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Abstract  
Purpose of Review  IA (invasive aspergillosis) caused by azole-resistant strains has been associated with higher clinical 
burden and mortality rates. We review the current epidemiology, diagnostic, and therapeutic strategies of this clinical entity, 
with a special focus on patients with hematologic malignancies.
Recent Findings  There is an increase of azole resistance in Aspergillus spp. worldwide, probably due to environmental 
pressure and the increase of long-term azole prophylaxis and treatment in immunocompromised patients (e.g., in 
hematopoietic stem cell transplant recipients). The therapeutic approaches are challenging, due to multidrug-resistant strains, 
drug interactions, side effects, and patient-related conditions.
Summary  Rapid recognition of resistant Aspergillus spp. strains is fundamental to initiate an appropriate antifungal 
regimen, above all for allogeneic hematopoietic cell transplantation recipients. Clearly, more studies are needed in order to 
better understand the resistance mechanisms and optimize the diagnostic methods to identify Aspergillus spp. resistance 
to the existing antifungal agents/classes. More data on the susceptibility profile of Aspergillus spp. against the new classes 
of antifungal agents may allow for better treatment options and improved clinical outcomes in the coming years. In the 
meantime, continuous surveillance studies to monitor the prevalence of environmental and patient prevalence of azole 
resistance among Aspergillus spp. is absolutely crucial.
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Introduction 

The mold Aspergillus spp. was identified by an Italian priest 
Micheli in 1729, who named it after the shape of an Aspergillum 
(sprinkler of holy water) [1]. The classification of this mold is 
quite challenging. Since many informal classifications with no 
international consensus in the last years were proposed, such as 
“species complexes “ or “cryptic species,” the use of the classical 
taxonomy according to their morphology and phylogenetic 
relationships (6 subgenera, 27 sections, and 87 series) seems to 
be more reasonable [2, 3, 4]. Invasive aspergillosis (IA) is the 
most common invasive fungal disease (IFD) caused primarily 
by A. fumigatus, followed by A. flavus, A. terreus, and A. niger. 

[5] Prolonged neutropenia, hematopoietic cell transplantation 
(HCT), intensive chemotherapy, graft-versus-host disease 
(GVHD), and high-dose corticosteroids are classical risk 
factors for IA [6]. In the last decades, the development of new 
therapies, such as inhibitors of tyrosine kinase (e.g. ibrutinib) or 
Janus-kinase, checkpoint-inhibitors, and CAR-modified T-cells 
(due to the use of steroids and tocilizumab for the prevention 
of cytokine release syndrome), has also been associated with 
higher risk for IA [7, 8, 9]. Among solid organ transplant (SOT), 
lung transplant recipients have the highest risk of IA. [10, 11]

Furthermore, patients in the intensive care unit patients 
or infected with SARS-CoV-2 and patients with advanced 
liver cirrhosis or under long systemic corticosteroid therapy 
are also at risk for IA. [12, 13, 14]

Considering the increasing number of patient populations 
at risk for IA, higher numbers of patients are exposed to 
broad-spectrum azoles, such as voriconazole, posaconazole, 
or isavuconazole, either as prophylaxis or treatment [15, 
16, 17, 18, 19]. However, prolonged and expanded use of 
broad-spectrum azoles in clinical practice, as well as in 
the environment, might have contributed to an important 
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increase in azole resistance worldwide [20, 21]. Azole-
resistant Aspergillus strains have been associated with 
therapeutic failure and mortality rates as high as 90% [22]. In 
this article, we review the current trends in the epidemiology 
and clinical impact of antifungal-resistant Aspergillus spp.

Epidemiology of Azole‑Resistant A. 
fumigatus

Azole-resistant A. fumigatus (ARAF) strains caused by 
the mutations TR34/L98H or TR46/Y121F/T289A have 
been reported worldwide [23]. The first case of ARAF was 
reported in the late 1980s in the Netherlands, and since then, 
increased rates of azole resistance have been reported in 
all continents, except for Antarctica (Fig. 1) [24]. Due to 
variability in agricultural use of azole-containing pesticides, 
scarce routine surveillance programs, and limited availability 
of routine susceptibility testing, there is a lack of relevant, 
detailed epidemiological data [25]. This could explain, 
in part, the enormous variability of ARAF prevalence in 
different countries [26]. The SCARE-Network, a multicenter 
study from 22 centers (19 European and 4 non-European 
sites), showed an overall ARAF-prevalence of 3.2% (ranging 
from 0 to 26%), with the predominance of the mutation 
TR34/L98H between 2009 and 2011 [26]. The Netherlands 
have reported one of the highest ARAF-prevalence in 
Europe, with a significant increase from 1.7–6% in the period 
1997–2007 to 8–15% between 2013 and 2018 (TR34/L98H 
and TR46/Y121F/T289A mutations accounting for most cases) 
[27, 28]. In Denmark, ARAF prevalence was reported to be 

6.1%, based on a national surveillance program between 2018 
and 2020 [29]. A Belgian one-year retrospective multicenter 
study showed an ARAF prevalence of 5.5% [30]. In Spain, 
the estimated prevalence is between 1.2 and 6.6% [31, 32]. 
Study groups from Germany and Italy reported similar rates 
of azole-resistant A. fumigatus in cystic fibrosis patients, as 
well as in patients with hematological malignancies, 5.3–9 
and 1.1–1.3%, respectively. [33, 34, 35, 36] Lazzarini et al. 
showed an azole resistance prevalence of 6.25% in Italian 
clinical samples [37]. Similarly, in France ARAF has been 
reported in 0.85% of hematological malignancy patients 
and 1.8% in the general population [38, 39]. In Portugal, 
Poland, and Turkey, the resistance rates in clinical isolates 
and samples were 2.6, 4.1, and 3.3% respectively. [40, 41, 42] 
Environmental isolates were reported to be azole resistant in 
6% of cases in the UK and 1% of cases in Greece [43, 44]. 
In Switzerland, the TR34/L98H mutation was first reported 
in 2018, in environmental A. fumigatus strains initially, and 
later in two patients with cystic fibrosis [45]. Based on a 
recently published surveillance study on ARAF in clinical 
samples in Switzerland, ARAF prevalence was found to be 
about 1.1%. [46]

In the USA, the first reported TR34/L98H mutation was 
reported in 2016 [47]. Between 2015 and 2017 a passive 
surveillance program showed an ARAF prevalence of 1.4% 
[48]. Canada seems to have for the moment low rates of azole 
resistance, with a prevalence in clinical samples of 0.2%. 
In contrast, in Latin America, data are scarce. A Peruvian 
prospective cohort study in patients with chronic pulmonary 
aspergillosis showed a resistance prevalence of 2%, and a 1% 
resistance prevalence was recently reported in Brazil [49, 50]. 

Fig. 1   Worldwide prevalence of azole resistant Aspergillus fumigatus (ARAF) clinical and environmental samples and isolates
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Environmental isolates from Colombia showed a resistance 
prevalence of 9.3% [51]. In Mexico and Argentina, recent 
studies reported a resistance prevalence of 4.7% and 14%, 
respectively. [52, 53] In the African continent, data are also 
limited. Some data are suggesting ARAF prevalence of 1.3% 
in clinical samples and up to 17.1% in the environmental 
setting [54]. Resistance prevalence in Vietnam (environmental 
samples), Iran (environmental samples), China, Taiwan, 
Pakistan, Thailand, Japan, and India were 65, 18, 4.4, 7.5, 
6.6, 3.2, 2.9, and 4.3%, respectively. [22, 23, 55, 56, 57, 58, 
59, 60, 61, 62] In Australia, only 2% of clinical isolates of A. 
fumigatus were reported to be azole resistant [63]. In South 
Korea, no resistance strains were found until 2015. [64]

Resistance in Aspergillus fumigatus “Cryptic” 
Species

The section A. fumigatus includes “cryptic” species 
causing IA, albeit associated with higher mortality rates 
[65]. “Cryptic” species are probably underestimated, since 
the conventional diagnostic methods are not often able to 
recognize them, and only DNA sequencing permits accurate 
identification and classification. The resistance mechanisms 
and specific mutations are mostly still unknown for these 
species, but there are some homologies with A. fumigatus. 
[65] The most frequent cryptic A. fumigatus species is A. 
lentulus, first described in 2004 in allogeneic HCT recipients 
[66]. It is mostly found in immunocompromised patients 
with hematological disease, SOT recipients or patients 
treated with high-dose systemic corticosteroids [67]. 
Although A. lentulus represents < 3% of all A. fumigatus 
spp. in clinical specimens, it could account for 10–30% of 
misidentified/sub-categorized ARAF [65, 68]. Mutations 
in the Cyp51A gene (as for A. fumigatus) are probably 
responsible for the development of azole resistance in A. 
lentulus. [69] Since this species has a low susceptibility to 
multiple antifungals, including azoles and echinocandins, 
treatment options are often limited [68]. A. (Neosartorya)
udagawae, isolated for the first time in 1995, accounts only 
for a small percentage of IA cases but, as A. lentulus, is often 
resistant to voriconazole and amphotericin B [65, 70]. Other 
rare “cryptic” species in the section fumigatus include A. 
viridinutans/felis and A. fischeri/thermomutatus. [65]

Epidemiology of Azole‑Resistant 
Non‑fumigatus Aspergillus Species

A large Spanish study showed a high prevalence of non-fumig-
atus species in clinical samples (A. fumigatus accounted for 
less than 50%) [31]. Overall, A. flavus, A. terreus, A. tubigen-
sis, A. niger, and A. nidulans represented 8.4, 8.1, 6.8, 6.5, and 

2.5%, respectively, of all clinical samples in this population-
based survey [31]. On the contrary, an American study in 
transplant recipients reported a higher prevalence of A. flavus 
(13.3%), followed by A. niger (6.0%) and A. terreus (5.0%) 
[71]. The prevalence of “cryptic” species between all identified 
Aspergillus sections was of 10% and 12% in the two previously 
cited studies, respectively. [31, 71] A. flavus is worldwide the 
second cause of IA after A. fumigatus, with higher prevalence 
reported in sub- and tropical countries like India, Pakistan, and 
Sudan [72, 73, 74, 75]. For instance, in India, 47% of all IA in 
ICU patients with no classical risk factors were caused by A. 
flavus (39.4% A. fumigatus) [75]. Azole resistance has been 
rarely reported in A. flavus strains [72]. A. terreus accounts 
for a minority of IA infections, but with a prevalence as high 
as 30% among IA cases in specific geographical regions such 
as Houston, Texas (USA) and Innsbruck, Tyrol (Austria) [76, 
77]. Recent epidemiological data from Italy suggest a preva-
lence of A. terreus in hematological patients of 4.8% [36]. 
Posaconazole resistance has been found in 13.7% of all A. 
terreus isolates in Germany, 12.5% in the UK, and 10% in Aus-
tria, worldwide. A total of 5.4% of all section Terrei isolates 
were posaconazole-resistant; voriconazole and itraconazole 
resistance was rare and mostly found in the “cryptic” species 
of this section such as A. citrinoterreus and A. alabamensis. 
[78] Since the MICs for voriconazole (2 microgramm/mL) 
are higher than posaconazole (0.25 microgramm/mL) for this 
section, resistance to voriconazole is rare. Azole-resistance is 
extremely important for this species, due to the limited alterna-
tive treatment options for A. terreus, considering the ampho-
tericin-B resistance, which is likely related to drug uptake 
reduction and higher catalase activity [79]. A. citrinoterreus 
is reported to be the most common « cryptic» species in the 
section Terreus (8.4%), followed by A. hortai (2.6%) and A. 
alabamensis (1.6%) [78]. Azole resistance remains rare in the 
cryptic species of the Terrei Sect.  [78] A. niger is considered 
to be of lower virulence in comparison to other Aspergillus 
spp. with incidence in transplant recipients between 0.048 
and 0.16%, as reported by the TRANSNET group [80, 81]. 
A Belgian single-center study has showed a small number (16 
cases) of IA caused by A. niger complex over a 7-year period 
[82]. The “cryptic” species A. tubingensis was responsible 
for 5 of these cases [82]. A. tubingensis as A. awamori/wel-
witschiaceae is known to have higher triazole MICs limiting 
the available treatment options [83]. A. ustus with the “cryptic” 
species A. calidoustus and A. pseudodeflectus are rare causes 
of IA, with a recent literature review showing 67 reported 
cases of probable/proven IA worldwide due to A. ustus com-
plex [84]. Half of these cases were breakthrough IA in patients 
receiving azole-based antifungal prophylaxis, consistent with 
other reports suggesting increasing detection of this pathogen 
in the setting of long-term azole prophylaxis [84, 85]. Since 
resistance to azole of these species is variable, rates of thera-
peutic failure and mortality are high [84]. Also, A. nidulans 
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with the “cryptic”species A. sublatus, A. quadrilineatus is a 
very rare cause of IA, described mostly in patients with the 
chronic granulomatous disease (estimated to cause 35% of all 
IA in this patients subgroup), observed in osteomyelitis and in 
patients receiving itraconazole prophylaxis [86, 87, 88]. Azole 
resistance is not common in the section A. nidulans. [87]

Mechanisms of Azole and Other Antifungal 
Resistance

The pathogenesis of azole resistance is complex and multi-
factorial. Moreover, most of the studies have been con-
ducted in A. fumigatus, and data are missing for other spe-
cies. More studies are needed, considering the important 
clinical burden of these infections [89]. First, single point 
mutations in the cyp51 gene (mostly amino-acid substitu-
tions in CYP51A, such as G54, G138, M220, G448, L98H, 
Y121F, and T289A) can reduce the affinity between azoles 
and their targets [90, 91, 92]. These mutations are often 
associated with long-term azole administration [22]. For 
instance, mutations in the cyp51C gene are associated with 
high voriconazole minimal inhibitory concentrations (MIC) 
in A. flavus. [93, 94] Furthermore, cyp51A gene mutations 
may probably be the reason for A. lentulus azole-resistance 
[65]. Second, tandem repeat mutations of 34 bp (TR34), 
46 bp (TR46), or 53 bp (TR53) in the promoter region of 
A. fumigatus cyp51A or other type of mutations in different 
genes could possibly induce an overexpression of cyp51, 
which increases the azole concentrations needed to inhibit 
fungal growth (since azoles are binding to cyp51 protein in 
order to block the formation of ergosterol) [95, 96, 97]. This 
type of mutation is thought to be associated with environ-
mental azole resistance, since the massive use of azole-based 
fungicides in agriculture could provoke cross-resistance with 
triazoles [24, 98]. Such mutations have been described in 
azole-naive, but also in patients on long-term azole treat-
ment, highlighting the complexity of the different types of 
resistance mechanisms [99]. Finally, multidrug efflux pumps 
could lead to lower intracellular drug concentrations and 
azole resistance, although more data are required to better 
describe this resistance mechanism [97, 100, 101]. Other 
possible mechanisms include cellular stress response, drug 
enzymatic degradation, and bio-film formation. [92, 102]

Diagnosis of Azole‑Resistance

The diagnosis of azole resistance is based on the phenotypic 
measurement of MIC, which is the threshold to differen-
tiate a resistant from a susceptible strain. MICs are used 
together with pharmacokinetic/pharmacodynamic (PK/PD) 
data to determine the clinical breakpoints (CBPs), which are 
susceptibility predictors [103, 104, 105]. The gold standard 

to assess the MIC is the broth microdilution assays stand-
ardized by the Clinical and Laboratory Standards Institute 
(CLSI) or the European Committee on Antimicrobial Sus-
ceptibility Testing (EUCAST), which are the two major clas-
sification systems used for antimicrobial susceptibility [103, 
104, 105]. Of note, EUCAST has established CBPs for dif-
ferent drugs for A. fumigatus, A. flavus, A. nidulans, A. niger, 
and A. terreus, while CLSI has proposed only voriconazole 
CBPs for A. fumigatus. [105] Otherwise, CLSI uses epi-
demiological cut-off values (ECVs) to differentiate among 
wild-type susceptible and non-wild-type strains, which are 
not predictors of clinical outcomes [106]. Overall, CLSI and 
EUCAST recommendations are similar, despite methodo-
logical differences [107]. Other complementary phenotypic 
diagnostic tests include calorimetric endpoint or agar-based 
methods that use MIC strips. These tests are easier to per-
form and comparable to the EUCAST/CLSI microdilution 
standard, but they also need a positive culture. [1, 26]

Genotypic testing for azole resistance is based mostly 
on PCR methods, targeting directly the most frequent point 
mutations in the cyp51A gene and its promoter and the tan-
dem repeat insertions [1, 25, 108]. Currently, there are three 
different commercial kits used in Europe for the genotypic 
detection of azole resistance [109]. However, not all muta-
tions are reported; hence sensitivity remains low and those 
PCR assays target only A. fumigatus-related mutations [1]. 
Pyrosequencing can also be used for detecting resistance, 
using the detection of light that is released during nucleotide 
incorporation into the amplifying DNA, but it is not often 
available [110]. MALDI-TOF could be also used for detect-
ing azole resistance, but data on molds are largely missing 
[111]. Eventually, whole genome sequencing (WGS) has 
the highest resolution for detecting mutations in A. fumiga-
tus and could be used for different other species. Due to 
high costs, long turn-around time, and high-level expertise 
needed, its utility remains very limited. [1, 112]

Special Clinical Considerations 
for Hematopoietic Stem Cell Transplant 
Recipients and Patients with Hematologic 
Malignancies

The incidence of IA in patients with acute myeloid leukemia 
or allogeneic HCT recipients has ranged between 5 and 15%. 
[6, 113, 114]

Allogeneic HCT recipients with IA due to azole-resistant 
Aspergillus spp. present clinically similar to patients infected 
with non-resistant strains, usually with a pulmonary infec-
tion, followed by sinusonasal and cerebral IA [115]. Rapid 
detection of azole resistance is fundamental, since infections 
caused by these strains are associated with higher mortality, 
between 88 and 100% [116, 117, 118]. Comparative studies 
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between azole resistant and susceptible strains of Aspergillus 
spp. in IA showed a 21–31% higher mortality in the azole 
resistant group [116, 119]. As already mentioned, pheno-
typic diagnostic tests that require culture growth often miss 
“cryptic” species and the rate of culture-positivity varies 
between different patient groups [120, 121]. Clinical suspi-
cion for resistant Aspergillus spp. should be rapidly raised 
in the context of a lack of clinical and biological (e.g., per-
sistence of high galactomannan plasmatic levels) response 
to the administered therapy.

Antifungal Treatment Considerations

The cornerstone of IA treatment is broad-spectrum triazoles, 
including voriconazole, isavuconazole, and posaconazole 
[15, 16, 122, 123, 124, 125]. Different factors, such as prior 
use of azole prophylaxis, local epidemiology of azole-
resistance, co-morbidities, site of infection, the severity of 
clinical presentation, and co-infections with other fungi, 
may impact the choice of antifungal agent used, particularly 
before microbiological results become available [6, 126]. 
For azole-resistant Aspergillus strains, there are no con-
trolled clinical trial data; hence treatment recommendations 
are based mostly on expert opinion [22]. Latest treatment 
recommendations suggest avoiding an azole as empirical 
treatment if the local azole-resistance prevalence is > 10% 
and consider using either amphotericin-B lipid formulations 
or a combination of voriconazole with an echinocandin [16, 
127, 128, 129]. However, there is a lack of clinical evidence 
to support this approach, particularly considering that the 
cut-off of 10% of azole resistance is arbitrary. However, this 
approach may be justified, considering the lack of avail-
ability of rapid molecular diagnostic tools in most centers, 
which could lead to significant delays in appropriate treat-
ment initiation. If resistance rates are less than 5%, resist-
ance investigation may be warranted only in case of treat-
ment failure; however, with a prevalence between 5 and 10%, 
routine resistance testing is recommended [13]. The right 
timing for transition to oral antifungal treatment, when sus-
ceptibility testing is not available, is unclear. The European 
Society of Clinical Microbiology and Infectious Diseases 
(ESCMID) guidelines strongly recommend for the treatment 
of voriconazole-resistant (MIC > 2 mg/ml) IA amphotericin-
B lipid formulation monotherapy or a combination of vori-
conazole or isavuconazole with an echinocandin [14]. Even 
if the MIC of posaconazole is 0.5 mg/l, a possible step-down 
therapy with oral posaconazole with a targeted plasmatic 
level > 3.3 mg/l has been suggested as a possible treatment 
option. [130, 131, 132]

As mentioned above, resistance testing may not always be 
feasible, because of the lack of culture growth and isolation 
difficulties for cryptic species in specific patient subgroups. 

In these cases, diagnosis of possible resistance is predomi-
nately based on clinical suspicion and treatment should 
always be discussed with the local infectious disease team. 
The “cryptic” species for the section A. fumigatus, such as 
A. udagawae, A. thermomutatus, and A. lentulus, show high 
MICs for all azole drugs, and A. lentulus and A. udagawae 
have higher MICs also for amphotericine-B products [65, 
133, 134]. Isavuconazole seems to be active against A. len-
tulus and A. udagawae, although data are very limited. [63]

Concerning the therapy for non-fumigatus Aspergillus 
spp., voriconazole is the first-line therapy for A. flavus. [70] 
Echinocandins could be used in combination with voricona-
zole or alone when no other treatment options are available 
in the rare cases of azole resistance [70]. Since posacona-
zole resistance is common for A. terreus and his “cryptic” 
species, voriconazole and itraconazole are the preferred 
antifungal molecules [16, 135]. Liposomal amphotericin-B 
should be avoided [135]. “Cryptic” species of the A. niger 
section (example given A. tubigensis) are often resistant to 
the triazoles; for this reason, liposomal amphotericine B is 
preferred [136]. The optimal antifungal therapy for A. ustus 
is still not elucidated due to the absence of clinical trials. 
ESCMID recommend the use of amphotericin-B products, 
since often these infections are breakthrough IA under posa-
conazole or voriconazole prophylaxis [14]. Isavuconazole, 
which shows lower MICs, could have a potential role in the 
therapy of this Sect.  [137]

New antifungal molecules could play a role in the treat-
ment of azole-resistant IA in the future. For example, ibrexa-
gungerp shows an activity against azole-resistant isolates of 
A. calidoustus and A. terreus, if used in combination with 
liposomal amphotericin-B or azole [138]. Rezafungin has 
displayed some activity against azole-resistant Aspergillus 
spp. in animal models [139]. Fosmanogepix, VL-2397, and 
olorofim have also demonstrated a potent activity against 
azole-resistant strains. 140, 141 While more clinical data are 
necessary to better define the role of those new molecules in 
the management of IA due to “cryptic” and azole-resistant 
Aspergillus spp., the thus far reported MIC data of some of 
them suggest that they may represent an important tool in 
the management of those infections.

Conclusions

There is an increase in azole resistance worldwide probably 
due to environmental phenomena (massive use of azole-
containing fungicide in agriculture) and due to the increase 
of long-term azole prophylaxis and treatment in immuno-
compromised patients. IA caused by those strains has been 
associated with higher clinical burden and mortality rates. 
Rapid recognition of resistant Aspergillus spp. strains is 
fundamental to initiate an appropriate antifungal regimen 
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in allogeneic HCT recipients and patients with hematologic 
malignancies. Clearly, more studies are needed in order to 
better understand the resistance mechanisms and to optimize 
the diagnostic methods to identify Aspergillus spp. resist-
ance to the existing antifungal agents/classes. Currently, 
therapeutic approaches are challenging, due to multidrug-
resistance strains, drug interactions, side effects, and patient-
related conditions. More data on the susceptibility profile 
of Aspergillus spp. against the new classes of antifungal 
agents, which are in phase I–III clinical trials, may allow 
for better treatment options and improved clinical outcomes 
in the coming years. In the meantime, continuous surveil-
lance studies to monitor the prevalence of environmental 
and patient prevalence of azole resistance among Aspergillus 
spp. is absolutely crucial.
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