  Google Scholar 

  24. Xue MZ, Yao J, Cheng SC, Fu ZW. Lithium electrochemistry of a novel SnSe thin-film anode. J Electrochem Soc. 2006;153(2):A270.

    Article  Google Scholar 

  25. Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373.

    Article  Google Scholar 

  26. Zhao LD, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2016;351(6269):141.

    Article  Google Scholar 

  27. Chen CL, Wang H, Chen YY, Day T, Snyder GJ. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A. 2014;2(29):11171.

    Article  Google Scholar 

  28. Chere EK, Zhang Q, Dahal K, Cao F, Mao J, Ren Z. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. J Mater Chem A. 2016;4(5):1848.

    Article  Google Scholar 

  29. Ge ZH, Song DS, Chong XY, Zheng FS, Jin L, Qian X, Zheng L, Dunin-Borkowski RE, Qin P, Feng J, Zhao LD. Boosting the thermoelectric performance of (Na, K) co-doped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering. J Am Chem Soc. 2017;139(28):9714.

    Article  Google Scholar 

  30. Li Y, Li F, Dong J, Ge Z, Kang F, He J, Du H, Li B, Li JF. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J Mater Chem C. 2016;4(10):2047.

    Article  Google Scholar 

  31. Feng D, Ge ZH, Wu D, Chen YX, Wu T, Li J, He J. Enhanced thermoelectric properties of SnSe polycrystals via texture control. Phys Chem Chem Phys. 2016;18(46):31821.

    Article  Google Scholar 

  32. Chen YX, Ge ZH, Yin M, Feng D, Huang XQ, Zhao W, He J. Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping. Adv Funct Mater. 2016;26(37):6836.

    Article  Google Scholar 

  33. Sassi S, Candolfi C, Vaney JB, Ohorodniichuk V, Masschelein P, Dauscher A, Lenoir B. Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl Phys Lett. 2014;104(21):105.

    Article  Google Scholar 

  34. Wei TR, Wu CF, Zhang X, Tan Q, Sun L, Pan Y, Li JF. Thermoelectric transport properties of pristine and Na-doped SnSe1−x Te x polycrystals. Phys Chem Chem Phys PCCP. 2015;17(44):30102.

    Article  Google Scholar 

  35. Zhang Q, Chere EK, Sun J, Cao F, Dahal K, Chen S, Chen G, Ren Z. Studies on thermoelectric properties of n-type polycrystalline SnSe1−x S x by iodine doping. Adv Energy Mater. 2015;5(12):1500360.

    Article  Google Scholar 

  36. Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X, Li X. Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X = S, Se). Nano Energy. 2016;32:80.

    Article  Google Scholar 

  37. Xing ZB, Li JF. Lead-free AgSn4SbTe6, nanocomposites with enhanced thermoelectric properties by SiC nanodispersion. J Alloys Compd. 2016;687:246.

    Article  Google Scholar 

  38. Ju H, Kim J. Effect of SiC ceramics on thermoelectric properties of SiC/SnSe composites for solid-state thermoelectric applications. Ceram Int. 2016;42(8):9550.

    Article  Google Scholar 

  39. Huang XQ, Chen YX, Yin M, Feng D, He J. Origin of the enhancement in transport properties on polycrystalline SnSe with compositing two-dimensional material MoSe2. Nanotechnology. 2017;28(10):105708.

    Article  Google Scholar 

  40. Leng H, Zhou M, Zhao J, Han Y, Li L. Optimization of thermoelectric performance of anisotropic Ag x Sn1−x Se compounds. J Electron Mater. 2016;45(1):527.

    Article  Google Scholar 

  41. Lin CC, Lydia R, Yun JH, Lee HS, Rhyee JS. Extremely low lattice thermal conductivity and point defect scattering of phonons in Ag-doped (SnSe)1−x (SnS) x compounds. Chem Mater. 2017;29:5344.

    Article  Google Scholar 

  42. Wiegers GA. Electronic and ionic conduction of solid solutions Ag2−x Au x Se (0 ≤ x≤0.5). J Less Common Metals. 1976;48(2):269.

    Article  Google Scholar 

  43. Ge ZH, Zhang BP, Shang PP, Li JF. Control of anisotropic electrical transport property of Bi2S3 thermoelectric polycrystals. J Mater Chem. 2011;21(25):9194.

    Article  Google Scholar 

  44. Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J, Ikuhara Y. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J Am Chem Soc. 2011;133(13):4661.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation (No. DMR-1410636), the Natural Science Foundation of Guangdong Province (No. 2015A030308001), the Leading Talents of Guangdong Province Program (No. 00201517), the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. JCYJ20150831142508365, KQTD2016022619565991 and KQCX2015033110182370) and the National Natural Science Foundation of China (No. 51632005). This work was also supported by Project funded by China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Qing He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, D., Chen, YX., Fu, LW. et al. SnSe + Ag2Se composite engineering with ball milling for enhanced thermoelectric performance. Rare Met. 37, 333–342 (2018). https://doi.org/10.1007/s12598-017-0994-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0994-6

Keywords

Navigation