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Abstract
Thanks to the advancement of computer vision technology and knowledge, the accuracy of human pose estimation has 
improved to the level that can be used for motion capture. Especially, human pose estimation has been gaining attention in 
research due to its efficiency and accuracy. The traditional motion capture system is not accessible to everyone. Human pose 
estimation could be a solution to replace the traditional system. However, the validity of human pose estimation has not been 
investigated enough yet in athletic and sports contexts. For this reason, this research aims to validate the kinematic meas-
urements of human pose estimation by comparing them against the measurement of marker-based motion capture system. 
Five participants were recruited and asked to perform eight athletic and nine sports movements, respectively while being 
captured by normal and infrared cameras. Human pose estimation was run on frames from the RGB cameras to estimate 
human landmarks. From estimated landmarks in human pose estimation and marker-based motion capture system, elbow, 
shoulder, hip, and knee joint angles on the left and right sides were calculated and compared. Mean absolute error was used 
to evaluate the accuracy of human pose estimation measurements. The mean errors for athletic and sports movements were 
9.7 ± 4.7 degrees and 9.0 ± 3.3 degrees, respectively. Errors were generally largest for elbow joint angles. The errors might 
be due to occlusion and systematic differences between human pose estimation and marker-based motion capture system. In 
conclusion, human pose estimation contains room for improvement, but has the potential to be used in some applications in 
which strictly precise measurements are not required.
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1 Introduction

1.1  Traditional kinematic analysis

Pose estimation has gained significant popularity and trac-
tion in recent years, primarily driven by the remarkable 
advancements in computer vision techniques. This technol-
ogy enables the estimation and analysis of human poses, 
including the identification of key joints and their positions, 
from images. Kinematic analysis stands as one of the promi-
nent use cases for pose estimation, leveraging its ability to 

accurately track human movements and joint positions. This 
capability has proven invaluable in various fields, including 
biomechanics, sports science, physical therapy, and robotics. 
Traditionally, the kinematic analysis was done by marker- 
(e.g. VICON (VICON Motion Systems Ltd., Oxford, the 
UK), OptiTrack (OptiTrack, Corvallis, USA)) or inertial 
measurement unit- (e.g. Xsens (Xsens, Enschede, the Neth-
erlands), and Rokoko (Rokoko, Copenhagen, Denmark))-
based motion capture system or both. However, the marker-
based motion capture system is costly [1, 2], laboratory 
environment-dependent [3, 4], and complicated to use [5]. 
The inertial measurement unit-based motion capture is error-
prone to drifts, sensitive to its system calibration [6], and 
unable to obtain the connection to the world coordinates by 
itself [7] although it can be used outside of the laboratory 
environment.
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1.2  Advantage of human pose estimation

Compared to the traditional motion capture system, pose 
estimation is freely available from an open-source code, 
fast to process data, and portable since the users cap-
ture motions by cameras and process the image or vid-
eos to receive the positional data of human joints. There 
are several well-known pose estimation models, such as 
OpenPose (CMU, Pittsburgh, USA), ARKit (Apple Inc., 
Cupertino, USA), and TensorFlow Pose Estimate (Google, 
Mountain View, USA). Currently, among various pose 
estimation models, OpenPose is well-known and often 
used for applications in the sports and exercise science 
domain [8–11].

1.3  The accuracy of marker‑less motion analysis

Zago et al. [8] conducted a case study to evaluate the accu-
racy of human pose estimation-based gait analysis. They 
found mean errors between human pose estimation and 
marker-based motion capture system of 20 mm, 0.03 s, 
1.23 cm, and 0.03 s in 3D tracking trajectories, stance-
phase duration, swing-phase duration, and step length, 
respectively. D’Antonio et al. [9] conducted gait analysis 
with the human pose estimation and found that although 
gait trajectories were accurately tracked, human pose esti-
mation under and over-estimated the minimum and maxi-
mum joint angles by up to 9.9 degrees. The inaccuracy is 
probably due to camera angles and locations as Zago et al. 
[8] investigated the accuracy of the human pose estima-
tion tracking in different settings and found that the result 
was optimal when a camera was 1.8 m away from a par-
ticipant and the camera position was perpendicular to the 
gait direction. D’Antonio et al. [9], however, placed two 
cameras one meter away from a treadmill (one to diago-
nally left and another to diagonally right) to capture gait. 
Ota et al. [10] conducted a reliability and validity study 
of human pose estimation in a squat motion and found 
that the kinematic measurement was reliable and valid as 
intra-class correlation coefficient for human pose estima-
tion measurements were 0.92–0.96, and intra-class cor-
relation coefficient between human pose estimation and 
marker-based motion capture system measurements were 
more than 0.6. Nakano et al. [11] captured more rapid and 
complicated motions including counter-movement jump 
and ball throwing in addition to walking. They found that 
although some of the joint positions were tracked with 
errors of more than 40 mm compared to a reference meas-
urement, the error was less than 30 mm in 80% of the time 
series. Despite the applicability and usability, the measure-
ment quality relies on video quality. Zago et al. [8] found 

that camera setting heavily influenced measurement accu-
racy. Compared to errors in the marker-based motion cap-
ture system, which is below 1 cm [7], studies mentioned 
above [8, 11] reported bigger errors. Also, at least two 
cameras are necessary to reconstruct 3D data from multi-
ple 2D data since each camera can capture motions in 2D.

1.4  Aim

Despite the extensive research on human pose estimation, 
there is a lack of reliability and validation studies on human 
pose estimation-based kinematic measurement in sports and 
athletic movements. Owing to its portability and ease of use 
in on-field settings, human pose estimation holds potential 
for capturing athletes' movements without disrupting their 
concentration or limiting their range of motion. This capabil-
ity empowers researchers to analyze real athletic movements, 
paving the way for enhanced athletic performance and injury 
prevention strategies. Consequently, this study endeavors to 
validate human pose estimation measurement as a human 
motion capture system for kinematic analysis of sports and 
athletic movements.

2  Methods

2.1  Study overview

To evaluate the accuracy of the human pose estimation 
measurements, joint angles were calculated from the esti-
mated 12 key points including right and left wrist, elbow, 
shoulder, hip, knee, and ankle joint points. Then, the angles 
were compared with the respective VICON (VICON Motion 
Systems Ltd., Oxford, UK) measurements. In total, eight 
athletic motions including counter-movement jump, squat 
jump, standing, spreading arm, 360-degree turn while 
spreading arm, walk, and jog, and nine sports motions 
including football inside kick, basketball chest pass / free 
throw, volleyball receiving / overhead serving, tennis fore-
hand / backhand / overhead swing, were performed twice by 
each participant. For tennis motions, participants were asked 
to simulate the motions without actual tennis balls. All par-
ticipants were informed how to execute each movement cor-
rectly. The movements were captured by 12 Contemplas ab 
Baumer VLXT-31C cameras with undistorted lenses and an 
automatic synchronization system (CONTEMPLAS GmbH., 
Kempten, Germany) for OpenPose [12] and 10 infrared cam-
eras to extract joint positions. The extracted joint positions 
were further processed to calculate joint angles which were 
then compared to evaluate the accuracy of the human pose 
estimation measurements. Data processing was done using 
Python 3.10.
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2.2  Participants

In total, five male participants (Age (mean ± standard 
deviation): 30.2 ± 6.6 years old, Height (mean ± standard 
deviation): 176.2 ± 6.7 cm, Body mass (mean ± standard 
deviation): 74.2 ± 9.1 kg) participated in this study. All 
participants were in good physical condition and did not 
have any orthopedic or neurological impairments. Instruc-
tion on movements to be captured was given to all par-
ticipants before the experiment. During the instruction, 
the ability of motion execution was checked by sports 
scientists. The study was conducted according to the ethi-
cal guidelines of the Technical University of Munich. All 
participants were informed about the process of the study 
upfront and written consent was obtained.

2.3  Data collection

The experiment was conducted in a sports hall with similar 
dimensions to a volleyball court. The infrared and RGB 
cameras were strategically positioned around the perim-
eter of the capturing area, encompassing a full 360-degree 
view. The capturing environment enclosed a volume of 
roughly 4  m3, and each camera stood at a height of about 
2.5 m. To ensure time alignment between the two cam-
era systems, the time instant at which a falling reflective 
marker touched the ground was captured.

2.4  Marker‑based motion capture system setup

The VICON software (Nexus 2.8.2, Version 2.0; VICON 
Motion Systems Ltd., Oxford, UK) was used to config-
ure and post-process the captured data. The sampling fre-
quency was 100 Hz. Reflective markers were placed on 
the body landmarks according to the Full-Body Plug-in 
Gait marker placement model provided by VICON Motion 
Systems Ltd [13]. All infrared cameras were calibrated 
using an active wand with five LED lights. Static partici-
pant calibration was performed in T-pose, and the partici-
pant’s anthropometric measurement including leg length, 
waist width, shoulder width, elbow width, ankle width, 
knee width, wrist width, and palm width was collected 
beforehand using a measure tape and caliper. Estimated 
marker positions were filtered and fitted according to the 
anthropometric measurement using built-in VICON soft-
ware functions. Then, the center of the left and right wrist, 
elbow, shoulder, hip, knee, and ankle joint was estimated 
following the model specifications. Left and right elbow, 
shoulder, hip, and knee joint angles were calculated using 
the joint center position.

2.5  RGB camera and human pose estimation setup

Each RGB camera was calibrated using a calibration cage 
with 12 reflective markers at known 3D positions. In each 
vertical pole, three markers were placed from the ground 
level to a 100 cm point with equal space. The horizontal 
distance of each marker was 100 cm. Figure 1 shows all 
the camera views with the calibration cage. Knowing the 
3-dimensional point location of each reflection marker, 
the corresponding 2-dimensional points were manually 
extracted from each view. Finally, Direct Linear Transfor-
mation (DLT) [14] was used to compute a projection matrix. 
The projection matrix was refined using a Bundle Adjust-
ment method [15]. Human pose estimation was run on each 
frame from each RGB camera which was configured to pro-
duce 100 frames per second with 1920 by 1080 pixel reso-
lution with undistorted lenses and without sounds. Human 
pose estimation outputs 25 key points with a confidence rate 
from 0 to 1 for each key point and estimates multiple people 
in a JSON format, but 12 key points including right and 
left wrist, elbow, shoulder, hip, knee, and ankle joint points 
were used. The key points from all camera views were tri-
angulated to reconstruct 3D data [16]. In the triangulation 
process, a projection to each key point was weighted by the 
confidence rate [17]. The joint angles corresponding to the 
ones from marker-based motion capture system were calcu-
lated from the triangulated key points. Afterwards, they were 
filtered using a 4th-order Butterworth low-pass filter. A cut-
off frequency for the filter was determined using a residual 
method [18] with a determined frequency range of 1–20 Hz.

2.6  Data analysis

Mean Absolute Error was used to compare differences 
between the corresponding joint angles calculated from 
the 2 different systems frame by frame. The first and sec-
ond trials of each movement were averaged, and mean and 
standard deviation were calculated over all the partici-
pants. Also, paired t-test and Cohen’s d (small effect: < 0.2, 
medium effect: >  = 0.2 and < 0.8, large effect: >  = 0.8) with 
0.05 threshold were applied to find statistical significance 
between synchronized marker-based motion capture system 
and human pose estimation continuous measurements par 
joint angle, par movement, and par participant. All the data 
and statistical analysis were done by Python 3.10.

3  Results

3.1  Errors in athletic movements

Results for athletic movements are displayed in Fig. 2. The 
most erroneous joint angle was the right elbow joint angle in 
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Fig. 1  Camera views with a calibration cage

Fig. 2  Mean and standard 
deviation of each joint angle 
in each athletic movement. 
CMJ Counter-movement jump. 
The results were a mean of all 
participants
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jogging, which was 18.8 ± 12.3 degrees although the small-
est error was observed in arm spreading, which was 2.5 ± 1.4 
degrees. The biggest error in each movement type was an 
elbow angle, but in general, the elbow joint angles were 
more erroneous than the other joint angles except for squat 
and squat jump movements. Even considering the complex-
ity of the movement, the right and left elbow joint angle 
in the 360-degree turn while spreading the arm showed a 
14.8 ± 2.7 and 14.4 ± 3.6-degree error, respectively. The 
arm spreading showed a 17.7 ± 3.7 and 16.6 ± 2.8-degree 
error in a right and left elbow joint angle, respectively. More 
interestingly, the elbow joint angle in the standing showed 
an 18.5 ± 5.2 and 16.1 ± 7.6-degree error on the right and 
left sides, respectively. Interestingly, despite the absence of 
movement in the standing posture, the elbow angle exhib-
ited greater error than the arm spreading and 360-degree 
turn with arm spreading. Additionally, simultaneous bilat-
eral movements like the squat, counter-movement jump, 
and squat jump demonstrated distinct error and standard 
deviation ranges for the left and right sides. Notably, the 
left side consistently displayed greater error than the right 
side. Figure 3 shows that p value of t-test in each participant 
and trial. There is no pattern regarding which movements or 
joint angles or both display significant differences. However, 
Cohen’s d effect sizes of counter-movement jump in all tri-
als and joint angles were less than 1 (Fig. 4) although most 
of trials and joint angles in counter-movement jump were 
statistically significant. In contrast, standing displayed the 
highest Cohen’s d in the elbow joint angle.

3.2  Errors in sports movements

Results for sports movements are shown in Fig. 5. In sports 
movement, the left elbow joint angle in the tennis backhand 
swing was most erroneous, which was 18.2 ± 3.6 degrees. 
The right hip joint angle in tennis forward swing showed the 
smallest error in the sports movements, which was 4.3 ± 2.2 
degrees. Elbow angles were the most erroneous among all 
joint angles except for volleyball receiving. Figure 6 shows 
that p value of t-test in each participant and trial. There is no 
pattern regarding which movements or joint angles or both 
display significant differences and Cohen’s d values (Fig. 7).

3.3  Post hoc analysis

Figure 8 illustrates the right and left elbow joint angles for a 
participant during standing. Since there was a clear consist-
ent error throughout the trial (offset), adjustments of elbow 
joint angles based on the offset were applied. Figures 9 and 
10 illustrate the errors of elbow joint angles before and after 
adjusting the offset in athletic and sports motions, respectiv
ely.

4  Discussion

4.1  Errors in general

Several potential factors could have contributed to the 
observed errors, including occlusion, mis-estimation, 
and an unsuitable capturing environment. Occlusion is an 
inherent challenge, as limbs may become obscured by the 
torso during certain movements, depending on the cam-
era angle. In this study, elbow and wrist joints were often 
occluded, e.g., behind the trunk during volleyball receiv-
ing from back cameras. Human pose estimation usually 
assigns a low confidence rate to an occluded key point. 
This study used the confidence rate to weigh a projec-
tion line during triangulation. Therefore, the error by the 
occlusion should be minimized. The mis-estimation can be 
improved by training a pose estimation model and mak-
ing sure that the capturing environment is proper, which 
includes lighting, background color, and removing extra 
persons in a frame. This study was conducted in a con-
trolled environment. Therefore, lighting and background 
color were proper enough to see a person of interest 
clearly, but extra persons who controlled the motion cap-
ture systems and helped to guide a participant were in a 
frame sometimes. They may have confused the pose esti-
mation model to estimate the right person with the right 
joint locations. Based on the errors found in this study, 
knee and hip joint angles can be measured by human pose 
estimation and used in gait analysis and sports perfor-
mance analysis, for example.

4.2  The error in the elbow joint angle

Among all the joint angles measured, the elbow joint 
angle exhibited the highest degree of error. Occlu-
sion, caused by the upper body limbs frequently being 
obscured behind the torso, could be a contributing factor. 
However, even considering occlusion, the error in elbow 
joint angle measurements appears to be excessively high. 
Interestingly, some human pose estimation measurements 
of elbow joint angles displayed a noticeable offset com-
pared to the corresponding marker-based motion capture 
system measurements as Fig. 8 illustrates. In a standing 
position, the elbow should be straight, implying that the 
elbow angle should approach 180 degrees. As evident 
from the graph, the elbow joint angles obtained using 
marker-based motion capture system may be underesti-
mated compared to the expected joint angles. This phe-
nomenon could potentially explain the substantial error 
observed in elbow joint angles. Marker-based motion cap-
ture system relies on infrared markers attached to specific 
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Fig. 3  p value of t-test between marker-based motion capture system and human pose estimation measurements in each participant and athletic 
movement trial. Movement name with 0 is the first trial, and 1 is the second trial. CMJ Counter-Movement jump
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Fig. 4  Cohen’s d value between marker-based motion capture system and human pose estimation measurements in each participant and athletic 
movement trial. Movement name with 0 is the first trial, and 1 is the second trial. CMJ Counter-Movement jump
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anatomical landmarks on tight underwear for its measure-
ments. However, there is inherently an offset between the 
actual joint center and the marker position. Moreover, the 
markers themselves can become occluded by the human 
body. To improve these issues and accurately estimate the 
true joint center, marker-based motion capture system 
utilizes anthropometric measurements and sophisticated 
post-processing techniques. Pose Estimation, on the other 
hand, estimates key points on the human body’s surface, 
which are not susceptible to occlusion. Theoretically, this 
should enable Pose Estimation to provide more accurate 
joint center estimation compared to marker-based motion 
capture system or marker-based motion capture systems. 
In fact, when the offset calculated from elbow joint angles 
in the standing position was adjusted, the error of elbow 
joint angles decreased in most of the motions (Figs. 9 and 
10). Statistically, the right elbow joint angle in standing in 
participant 3 observed the highest effect size, but the effect 
sizes in general differ in each participant, trial, and move-
ment types. Therefore, it would be difficult to statistically 
conclude that elbow joint angles were more erroneous than 
other joint angles. However, the analysis of the offset is 
out of this scope in this study. The further investigation 
is needed to find the cause and potential solution for this 
phenomenon.

4.3  Possible ways to improve the accuracy 
of human pose estimation measurement

Avoiding the occlusion as much as possible can be impor-
tant for accurate human pose estimation. The camera height, 
angle, and position need to be adjusted based on the move-
ments to be captured. Regarding the capturing environment, 
the pose estimator may not be able to estimate the person 
of interest when the capturing environment is dark. This is 
because the pose estimator extracts key features from RGB 
values in a frame to look for human poses. The dark envi-
ronment also causes motion blur since a camera slows down 
the shutter speed to include enough lights. Extra persons 
can confuse the pose estimator. Especially, human pose esti-
mation uses a bottom-up approach that extracts body parts 
first and then associates them with a human pose. Therefore, 
when there are extra persons in a frame, the human pose 
estimation pays attention to the persons and may confuse 
the body parts. Removing the background may be a simple 
solution to this.

Nowadays, there are many selfie segmentation models to 
separate backgrounds from humans. Also, a frame without a 
human can be recorded before motion capture. The frame is 
used as a background reference to compare the frames with 
the person of interest by calculating RGB value differences. 

Fig. 5  Mean and standard 
deviation of each joint angle 
in each athletic movement. 
The results were a mean of all 
participants
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Fig. 6  p value of t-test between marker-based motion capture system and human pose estimation measurements in each participant and sports 
movement trial. Movement name with 0 is the first trial, and 1 is the second trial



 T. Fukushima et al.   19  Page 10 of 14

Fig.7  Cohen’s d value between marker-based motion capture system and human pose estimation measurements in each participant and sports 
movement trial. Movement name with 0 is the first trial, and 1 is the second trial
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An anthropometric fitting can be another way to improve 
the accuracy. OpenCap [19] can be used to fit the pose esti-
mation data into human anthropometry. OpenCap is a 3D 
motion capture application that can simulate kinematics 
and kinetics from pose estimation data. In the process of 
simulation, OpenCap calculates the kinematic and kinetic 
variables using the height and body mass of the person and 
a 3D human model from OpenSim [20]. The height and body 
mass of the person are the only requirements for anthropo-
metrics in OpenCap, but if more anthropometric measure-
ments other than height and body mass are available, the 3D 
human pose data can be refined by minimizing the difference 
between actual anthropometric measurements and calculated 
anthropometric measurements from the 3D human pose data 
using a least square method, for example. This study can 
be extended to see if the accuracy of the pose estimation 
measurement would improve with the anthropometric fitting 
methods. Another possibility to improve the accuracy is to 
train human pose estimation model with a biomechanical-
focused dataset. As a study [21] pointed out that the publicly 
available dataset was not prepared for the biomechanical use 
case, the model should be trained with the proper dataset 
according to the use case. For this study, the accuracy may 
improve if a dataset with athletic and sports movements was 
used to train the human pose estimation model. In fact, a 

study could significantly improve the accuracy of extreme 
poses such as head down poses when the human pose esti-
mation model was trained with a dataset of these extreme 
poses [22].

5  Conclusion

This study assessed the accuracy of human pose estima-
tion-based kinematic measurements by comparing them to 
marker-based motion capture system, a widely recognized 
motion capture system. The average errors for athletic and 
sports movements were 9.7 ± 4.7 degrees and 9.0 ± 3.3 
degrees, respectively, but they were 7.8 ± 3.5 degrees and 
7.4 ± 1.6 degrees excluding elbow joint angles. Employing 
pose estimators like human pose estimation offers several 
advantages over traditional motion capture systems like 
marker-based motion capture system, but the accuracy 
of pose estimator-based kinematic measurements has not 
been thoroughly examined. The acceptable range of errors 
depends on the application. If human pose estimation is 
used in clinical settings where it requires precise measure-
ments, the error found in this study may not be acceptable. 
In other fields, such as gait analysis, human pose estimation 
may contain the potential to reduce the efforts to conduct 

Fig. 8  Right and left elbow joint angle in a participant during standing
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Fig. 9  Errors of elbow joint angles before and after adjusting offset in athletic movements
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Fig. 10  Errors of elbow joint angles before and after adjusting offset in sports movements
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biomechanical analysis. Potential sources of error include 
the capturing environment, occlusion, and mis-estimation. 
Considering these factors, the benefits of using pose estima-
tors for kinematic analysis generally outweigh the accept-
able errors. However, the users of the pose estimator still 
need to pay attention to the above factors that may cause 
errors and make efforts to avoid those errors as much as 
possible although further investigation is needed to evaluate 
how much they influence the errors. In that sense, this study 
provides evidence of which kinematic measurements human 
pose estimation would be able to measure better in different 
movements. This information should be valuable when the 
users develop applications or apply kinematic analysis using 
human pose estimation.
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