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Abstract
Tracking players’ movements in sports is important to monitor and optimise exercise volume, avoid injuries, and enhance 
game performance. A new LiDAR-based system  (Sportlight®) purports to provide accurate velocity and acceleration metrics 
derived from player movements. This study examined the validity of the LiDAR-based system against a 3D motion analysis 
system. Two competitive football players (age: 18 years, height: 1.74 ± 0.01 m, mass: 66.5 ± 7.8 kg; playing experience at 
this level: 3 years) completed nine trials each of six sport-specific movements, consisting of straight-line sprints, cuts, and 
curved runs. Trials were recorded concurrently by a four-unit LiDAR system and a 64-camera 3D motion analysis system. 
Instantaneous velocity and acceleration, and time spent within key performance indicator bands (defined by velocity and 
acceleration thresholds) were compared between systems. Agreement between the systems was evaluated by root mean square 
error. Differences in time spent within each key performance indicator band between systems were assessed with t tests and 
standardised effect sizes. Velocity root mean square error values ranged from 0.04 to 0.14 m·s−1 across all movements and 
acceleration root mean square error values ranged from 0.16 to 0.7 m·s−2. Differences between systems for time spent within 
each key performance indicator band were mostly trivial. These results show that the LiDAR-based system can provide valid 
measures of velocity and acceleration in football-specific tasks, thus providing accurate tracking of players and calculation 
of relevant key performance indicators.
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1 Introduction

Recent advances in electronic performance and tracking sys-
tems (EPTS) have allowed tracking football players’ move-
ments in training and competition [1]. Such player tracking 
has helped avoid injuries and overtraining by monitoring and 
optimising exercise volume and progression [2, 3]. Addition-
ally, live tactical changes are facilitated by in-game physical 
and tactical performance assessment [3]. Common EPTS 

used include global navigation satellite systems (GNSS; e.g. 
[4]), semi-automatic cameras systems (e.g. [5]) and local 
positioning measurement systems (LPM; e.g. [6]).

GNSS technology is amongst the most popular EPTS 
[2], and can provide relevant data alongside embedded 
inertial measurement units, offering measures of exercise 
volume, forces or stride variables [2]. GNSS yielded good 
validity for instantaneous speed and acceleration, and total 
distance travelled measures (as indicated by lower error 
values) in comparison to a video-based system and a local 
positioning system (LPS) when evaluated against a 3D 
motion capture system (the ‘gold standard’ method for 
motion capture) [7]. Moreover, GNSS’s portable nature 
has the advantage that it can be used at both training and 
competition grounds, enabling consistent monitoring [1, 
7]. Video-based systems, another popular option for player 
tracking, provide similar data to GNSS, but with less inva-
siveness (no units to be worn), and loss of data, as video 
footage can restore any initial data loss [8]. The validity 
is very high when compared to timing gates (Pearson’s 
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r ranging 0.72–1.00 for various movements) [9] or a 3D 
motion capture system (as indicated by lower error val-
ues) [8]. However, they require ground installation, which 
limits measurements to activities taking place in the sta-
dium, thus impacting on training monitoring [1]. LPM 
systems, although used in football to track the position of 
each player [6, 10], are less well-researched, possibly due 
to the development of GNSS technology shortly after the 
introduction of LPM. Nonetheless, LPM was also found 
to be less accurate for non-linear running than for straight-
line running (approximately double the CV% for total dis-
tance covered) [11], which is frequently seen in football 
games [12].

Light detection and ranging (LiDAR) remote sensing is 
an emerging technology that can record variable distance. 
LiDAR uses infrared lasers to measure distances between a 
given target and a sensor [13]. Distance is calculated from 
the time the laser beam takes to reach, reflect and return 
from the intended target. Such positioning identification 
subsequently allows calculation of speed and acceleration. 
LiDAR has been used in fields such as earth and ecologi-
cal sciences [14], transportation [15], object recognition 
[16], archaeology [17], and motion tracking [18]. It can 
also assess human walking and running speed with good 
accuracy (ICC > 0.88 and R > 0.89 for all comparisons) 
when compared to a 3D motion capture system [13].

Recently,  Sportlight® (Oxford, UK) capitalised on the 
application of LiDAR to measure player velocity and 
acceleration. Their LiDAR-based system consists of port-
able units that can be placed around indoor or outdoor 
pitches for training and matches. It provides a continuous 
measure of distance from the unit without requiring cali-
bration or placement at known distances [13], thus increas-
ing its usability by practitioners. Multiple units provide 
greater coverage, but measurements can take place with 
one unit, as each one is claimed to be capable of tracking 
players independently to the other units. Proprietary soft-
ware then directly uses the unfiltered velocity and accel-
eration data to provide player relevant metrics to the user.

The purported advantages of this system (i.e. non-inva-
sive nature, portability enabling assessment by the same 
tool across training or games, ability to continuously track 
motion) make it an attractive option for motion tracking. 
However, while these are important parameters in deter-
mining possible uptake by practitioners [2], such devices 
must be accurate to allow appropriate exercise volume pre-
scription and correct monitoring [1, 11], particularly with 
the rapidly increasing demand for individualised velocity 
and acceleration thresholds for training decisions [2, 3]. 
This study aimed to examine the validity of the LiDAR-
based system against a 3D motion capture system during 
football-specific movements.

2  Methods

2.1  Participants

Two competitive male football players (mean ± SD: age 
18 years, height 1.74 ± 0.01 m, mass 66.5 ± 7.8 kg, 3 years 
of playing experience at this level) free from self-reported 
injury in the past 12 months, agreed to participate in the 
study. Both players were from a local professional football 
club. The study was approved by the Institutional Ethics 
Committee, and both players gave written informed consent.

2.2  Protocol

Both players completed individually and on one day a course 
of distinct sport-specific movements (SSM), outlined by 
FIFA [19] and described in Linke et al. [7]. The full course 
was performed in an indoors facility, on a 10 × 20 m hard-
wood floor area, with a ~ 10 m ‘run-off’ area allowing decel-
eration outside the recording area. The course was marked 
with non-reflective cones and incorporated (in order): 
SSM1) a 20 m run (15 m sprint, 5 m deceleration), SSM2) 
20 m sprint, SSM3) a 20 m run (10 m backward running, 
10 m forward running), SSM4) the 5–0-5 agility test, SSM5) 
two rapid 90° cuts (one left, one right); and SSM6) five 
curved runs (sprint/jog/jog/sprint/jog). Following a stand-
ardised warm-up, the players familiarised themselves with 
the full course (marked with non-reflective cones) by per-
forming it once with sub-maximal and once with maximal 
effort. The players then completed the course nine times, 
with three minutes rest between each repetition, and data 
was collected from those nine repetitions. The decision 
for the number of trials in the present study was based on 
what was deemed a balance between achieving a sufficiently 
large number of repetitions per player to make the statisti-
cal comparisons presented below [27], while ensuring that 
a high number of repeated efforts did not result in slower 
movements due to fatigue, thus not appropriately replicating 
higher velocities across trials [20].

2.3  Data collection

Data were recorded from a 64 × camera motion capture sys-
tem (MoCap) sampling at 100 Hz (Vantage, Vicon, Oxford, 
UK; 3D) and a 4 × unit  Sportlight® system sampling at 10 Hz 
 (Sportlight®, Oxford, UK; LiDAR). The MoCap cameras 
were calibrated by the facility’s dedicated technician fol-
lowing standard manufacturer protocols. The cameras were 
positioned around and overhead the course, allowing unob-
structed and full coverage of the testing area. Four reflective 
markers (18 mm diameter) were securely attached on the left 
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and right anterior and posterior superior iliac spine of each 
participant. LiDAR units (Fig. 1) were placed outside of and 
near the four corners of the testing area.

2.4  Data analysis

2.4.1  Parameters

To validate the LiDAR system, we firstly compared its 
proprietary velocity and acceleration data to velocity and 
acceleration derived from the MoCap system. One would 
typically compare positional data between such systems for 
validation purposes. However, at the time of testing, the 
LiDAR system did not provide positional data to the user.

Secondly, we compared time spent within key perfor-
mance indicators (KPIs) derived from both systems veloc-
ity and acceleration data. We calculated our own KPIs using 
the same thresholds as Linke et al. [7] rather than the KPIs 
(and their thresholds) provided by the LiDAR system. This 
enabled a more transparent analysis, considering the propri-
etary nature of the LiDAR algorithms, in addition to a more 
effective comparison of the results with previous literature. 
The velocity bands chosen for the KPIs were low speed 
(slow) (0.3 to < 1.6 m·s−1); moderate speed (moderate) (1.6 
to < 4.2 m·s−1); elevated speed (fast) (4.2 to < 5.5 m·s−1); 
high speed (very fast) (5.5 to < 6.9 m·s−1); and very high 
speed (sprint) (≥ 6.9 m·s−1). High acceleration and decelera-
tion thresholds were ≥ 3 m·s−2 and < 3 m·s−2, respectively. 
These KPIs were calculated from data recorded throughout 
each entire course run through (combining all sport specific 
movements).

The KPI measures were used to outline time spent at 
these velocity bands/accelerations/decelerations, rather than 
distance covered, a metric commonly used in determining 
football demands [21]. However, the two variables (distance 
and time) conceptually describe the same aspect in that both 
longer distances covered at a given speed and longer time 
spent at a given speed reflect a higher volume of work.

2.4.2  Data processing

MoCap marker trajectories were tri-dimensionally recon-
structed in Vicon Nexus (Vicon Motion Systems Ltd., 
Oxford, England) and exported for offline analysis (SciPy, 
scientific tools for Python). Trajectories with gaps smaller 
than 10 frames were interpolated (cubic spline) and filtered 
with a phase-corrected 4th order low-pass Butterworth fil-
ter (10 Hz cut-off). Trajectories with gaps that exceeded 10 
frames were excluded from analysis. X and Y coordinates (Z 
component excluded) were then used to derive 2D centre of 
mass (CoM) of each player, defined as the mean position of 
the four markers on the pelvis segment.

Raw velocity was computed using finite differentiation 
(central difference) of CoM position (change in position over 
time). Gait-neutralised velocity was calculated by filtering 
raw velocity with a phase-corrected 4th order low-pass But-
terworth filter (1 Hz cut-off) [7, 8]. Gait-neutralised accel-
eration was computed using finite differentiation (central 
difference) of gait-neutralised velocity (change in gait-neu-
tralised velocity over time) [7, 8]. Velocity and acceleration 
from the MoCap and LiDAR systems were then aligned 
according to the protocol outlined in FIFA [19]. Firstly, 
LiDAR data were up-sampled to 100 Hz (cubic spline inter-
polation) in accordance with the motion capture data [19] 
(Online Resource 1). Secondly, we calculated time off-sets 
between data sets by computing the root mean square error 
(RMSE) over all possible time shifts (in intervals of one 
frame). The shifting of the data that resulted in the lowest 
RMSE then defined the correct alignment [19].

2.5  Statistical analysis

Level of agreement between velocity and acceleration 
derived from the MoCap and LiDAR systems was defined 
as vRMSE (velocity: m·s−1) and aRMSE (acceleration: 
m·s−2), respectively. We calculated these individually for 
each SSM. Accuracy of the KPIs derived from the LiDAR 
data was determined by comparing them to those derived 
from the MoCap system using t tests (α = p < 0.05 [9]). The 
specific outcome evaluated was time spent within each KPI 
band rather than distance covered at each band (as explained 
above). Whilst only two participants were included in the 
study, each completed nine full circuits. Therefore, instead 
of collapsing these to the mean for each player (which 

Fig. 1  LiDAR unit
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would give n = 2 samples from each system), each trial was 
treated as an individual sample, thus totalling 18 samples 
from each system. The t tests were run using these sam-
ples. This approach is applied in similar studies (e.g. [20, 
22, 27]) and treating the trials as subjects allows repeti-
tion to enable assessment of the agreement of the relevant 
variables. Cohen’s d effect sizes are also provided for these 

comparisons as a standardised relative measure of mean-
ingfulness of the differences shown; they were interpreted 
as trivial (< 0.20), small (0.2–00.49), medium (0.50–0.79) 
and large (≥ 0.80). Statistical analyses were performed with 
the R software package for statistical computing (package: 
‘stats’; version 4.1.0).

3  Results

3.1  Velocity and acceleration

vRMSE (Fig. 2) ranged from 0.08 to 0.12 m·s−1 across all 
SSMs and for both players. The 20 m sprint presented the 
smallest mean RMSE difference, with the rest of the SSMs 
having slightly increased values. Similarly, aRMSE values 
ranged from 0.36 to 0.60 m·s−2. As with vRMSE, the 20-m 
sprint presented the smallest difference, with the SSMs 
involving change of direction (SSM4, SSM5 and SSM6) 
showing increased difference between the two systems.

3.2  KPIs

The comparison of velocity and acceleration KPIs between 
the systems showed mostly trivial differences, except for 
Sprint and High deceleration where small differences were 
found (Table 1).

4  Discussion

The aim of the study was to examine the validity of a 
LiDAR-based system against a 3D motion analysis (MoCap) 
system. Our results showed that LiDAR velocity and 

Fig. 2  Root mean square error (RMSE) scores for each player by 
sport-specific movement (SSM). Velocity (top) and acceleration (bot-
tom) RMSE values for Player A (left) and Player B (right). The cen-
tral rectangle represents the first to the third quartile. The gold line 
represents the median. The ‘whiskers’ above and below the central 
rectangle represent the maximum and minimum values, respectively. 
Crosses indicate outliers. SSM1, 20 m run (15 m sprint, 5 m decelera-
tion); SSM2, 20 m sprint; SSM3, 20 m run (10 m backward running, 
10  m forward running); SSM4, the 5-0-5 agility test; SSM5, two 
rapid 90° cuts (one left, one right); SSM6, five curved runs (sprint/
jog/jog/sprint/jog)

Table 1  Key performance 
indicators (KPIs) for velocity 
and acceleration

Velocity thresholds: slow (0.3 to < 1.6 m·s−1); moderate (1.6 to < 4.2 m·s−1); fast (4.2 m·s−1 to < 5.5 m·s−1); 
very fast (5.5 to < 6.9 m·s−1); and sprint (≥ 6.9 m·s−1). High acceleration threshold: ≥ 3 m·s−2. High decel-
eration threshold: < 3 m·s−2. 3D motion analysis system (MoCap) and LiDAR-based system (LiDAR) data 
presented as mean ± SD. p: the significance value obtained from the t test (α = 0.05). Cohen’s d: effect size. 
N: the number of observations compared from each system; each observation represents time detected run-
ning within a given velocity threshold (e.g. sprint) for a unique trial. where MoCap lost the data, no com-
parison was made

MoCap LiDAR p Cohen’s d N

Velocity KPI
 Slow (s) 9.70 ± 2.94 9.42 ± 2.78 0.024 0.098 (trivial) 18
 Moderate (s) 24.97 ± 5.08 24.77 ± 5.13 0.005 0.04 (trivial) 18
 Fast (s) 6.19 ± 1.37 6.20 ± 1.33 0.908 0.005 (trivial) 18
 Very fast (s) 3.01 ± 0.92 2.97 ± 0.90 0.315 0.044 (trivial) 17
 Sprint (s) 0.21 ± 0.21 0.16 ± 0.23 0.119 0.264 (small) 12

Acceleration KPI
 High acceleration (s) 19.79 ± 4.87 19.52 ± 4.82 0.002 0.057 (trivial) 18
 High deceleration (s) 4.95 ± 1.27 4.54 ± 1.25  < 0.001 0.325 (small) 18
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acceleration values, obtained during football-specific move-
ments, are in close agreement with those from the MoCap 
system, indicating LiDAR provided valid measures of veloc-
ity and acceleration in football-specific tasks.

RMSE, a standard way to quantify the level of agree-
ment between data [23–25], is recommended in the 
FIFA guidelines [19] and enables comparison to recent 
assessments of EPTS with similar measurement pro-
tocols. The range of error values we report for velocity 
(0.08–0.12 m·s−1) and acceleration (0.36 0.60 m·s−2) are 
lower than other portable EPTS when they were compared 
to a 3D motion capture system using the same football-
specific course (GNSS: 0.32 m·s−1 and 1.18 m·s−2; LPS: 
0.32 m·s−1 and 0.69 m·s−2) [7].

When compared to fixed-position systems, LiDAR 
had lower error values than a video-based system 
(VIDEO: 0.41 m·s−1 and 0.78 m·s−2) but higher error val-
ues than an optical-based system (0.03–0.09 m·s−1 and 
0.06–0.27 m·s−2) [8]. However, it should be noted that 
these fixed systems present the issue that Buchheit et al. 
[1] identified with teams utilising multiple tracking sys-
tems that are not interchangeable, impairing the use of 
such data for monitoring purposes. Therefore, the LiDAR-
based system can be considered favourably in this context.

The velocity values indicate good agreement, as they 
are sufficiently small to be able to detect practically mean-
ingful changes. The difference of 0.08 m·s−1 (from SSM1) 
is sufficiently small to detect changes in sprinting veloc-
ity between different ability athletes in 5, 10 and 20 m 
sprints, while the difference of 0.12 m·s−1 (from SSM4) 
is sufficiently small to detect differences between the 
same groups of athletes in change of direction tasks [26]. 
Finally, it is smaller than the smallest worthwhile change 
in football (defined as being ahead of the opponent on 
on-to-one duels) which was deemed to be at least 0.04 s 
quicker over 20 m sprint [27], a velocity difference of at 
least 0.09 m·s−1 [28].

KPI comparisons between the two systems were good, 
with most differences being of trivial meaningfulness 
(range trivial–small). When the same KPIs were compared 
between 3D motion analysis, an LPS, a GNSS and a video-
based system, the differences ranged from trivial to large 
(for all three systems, across the full sport-specific course) 
[7], while the present results are very similar to those of 
the fixed optical tracking system [8]. This is an important 
finding, since many professionals working in team sports 
are often interested in quantifying work done, based on 
velocity or acceleration KPI thresholds in an attempt to 
design their training and conditioning programmes, moni-
tor players’ exercise volume and decrease injury risk [2].

A limitation of the present study is that the system was 
validated with one player completing the course at a time. 
Further research is required to examine whether the same 

accuracy, or indeed ability to distinguish players, will 
be demonstrated when multiple players (as in a football 
game) are involved.

5  Conclusion

The present data suggest that the LiDAR-based system 
provides valid measures of velocity, acceleration and time 
spent within given KPI bands for individual football-specific 
movements. Practitioners and coaches that want to examine 
those metrics can therefore confidently use the LiDAR sys-
tem to obtain them, while not needing to trade-off between 
portability and accuracy.
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