Skip to main content
Log in

Identification of wool, cashmere, yak, and angora rabbit fibers and quantitative determination of wool and cashmere in blend: a near infrared spectroscopy study

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Near infrared spectroscopy coupled with chemiometric analysis was investigated as a fast and non destructive method for the identification of wool, cashmere, yak, and angora rabbit fibers in the raw and combed sliver state and for the quantitative determination of cashmere in cashmere/wool blends. The main differences among spectra of different animal hair arise from physical charateristics rather than chemical characteristics (mainly pigmentation and mean diameter) of animal fibers. The Soft Independent Modelling by Class Analogy method allows the classification of distinct fibers into separate groups with interclass distances ranging from 12.64 for the nearest classes (white cashmere and wool) to above 1000 for the most distant classes of white and pigmented fibers. Percentages of recognition and rejection of 100 % were found with the exception of a yak sample that was not rejected from the pigmented cashmere class (98 % of rejection). The prediction capacity of the model was also evaluated. Quantitative analysis was carried out using samples obtained by carefully mixing known amounts of wool and white cashmere. A standard error of the estimate of 8.5, a standard error of prediction of 13.10 and a coefficient of determination of 0.95 were calculated. From the results obtained, it can be concluded that near infrared spectroscopy can be used as a tool for an initial and rapid screening of unknown animal fiber samples in the raw and combed sliver states and for a fast and coarse estimate of the amount of cashmere in wool/cashmere blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Hamlyn, G. Nelson, I. Kibria, E. Broadbent, and B. J. McCarty, Proc. 9th Int. Wool Tex. Res. Conf. Biella, II, 513 (1995).

    Google Scholar 

  2. K. Hollemeyer, W. Altmeyer, and E. Heinzle, Anal. Chem., 74, 5960 (2002).

    Article  CAS  Google Scholar 

  3. E. W. Ciurczak in “Handbook of Near-Infrared Analysis”, (D. A. Burns and E. W. Ciurczak Eds.), pp.7–11, Marcel Dekker, SA, New York, 1992.

  4. E. Cleve, E. Bach, and E. Schollmeyer, Anal. Chim. Acta, 420, 163 (2000).

    Article  CAS  Google Scholar 

  5. R. Innocenti and M. Zoccola, J. Near. Infrared. Spec., 11, 333 (2003).

    Article  CAS  Google Scholar 

  6. J. Rodgers, S. Y. Kang, C. Fortier, X. Cui, G. Davidonis, E. Clawson, D. Boquet, and W. Pettigrew, Spectroscopy, 25, 38 (2010).

    CAS  Google Scholar 

  7. M. Sohn, D. S. Himmelsbach, W. H. Morrison, D. E. Akin, and F. E. Barton, Appl. Spectrosc., 60, 437 (2006).

    Article  CAS  Google Scholar 

  8. M. Sohn, D. S. Himmelsbach, D. E. Akin, and F. E. Barton, Text. Res. J., 75, 583 (2005).

    Article  CAS  Google Scholar 

  9. M. Sohn, F. E. Barton, D. E. Akin, and W. H. Morrison, J. Near Infrared Spectrosc., 12, 259 (2004).

    Article  CAS  Google Scholar 

  10. G. J. Faughey and H. S. S. Sharma, J. Near Infrared Spectrosc., 10, 151 (2002).

    Article  CAS  Google Scholar 

  11. G. Wang, A. M. Huang, X. X. Hu, and F. M. Chen, Spectrosc. Spect. Anal., 30, 2365 (2010).

    CAS  Google Scholar 

  12. H. F. Yuan, R. X. Chang, L. L. Tian, C. F. Song, X. Q. Yuan, and X. Y. Li, Spectrosc. Spect. Anal., 30, 1229 (2010).

    CAS  Google Scholar 

  13. Y. Zhou, H. R. Xu, and Y. B. Ying, Spectrosc. Spect. Anal., 28, 2804 (2008).

    CAS  Google Scholar 

  14. M. Zoccola, A. Aluigi, and C. Tonin, J. Mol. Struct., 938, 35 (2009).

    Article  CAS  Google Scholar 

  15. M. Zoccola, R. Mossotti, R. Innocenti, D. I. Loria, S. Rosso, and R. Zanetti, Pigment Cell Res., 17, 379 (2004).

    Article  CAS  Google Scholar 

  16. J. S. Shenk, J. J. Workman, and M. O. Westerhaus in “Handbook of Near-Infrared Analysis” (D. A. Burns and E. W. Ciurczak Eds.), pp.393–395, Marcel Dekker, New York, 1992.

  17. J. A. Maclaren and B. Milligan, “Wool Science. The Chemical Reactivity of the Wool Fibre”, Science Press, Marrickville, Australia, 1981.

    Google Scholar 

  18. L. Gallico, “La Lana” Eventi e Progetti Ed., Vigliano Biellese, Italy, 2000.

  19. A. B. Wildman, “The Microscopy of Animal Fibres”, Wool Ind. Res. Assoc., Leeds, 1954.

    Google Scholar 

  20. M. Miyazawa and M. Sonoyama, J. Near Infrared Spectrosc., 6, A253 (1998).

    Article  CAS  Google Scholar 

  21. R. Mossotti, R. Innocenti, M. Zoccola, A. Anghileri, and G. Freddi, J. Near Infrared Spectrosc., 14, 201 (2006).

    Article  CAS  Google Scholar 

  22. J. Workman, Jr. and L. Weyer, “Practical Guide to Interpretive Near-Infrared Spectroscopy”, CRC Press, pp.93–96, Boca Raton, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zoccola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoccola, M., Lu, N., Mossotti, R. et al. Identification of wool, cashmere, yak, and angora rabbit fibers and quantitative determination of wool and cashmere in blend: a near infrared spectroscopy study. Fibers Polym 14, 1283–1289 (2013). https://doi.org/10.1007/s12221-013-1283-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1283-0

Keywords

Navigation