Skip to main content
Log in

Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A new type of lead-free, formamidinium (FA)-based halide perovskites, FASnI2Br, are investigated as light-harvesting materials for low-temperature processed p–i–n heterojunction solar cells with different configurations. The FASnI2Br perovskite, with a band-gap of 1.68 eV, exhibits optimal photovoltaic performance after low-temperature annealing at 75 °C. By using C60 as electron-transport layer, the device yields a hysteresis-less power conversion efficiency of 1.72%. The possible use of an inorganic MoO x film as a new type of independent hole-transport layer for the present tin-based perovskite solar cells is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 2448–2463.

    Article  Google Scholar 

  2. Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

    Article  Google Scholar 

  3. Sum, T. C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518–2534.

    Article  Google Scholar 

  4. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.

    Article  Google Scholar 

  5. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

    Article  Google Scholar 

  6. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

    Article  Google Scholar 

  7. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

    Article  Google Scholar 

  8. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127.

    Article  Google Scholar 

  9. Sabba, D.; Mulmudi, H. K.; Prabhakar, R. R.; Krishnamoorthy, T.; Baikie, T.; Boix, P. P.; Mhaisalkar, S.; Mathews, N. Impact of anionic Br–substitution on open circuit voltage in lead free perovskite (CsSnI3?xBrx) solar cells. J. Phys. Chem. C 2015, 119, 1763–1767.

    Article  Google Scholar 

  10. Marshall, K. P.; Walton, R. I.; Hatton, R. A. Tin perovskite/ fullerene planar layer photovoltaics: Improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 2015, 3, 11631–11640.

    Article  Google Scholar 

  11. Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 2015, 3, 14996–15000.

    Article  Google Scholar 

  12. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

    Article  Google Scholar 

  13. Zhang, M.; Lyu, M. Q.; Yu, H.; Yun, J. H.; Wang, Q.; Wang, L. Z. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chem.—Eur. J. 2015, 21, 434–439.

    Article  Google Scholar 

  14. Wang, Q.; Chen, H. J.; Liu, G.; Wang, L. Z. Control of organic–inorganic halide perovskites in solid-state solar cells: A perspective. Sci. Bull. 2015, 60, 405–418.

    Article  Google Scholar 

  15. Jung, H. S.; Park, N. G. Perovskite solar cells: From materials to devices. Small 2015, 11, 10–25.

    Article  Google Scholar 

  16. Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T. W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515.

    Article  Google Scholar 

  17. O’Regan, B. C.; Barnes, P. R. F.; Li, X. E.; Law, C.; Palomares, E.; Marin-Beloqui, J. M. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: Separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. J. Am. Chem. Soc. 2015, 137, 5087–5099.

    Article  Google Scholar 

  18. Roldán-Carmona, C.; Malinkiewicz, O.; Soriano, A.; Mínguez Espallargas, G.; Garcia, A.; Reinecke, P.; Kroyer, T.; Dar, M. I.; Nazeeruddin, M. K.; Bolink, H. J. Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 2014, 7, 994–997.

    Article  Google Scholar 

  19. Wang, Q.; Bi, C.; Huang, J. S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280.

    Article  Google Scholar 

  20. Lin, Q. Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 2014, 9, 106–112.

    Article  Google Scholar 

  21. Liang, P. W.; Chueh, C. C.; Williams, S. T.; Jen, A. K. Y. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. 2015, 5, 1402321.

    Google Scholar 

  22. Shao, Y. H.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

    Article  Google Scholar 

  23. Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

    Article  Google Scholar 

  24. Xie, F. X.; Choy, W. C. H.; Wang, C. D.; Li, X. C.; Zhang, S. Q.; Hou, J. H. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics. Adv. Mater. 2013, 25, 2051–2055.

    Article  Google Scholar 

  25. Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582.

    Article  Google Scholar 

  26. Liu, P.; Liu, X. L.; Lyu, L.; Xie, H. P.; Zhang, H.; Niu, D. M.; Huang, H.; Bi, C.; Xiao, Z. G.; Huang, J. S. et al. Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl. Phys. Lett. 2015, 106, 193903.

    Article  Google Scholar 

  27. Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136, 8094–8099.

    Article  Google Scholar 

  28. Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

    Article  Google Scholar 

  29. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  30. Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition–crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 2014, 53, 9898–9903.

    Google Scholar 

  31. Zhang, M.; Yu, H.; Yun, J. H.; Lyu, M. Q.; Wang, Q.; Wang, L. Z. Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chem. Commun. 2015, 51, 10038–10041.

    Article  Google Scholar 

  32. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

    Article  Google Scholar 

  33. Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C. Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 2952–2959.

    Article  Google Scholar 

  34. Bi, C.; Yuan, Y. B.; Fang, Y. J.; Huang, J. S. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1401616.

    Google Scholar 

  35. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.

    Article  Google Scholar 

  36. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.

    Article  Google Scholar 

  37. Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. Highefficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998.

    Article  Google Scholar 

  38. Gao, J. B.; Perkins, C. L.; Luther, J. M.; Hanna, M. C.; Chen, H.-Y.; Semonin, O. E.; Nozik, A. J.; Ellingson, R. J.; Beard, M. C. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 2011, 11, 3263–3266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul C. Dastoor or Lianzhou Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Lyu, M., Yun, JH. et al. Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 9, 1570–1577 (2016). https://doi.org/10.1007/s12274-016-1051-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1051-8

Keywords

Navigation