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Abstract
The analysis of human gait is of fundamental importance for the monitoring and enhancement of athletes’ performances. 
The kinematics and kinetics of human gait are mostly investigated with optical motion capture systems and force plates 
that require specialised laboratories and limit the possible test conditions. On the contrary, body-attached sensor networks 
provide an opportunity for long-term acquisitions in unsupervised, naturalistic scenarios. In this study, a wearable sensor 
network consisting of two wireless dataloggers and two instrumented insoles with eight pressure sensors each is used. Custom 
algorithms for the automatic detection of hike events and the estimation of the related temporal parameters based on sensors 
data are presented. The proposed algorithms were tested against laboratory measurements performed on an instrumented 
treadmill and showed relative errors of less than 2.5% in the estimation of stride time, step time and cadence. Higher relative 
errors were found in the estimation of stance and swing phases. The developed algorithms were also applied in a field study. 
In this paper data from one subject are considered. The aim of this research work is to provide an effective sensor-based 
methodology for the evaluation of gait parameters in naturalistic settings.
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1  Introduction

The acquisition of temporal-spatial parameters of bipedal 
human locomotion is fundamental for several disciplines. 
According to Prakash et al. [1], who provided a review of 
human gait based on the most important articles published 
in the last 20 years, the main areas of application of gait 
analysis are clinical diagnosis, geriatric care, rehabilitation, 
animation and sports. In sports, the analysis of human gait 
is used to monitor and improve the performance of athletes. 

For example, Dunn and Kelley [2] used vision-based gait 
analysis to automatically determine the position and timing 
of an athlete’s foot contacts to calculate stride length, time, 
and speed.

Gait analysis can be performed with vision-based or sen-
sor-based methods. Vision-based solutions such as Vicon 
Motion Capture (Oxford Metrics, Oxford, GBR) or BTS 
GAITLAB (BTS S.p.A., Milano, Italy) are considered the 
gold standard for accurate reconstructions of human move-
ments. However, the vision-based technologies typically 
require specialised and often expensive laboratories and are 
subject to certain limitations, such as occlusions. In con-
trast, sensor-based gait analysis is usually less expensive and 
eliminates the need for specialised laboratories. It enables 
field testing and allows the subject to behave in a more natu-
ralistic way. Sensor-based solutions also allow the analysis 
of gait kinematics and kinetics, as described by Tao et al. 
[3]. The gait kinematics are usually captured with inertial 
magnetic sensors such as the Xsens MTw Awinda (Xsens 
Technologies B.V., An Enschede, NLD) [4] or the Ultium 
Motion System (Noraxon USA, Scottsdale, US). Chew et al. 
[5], for example, used accelerations and angular velocities 
recorded with an inertial sensor attached to the right shoe 
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of a runner to determine foot contacts, foot offs and related 
parameters. Notwithstanding the interesting results of this 
study, the results were only validated against an optical 
motion capture system. Therefore, this method only pro-
vided an estimate of the kinetic gait parameters and not a 
direct measurement. Furthermore, this study lacked proof of 
concept in the field and thus is to be considered valid only 
under simplified conditions. In example, changes of direc-
tion, stopping times and environmental conditions are not 
considered. Another inertial-based solution was also used 
by Caporaso et al. [6] to estimate temporal-spatial param-
eters of racewalking. For this purpose, they used an inertial 
measurement unit (IMU) attached to the base of the athletes’ 
spine and custom algorithms to detect infringements based 
on the estimated parameters. However, only kinematic and 
not kinetic parameters were investigated in their study.

The gait kinetics are usually recorded with force plates 
that can measure ground reaction forces. As demonstrated 
by Willems and Gosseye [7], comparable precision can be 
achieved with instrumented treadmills such as the M-Gait 
(Motek Medical B.V., Houten, NLD) or the Tandem Tread-
mill (Advanced Mechanical Technology Inc., Watertown, 
US). However, these solutions are expensive and tied to a 
laboratory, which limits the possible test conditions. Pres-
sure insoles are a more cost-effective solution, ensure high 
flexibility and offer the possibility to perform field measure-
ments. These typically consist of a network of Force Sens-
ing Resistors (FSR) attached to an insole. In a recent study, 
Howell et al. [8] presented a custom FSR-based insole for 
kinetic gait analysis and demonstrated the performance of 
such a low-cost device compared to laboratory measure-
ments using marker-based motion sensing as reference for 
the lower limb joints moments and force plates as reference 
for the ground reaction forces (GRF). As a result, they found 
good agreement between the GRF measured with force 
plates and the ones estimated with recorded plantar pres-
sure. However, the tests conducted by Howell et al. [8] were 
bound to a laboratory. Falbriard et al. [9] also used foot-worn 
inertial sensors to estimate temporal parameters of running 
in a laboratory study with several participants. Although 
their algorithms were validated against laboratory measure-
ments carried out on an instrumented treadmill with built-in 
force plates, no field test was carried out to demonstrate the 
performance of their methodology.

In the framework of this work, the potential of Body-
Attached Sensor Networks (BASN) for bipedal human loco-
motion analysis was to be further investigated. Although 
many solutions were proposed to estimate gait parameters 
using wearable sensors, no studies were found in which such 
technologies were tested outside laboratories in unsuper-
vised, long-term field studies. Thus, the aim of this work was 
to develop an algorithm that enables long-term monitoring 

of human movements in unsupervised, naturalistic settings 
(e.g. during a hike) using wearable sensors.

2 � Methods

The study was divided into two experiments. The first exper-
iment, conducted in a laboratory, served to design the algo-
rithm for automatic hike event detection and to compare its 
results against a reference system. The second experiment 
took place in the field and was intended to demonstrate that 
the novel algorithm works error-free in practice. The data 
records for both experiments can be accessed from the Open 
Science Framework (OSF) [10, 11].

2.1 � Participant

One male (age 37 years, height 1.80 m, body mass 71 kg) 
volunteered to participate in both experiments and pro-
vided written informed consent. The study was approved 
by the institution’s ethics committee (reference number 
#101525731) and was in accordance with the Declaration of 
Helsinki. The criteria for participation was a healthy, athleti-
cally active individual between the ages of 18 and 50 years 
with a shoe size between 36 and 47 EUR. Participation in 
the study was excluded if the applicant had an acute lower 
extremity injury or one that had occurred within the previ-
ous 6 months.

2.2 � Equipment

The Gait Real-time Analysis Interactive Lab (GRAIL, 
Motek Medical B.V., Houten, NLD), two BASNs consisting 
of a small (48 × 30 × 18 mm), lightweight (34 g) and port-
able sensor node1 [12] and a pair of pressure insoles (Smart 
footwear sensors/HD 002, IEE, Echternach, LUX) were used 
to collect bipedal locomotion data on a treadmill during the 
laboratory experiment (Fig. 1). The sensor node consisted 
of a central processing unit that enables data acquisition and 
pre-processing, a wireless data logger, flash memory, a bat-
tery (1.5 Wh), and an integrated 3-axis accelerometer and 
gyroscope. The pressure insoles were operated via the sen-
sor node using a plug-in connector. This particular BASN 
was also used for the field experiment. Measurements with 
the BASN can be performed without external devices (e.g., 
computer, smartphone, etc.), and the collected data can be 
stored on the internal memory and later downloaded to a 
computer using the appropriate software (Envisible sen-
sors). The GRAIL consisted of a dual belt treadmill with 

1  The sensor node is currently a research product. However, it will be 
commercially available in the next future (https://​www.​envis​ible.​de/).

https://www.envisible.de/


Estimation of hike events and temporal parameters with body‑attached sensors﻿	 Page 3 of 9  18

integrated force plates mounted on a two degrees of freedom 
motion frame, a fall protection to attach a harness, a 180° 
cylindrical projection screen, wide-angle and short-throw 
projectors, a motion capture system, and operator software 
such as D-Flow and Vicon Nexus 2. The motion capture 
system consisted of 10 optoelectronic cameras (Vantage, 
Oxford Metrics, Oxford, GBR).

2.3 � Procedure

The participant wore tight-fitting sportswear and a harness to 
fasten the safety belt prescribed for the treadmill. The partic-
ipant’s running shoes (size 43 EUR) were equipped with size 
large (L) pressure measurement insoles. The sensor nodes 
were attached to the lateral side of each participant’s running 
shoe using adhesive tape. After ensuring that the BASNs 
were operating correctly and the two force plates integrated 
into the treadmill were set to zero, the participant went onto 
the treadmill where he was hooked into the treadmill’s safety 
system. The experiment started with a two-minute warm-up 
at a speed of 3 km/h, followed by a one-minute rest. The 
participant performed three three-minute exercise tasks in 
succession, i.e. walking at 4 km/h, hiking at 6 km/h and 
running at 9 km/h. There was a one-minute rest before the 
measurement ended. Data from the BASNs were recorded 
at 100 Hz and from the force plates at 1000 Hz. The systems 
were not synchronised. However, it was attempted to start 
the two different measurement systems as simultaneously 
as possible.

The field experiment took place in a flat urban area with 
an overall slope of 50 m and moderate traffic. The participant 
was asked to undertake a 7.5 km hike using the same shoes 
and BASNs already used for the laboratory experiment. Nei-
ther a hiking pace nor a time limit was given. The recordings 

were started and stopped by the participant. The BASN data 
were recorded at 100 Hz.

2.4 � Data processing and algorithm

The force plate data was exported to MATLAB (R2020b, 
The MathWorks, Inc., Natick, MA, USA) via a self-writ-
ten m-file using the Vicon Nexus pipeline “Run MATLAB 
Operation”. The force data was down-sampled from 1000 
to 100 Hz. The BASN data, accessible as an “envisible” file 
with tab-delimited values, was exported to MATLAB. The 
data of the individual pressure sensors, which are available 
as voltage values in the unit V, were converted into pres-
sure values with the unit bar using the supplier’s calibration 
curve. Since the sensor is only calibrated for a measuring 
range between 100 mbar and 7 bar, values smaller than 
100 mbar were set to zero. The pressure sum was calculated 
from the eight channels of the respective pressure measure-
ment insoles. The time delay between the force plates and 
the BASNs was determined by calculating the normalized 
cross-correlation between each pair of signals and their sig-
nals aligned accordingly. Since the measured values of the 
force plates were noisy due to the measurement technique 
used, all negative values for the vertical ground reaction 
force were set to zero.

The vertical ground reaction forces were used to deter-
mine the reference events of the different activities. For 
this purpose, the maxima of the individual steps of a foot 
were first determined. Based on these maxima, the foot 
contact (FC) and the foot off (FO) were determined as ref-
erence events. The foot contact corresponded to the time 
at which the vertical ground reaction force last reached a 
value less than or equal to 5 N before the maximum was 
reached. The foot off corresponded to the time at which 

Fig. 1   Body-attached sensor networks (BASN) consisting of a sen-
sor node and a pressure insole, and a participant walking in the Gait 
Real-time Analysis Interactive Lab (GRAIL). The pressure sensors 

are located under the insole of the shoe. The sensor node is attached 
either to the shoe using double-sided adhesive tape or to the test per-
son’s sock
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the vertical ground reaction force first reached a value of 
less than or equal to 5 N after the maximum was reached. 
Events that could not be assigned to an active movement 
phase, e. g. because the experiment also contained pauses, 
were automatically removed using a threshold value. The 
threshold was calculated as the mean plus 1.96 times the 
standard deviation of the difference between the foot con-
tact events of one side.

The events based on the BASNs, on the other hand, 
were determined using the pressure sum and an alterna-
tive procedure. In this procedure, the state levels of a 
two-level rectangular waveform were first estimated for 
the summed pressure signals. These two levels were used 
as input variables to obtain the transition metrics of the 
two-level waveform. The foot contacts and foot offs were 
then determined as the linearly interpolated times at which 
the signal crossed the previously calculated lower refer-
ence with positive and negative polarity, respectively. The 
pauses were removed analogously to the described proce-
dure of the reference events.

Using the determined events, the individual cycles were 
separated and the corresponding temporal parameters, i.e. 
stride time (i.e. time between successive ipsilateral foot 
contacts), step time (i.e. time between contralateral and 
subsequent ipsilateral foot contact), cadence (i.e. number of 
strides per unit time), stance phase (i.e. time between ipsi-
lateral foot contact and subsequent ipsilateral foot off rela-
tive to the ipsilateral cycle/stride time) and swing phase (i.e. 
time between ipsilateral foot off and subsequent ipsilateral 
foot contact relative to the ipsilateral cycle/stride time), were 
calculated. The cycles were normalised to 101 data points so 
that the mean and standard deviation could be determined 
and plotted on a graph. The cycles and events were further 
grouped into the individual activities, i.e. all activities, walk, 
hike and run. By assigning each pressure sensor to the fore-
foot, midfoot, or rearfoot, the plantar pressures of each foot 
segment were determined separately.

2.5 � Statistical analysis

Mean and standard deviation were determined for the tempo-
ral parameters and for the normalised force and plantar pres-
sure cycles. The force values were normalised to the body 
weight for better visualisation. In addition to the absolute 
values for the temporal parameters, the relative measurement 
deviations (f) were also calculated to determine the validity. 
The measurement deviation represents the deviation of the 
measurement value “estimated” by the algorithm from the 
“correct” measurement value based on the force plate data. 
To assess the bias and precision of the algorithm the Bland 
and Altman’s limits of agreement (LoA) method [13] was 
used.

3 � Results

An algorithm to automatically detect the hike events using 
the BASNs was successfully designed. The algorithm can 
be accessed from OSF [11]. Based on the events obtained 
during the laboratory experiment from the pressure meas-
urement insoles using the algorithm, temporal parameters 
were calculated and compared with the reference param-
eters which were based on the force plate data (Table 1). 
For the stride time, the largest relative error was 0.2%. The 
cadence also had an error of less than 1%. The step time 
had a relative error of less than 2% except for the activ-
ity “running” (− 2.50%). The largest relative errors were 
found for the stance and swing phases with the highest 
error being 10.77%.

The LoA method (Fig. 2) revealed no systematic bias 
and no heteroscedasticity, i.e. the variability is not depend-
ing on the magnitude of the mean values, for the five tem-
poral parameters evaluated. Most of the individual differ-
ences between the methods (Δ) were within the 95% limits 
of agreement (± 1.96 standard deviation). However, for 
each of the five temporal parameters evaluated, there were 
individual difference that fell outside these limits.

The left and right stance phase is about 60% for all 
activities. This is evident from both the force data and 
the pressure data, where the values drop to 0 N/kg and 
0 N/cm2 respectively (Fig. 3). The course of the kinetic 
data (force or pressure) changes visibly depending on 
the activity (Fig. 4). While an “M-curve” can be seen 
for walking at 4 km/h and hiking at 6 km/h, the curves 
for running at 9 km/h show a dominant so-called active 
force peak and a small passive force peak at the beginning. 
The passive force peak is particularly pronounced for the 
right ground reaction force during running (Fig. 4g). The 
standard deviations for segmented activities are relatively 
small compared to the curves for all activities. Based on 
the temporal parameters derived from the events as well 
as on the curves, no noteworthy differences in symmetry 
between the left and right side can be identified for the 
tested participant.

The newly developed algorithm based on data from the 
BASNs was also successfully applied to the data collected 
in the field from a hike. During the approx. 70-min hike 
with an average speed of 6.2 km/h, a total of 4180 valid 
steps were detected. The mean stance phase was 60.6% for 
the left and 59.1% for the right side (Fig. 5). The plantar 
pressure curve, which envelopes the signal from all eight 
sensors of a pressure insole, is similar for both feet. The 
curve for segmented foot areas is also similar, except for 
the midfoot area. While the right midfoot area drops off 
shortly after reaching the peak, the left midfoot area shows 
a second smaller peak. The representation of all individual 
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pressure curves separated by foot area shows that not all 
normalised gait cycles (about 20 cycles) of the over 4000 
recorded cycles were correctly recognised (Fig. 6). Nev-
ertheless, it is noticeable that the standard deviation is 
rather low (Fig. 5).

4 � Discussion

Laboratory tests results demonstrated that the developed 
algorithms can successfully detect events, namely foot con-
tacts and foot offs, and deliver good estimation of tempo-
ral parameters for walking and hiking. Indeed, the relative 
errors between temporal parameters calculated with the ref-
erence system (GRAIL) and the one estimated with BASNs 
were always lower than 2.5% for stride time, step time and 
cadence. On the contrary, the estimation of stance and swing 
phase presents higher relative errors (up to 10.77%). Good 
agreement between temporal parameters calculated with the 

reference system and the one estimated with BASNs are also 
detected when the data related to all activities are not dif-
ferentiated. The activity running is characterized by higher 
errors in the estimation of stride time, step time and cadence.

A preliminary field test was performed to test the effec-
tiveness of the proposed methodology in practice. Indeed, 
laboratory studies have considerable simplifications, such 
as: (i) running on a treadmill means moving in one direc-
tion only, whereas in reality one has to change direction to 
turn or overcome obstacles, (ii) stopping times (e.g. at traf-
fic lights, pedestrian crossings) do not play a role, (iii) the 
numerous and often small changes in the slope of a track 
cannot be faithfully reproduced, and (iv) environmental 
conditions such as temperature and humidity variations or 
the presence of obstacles are not taken into account. All 
of the above-mentioned limitations can affect the estima-
tion of the temporal parameters of gait. Since the aver-
age speed of the runner during the field test happens to 
reflect the speed used the activity hiking in the laboratory 

Table 1   Temporal parameters 
derived from the vertical 
ground reaction forces of the 
integrated force plates and from 
the pressure sensor signals of 
plantar pressure insoles

Given are the mean and standard deviations of the parameters separated by activities (all n = 652, walk 
n = 153, hike n = 176, run n = 221) and side (left, right) as well as the relative errors between the two 
approaches

Left Right

Force plate Pressure insole Error Force plate Pressure insole Error

Mean SD Mean SD f Mean SD Mean SD f

Stride time (s)
 All 1.02 0.18 1.02 0.18 − 0.02% 1.02 0.18 1.02 0.18 − 0.02%
 Walk 1.15 0.02 1.15 0.02 0.08% 1.15 0.02 1.15 0.02 0.19%
 Hike 1.01 0.03 1.01 0.01 0.03% 1.01 0.01 1.01 0.01 0.08%
 Run 0.81 0.02 0.81 0.02 0.10% 0.81 0.02 0.81 0.01 0.07%

Step time (s)
 All 0.51 0.09 0.52 0.09 1.72% 0.51 0.09 0.50 0.09 − 1.71%
 Walk 0.58 0.02 0.59 0.01 2.05% 0.57 0.02 0.56 0.01 − 1.70%
 Hike 0.51 0.02 0.52 0.01 2.03% 0.51 0.02 0.50 0.01 − 1.86%
 Run 0.40 0.02 0.41 0.01 2.76% 0.41 0.01 0.40 0.01 − 2.50%

Cadence (strides/min)
 All 60.8 10.6 60.8 10.5 − 0.04% 60.8 10.6 60.8 10.5 − 0.03%
 Walk 52.2 0.9 52.1 0.7 − 0.09% 52.2 1.0 52.1 0.9 − 0.19%
 Hike 59.2 1.6 59.2 0.7 − 0.08% 59.2 0.8 59.1 0.7 − 0.08%
 Run 74.1 1.7 74.1 1.3 − 0.12% 74.1 1.6 74.1 1.1 − 0.09%

Stance phase (%)
 All 55.0 13.0 52.9 11.4 − 3.89% 55.3 12.7 52.4 11.7 − 5.26%
 Walk 64.9 1.3 61.8 0.8 − 4.80% 65.0 3.0 61.3 0.8 − 5.79%
 Hike 62.1 2.8 59.5 0.8 − 4.31% 62.0 1.0 59.0 0.7 − 4.81%
 Run 37.4 1.9 37.4 1.9 0.06% 38.0 1.6 36.4 1.9 − 4.26%

Swing phase (%)
 All 45.0 13.0 47.1 11.4 4.76% 44.7 12.7 47.6 11.7 6.50%
 Walk 35.1 1.3 38.2 0.8 8.88% 35.0 3.0 38.7 0.8 10.77%
 Hike 37.9 2.8 40.5 0.8 7.07% 38.0 1.0 41.0 0.7 7.83%
 Run 62.6 1.9 62.6 1.9 − 0.04% 62.0 1.6 63.6 1.9 2.61%
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Fig. 2   Bland–Altman plots for the temporal parameters derived from the force plates and the pressure insoles. a stride time, b step time, c 
cadence, d stance phase, and e swing phase

Fig. 3   Curve representation of the signals recorded by means of force 
plates and pressure measurement insoles, aggregated in normalized 
gait cycles without differentiation by activity, as well as bar graphs 
of the temporal parameters derived from them, i.e. stance phase, 
swing phase, stride time and cadence. a mean and standard deviation 

of normalised forces and summed plantar pressure signals for the left 
foot and b right foot, c mean and standard deviation of the temporal 
parameters for the left and right foot calculated using force place data 
(blue bar) and estimated using plantar pressure (orange bar) (color 
figure online)
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test (6 km/h), the two experiments can be compared very 
well. The pilot field study, showed the strength of BASNs 
in the analysis of long-term acquisitions in unsupervised, 
naturalistic settings. Highlighting how wearable sensor 
networks represent a flexible and suitable alternative to 
complex and expensive laboratory solutions. Furthermore, 

through the use of pressure insoles the BASNs, object of 
this study, is also capable of delivering additional quali-
tative information on the foot areas in contact with the 
ground, that is not possible with inertial-based solutions 
like the one proposed by Falbriard et al. [9].

Fig. 4   Curve representation of the signals and bar graphs of the tem-
poral parameters separated by activity, i.e. walking with 4 km/h (a, b, 
c), hiking with 6 km/h (d, e, f) and running with 9 km/h (g, h, i). The 
left column represents the mean and standard deviation of normalised 
forces separated by foot side and aggregated in normalized gait cycles 
for a walking, d hiking and g running. The middle column represents 
the mean and standard deviation of summed plantar pressure signals 

separated by foot side and aggregated in normalized gait cycles for 
b walking, e hiking and h running. The right column represents the 
mean and standard deviation of the temporal parameters separated by 
foot side calculated using force place data (blue bar) and estimated 
using plantar pressure (orange bar) for c walking, f hiking and I run-
ning
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Some limitations in the proposed methods have to be 
acknowledged. The force data collected with the instru-
mented treadmill and used for the validation of the devel-
oped algorithm, suffered from noise and needed to be post-
processed to be used. In addition, to obtain comparable 
results with the force plate and the BASNs, down sampling 
of data collected with force plate was necessary. Temporal 
parameters calculated from force plate data with and with-
out down sampling are listed in Online Resource 1. These 

show that it was feasible to down sample force plate data 
from 1000 to 100 Hz only when all activities are consid-
ered together (Table S1). When analysing each activity 
separately, the approximation error increases with increas-
ing speed of the participant (Tables S2 to S4). As the force 
plate and the BASNs were not synchronised, even though the 
experimenter tried to start the two measurements at the same 
time, this is a limitation and in future studies the two sys-
tems should be triggered to ensure perfect synchronisation. 

Fig. 5   Plantar pressures for normalized gait cycles (n = 4180) and 
hiking parameters of the subject during a hike with an average speed 
of 6.2 km/h, a envelope, mean, and standard deviation of plantar pres-

sure separately by foot segments for the left foot and b the right foot, 
c mean and standard deviation of the hiking parameters for the left 
and right foot

Fig. 6   Individual value, mean value and standard deviation of plan-
tar pressures separated by foot area for all (n = 4180) normalized gait 
cycles of the subject during a hike with an average speed of 6.2 km/h, 

a left forefoot, b left midfoot, c left rearfoot, d right forefoot, e right 
midfoot, f right rearfoot
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Furthermore, the proposed field study is meant to be a pre-
liminary proof of concept, indeed, just one person partici-
pated in this test and just the activity hiking on relatively flat 
ground was considered.

5 � Conclusion

This work has shown that it is possible to estimate temporal 
hike parameters using wearable sensors (namely, wireless 
sensor nodes and instrumented pressure insoles) and cus-
tomised algorithms. The comparison with reference sys-
tems currently used for determining temporal gait param-
eters has shown that the quality of the estimation decreases 
with increasing speed and thus less accurate results can be 
achieved for running activities. Although results obtained 
with laboratory solutions are more accurate, the use of 
wearable solutions offers the advantage to estimate tempo-
ral parameters during regular training sessions. The effec-
tiveness of the proposed methodology was also tested in a 
pilot study on the field, demonstrating that Body-Attached 
Sensor Networks are suitable for long-term acquisitions in 
unsupervised, naturalistic settings. Further field experiments 
with more participants, speed ranges and different terrain 
should be planned to extend the use of this methodology for 
detecting events and estimating temporal parameters also 
during running.
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