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Abstract
This paper is devoted to the studyof global attractors for problemswith state-dependent
impulses and possible nonuniqueness of solutions.We provide the criteria underwhich
there exists the global attractor, being on one hand an invariant set, and on the other
hand given by the difference of the minimal compact attracting set and the impulsive
set M . The new condition (T ) used to get the global attractor invariance is discussed
and compared with other conditions used in literature for impulsive problems. The
theory is illustrated by several examples.

Keywords Dynamical systems · Global attractors · invariance · state-dependent
impulses · Generalized semiflows · Multivalued semiflows · Nonuniqueness of
solutions
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1 Introduction

In the last 20 years, a lot of interest has been attracted to dynamical systems approach
to evolutionary problemswhere the uniqueness of solutions is unknown, or the solution
is known to be nonunique for a given initial data. There are several approaches to con-

Work of E.M.B. was partially supported by FAPESP Grant 2016/24711-1 and CNPq Grant
310497/2016-7. Work of P.K. was partially supported by National Science Center (NCN) of Poland under
Projects No. DEC-2017/25/B/ST1/00302, UMO-2016/22/A/ST1/00077, and DEC-2017/01/X/ST1/00408.

B Piotr Kalita
piotr.kalita@ii.uj.edu.pl

Everaldo de Mello Bonotto
ebonotto@icmc.usp.br

1 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus de São
Carlos, Caixa Postal 668, São Carlos, SP 13560-970, Brazil

2 Faculty of Mathematics and Computer Science, Jagiellonian University in Krakow, ul. Łojasiewicza
6, 30-348 Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-019-00143-0&domain=pdf
http://orcid.org/0000-0002-2651-9666


On Attractors of Generalized Semiflows with Impulses 1413

struct the global attractors for such problems: the approach by multivalued semiflows
(or m-semiflows) anticipated by Babin and Vishik [1] and developed by Melnik and
Valero [28,29], the approach by generalized semiflows developed by Ball [3,4], the
one by trajectory attractors developed independently by Chepyzhov and Vishik [11],
Málek and Nečas [27], and Sell [32], and finally the approach by the evolutionary
systems by Cheskidov and Foiaş [12]. Fairly recent overview of all these approaches
can be found in the review paper [2], and some most recent new results for the nonau-
tonomous problems can be found in [17,18]. In the present paper, we focus on two of
those theories, the one of m-semiflows and the one of generalized semiflows (which
were related to each other in article [9]) to develop the theory of global attractors
for the problems with possible nonuniqueness of solutions and with state-dependent
impulses.

The theory of dynamical systems with state-dependent impulses describes the evo-
lution of systems whose continuous development of the process is interrupted by
abrupt changes of state. A motivation for considering the dynamical systems with
state-dependent impulses comes, for example, from neuroscience. The simplest model
of a neuron, the so-called integrate-and-fire neuron, is represented by means of the
following ordinary differential equation (ODE)

u′(t) = −γ u(t) + S(t),

with the additional condition

if u(t) = θ then u(t) is reset to value ur < θ.

We are looking for the function u which is the membrane potential of a neuron. It is
charged through the excitation, S(t) ≥ 0, and when it reaches the threshold value θ ,
the neuron fires and it is reset to the rest potential ur , see [26].

Another impulsive model of a neuron is the Izhikevich model [23] that is based on
the following system of two ODEs with the state-dependent impulse

v′(t) = 0.04v2(t) + 5v(t) + 140 − u(t) + I (t),

u′(t) = a(bv(t) − u(t)),

if v(t) ≥ 30 then v(t) = c and u(t) = u(t) + d.

In this model, the membrane potential of a neuron is represented by the variable v

and the membrane recovery variable u represents the ionic currents. On one hand,
for various values of constants a, b, c, d, the model can mimic various firing patterns
of physiological neurons, and, on the other hand, it is computationally simple, as it
reduces the number of unknowns from four in the biologically plausible Hodgkin–
Huxley model, just to two variables. This simplification without the loss of accuracy
in representing the actual physiological behavior is possible due to the presence of
impulses in the model [23].

The theory of impulsive dynamical systems with state-dependent impulses, started
with Kaul in the paper [24], where he defined the evolution of such systems. Later on,
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Ciesielski in article [13] presented sufficient conditions to guarantee the continuity
of the function that describes the time of reaching impulse points. Moreover, in [14],
he obtained the impulsive version of the Ura theorem on stability. Finally, in recent
years, Bonotto et al. [5–7] obtained the results on existence and upper and lower
semicontinuity of attractors for impulsive systems.

In this article, we develop the theory of impulsive dynamical systems for the semi-
groups without imposing the uniqueness of the state obtained after some time of
evolution from the given initial state.We define the impulsive andmultivalued dynam-
ical system, which we call impulsive generalized semiflow, and which consists of a
generalized semiflow G, an impulsive set M , and an impulsive multifunction I . The
set M is the set of states such that if a trajectory of G reaches the point x ∈ M , then
it jumps into a point belonging to I (x). We define the notion of a c-attractor Ac for
this semiflow, i.e., the smallest compact attracting set, without requiring its invariance,
and, using the approach of [10] we establish the equivalent conditions for its existence.
If M ∩ I (M) = ∅ then the points of M can only be initial points of the trajectories of
the impulsive system and, hence, if the intersection M ∩Ac is nonempty then there is
no chance for the set Ac be invariant. Thus, similar as it is done in the single-valued
case in [6], we define the global attractor for the impulsive system as A = Ac\M .
The first key results of this paper, Lemma 3.7 and Theorem 3.9 provide the conditions
under which this set, although it can possibly be only relatively compact rather than
compact, is attracting. This result is new even in the single-valued case as it does not
require the tube conditions used in [6] to get the same result. The next key results of
this paper, Theorem 4.7 and Corollary 4.8 provide the new condition, called here the
condition (T ), under which the global attractor A is invariant. The results are based
on the approach of [10,16,17], where it is noted that it is enough to obtain the negative
invariance of the attractor only for a one given positive time to get its full invariance
for all possible times. This approach proves to be convenient for impulsive problems
because it allows to restrict to the time length on which at most one jump can occur,
and thus it is sufficient to study the situation where the trajectory has only one jump.
The results are complemented by the discussion on the continuity of the impact time
function, the comparison of our condition (T ) with other conditions used for invari-
ance of the attractor for impulsive systems, the criteria for asymptotic compactness,
and several examples of impulsive dynamical systems without uniqueness.

Wenote here that the impulsive dynamical systems for the problemswithout unique-
ness of solutions have already been studied in [20,30,31]. The theory developed in the
present article complements and extends the results of these papers. First, in addition
to them, we obtain the result that the setA = Ac\M is attracting, and second, similar
as [20,30,31] we provide the criteria for the global attractor invariance but we show
that the condition (24) of [20] is not needed for this invariance which significantly
broadens the class of problems, for which our theory works with respect to that of
[20,30,31], cf. Example 7.8 in Sect. 7.

The structure of the article is as follows. Section 2 is devoted to the definition of the
impulsive generalized semiflows. The results on the existence of the global attractor
for these semiflows are the subject of Sect. 3 and on their invariance, of Sect. 4. The
continuity of the impact timemap is studied in Sect. 5, and the criteria which guarantee
the asymptotic compactness of generalized impulsive semiflows are provided in Sect.
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6. Finally, the comparison of our condition (T ) used to obtain the invariance with the
other conditions used in literature is contained in Sect. 7, and some examples which
illustrate the constructed theory are presented in last Sect. 8.

2 Generalized Impulsive Semiflows

In this section,we remind two useful formalisms for the dynamical systems description
of problems without uniqueness of solutions, namely the theory of m-semiflows and
the theory of generalized semiflows.

Let (X , d) be a complete metric space. By P(X) andB(X) we will denote, respec-
tively, the families of nonempty and nonempty bounded subsets of X . We will also
denote R+ = [0,∞), N = {0, 1, 2, . . .} and N

+ = {1, 2, . . .}. We denote a sequence
{x j } j∈N simply by {x j }. By C([0,∞); X) we mean the set of all continuous func-
tions defined on [0,∞) taking values in X . We recall the definition of the Hausdorff
semidistance between two sets A, B ⊂ X by distX (A, B) = sup

x∈A
inf
y∈B d(x, y).

We start by recalling the theory of generalized semiflows in the sense of Ball [3,4].
The concept of generalized semiflowwill be the base for our formalism of multivalued
impulsive systems since it includes in its definition the notion of trajectories and this
extra structure is crucial to build the impulsive theory.

Definition 2.1 A family G of functions u : R+ → X will be called a generalized
semiflow if the following conditions are satisfied:

(B1) (Existence) For every x ∈ X there exists u ∈ G such that u(0) = x .
(B2) (Translation property) If u ∈ G then for every τ ≥ 0 the function uτ defined as

uτ (t) = u(t + τ) for t ≥ 0 also belongs to G.
(B3) (Concatenation property) If u, v ∈ Gwith v(0) = u(t), t ≥ 0, then the function

w ∈ G, where

w(s) =
{
u(s) when s ∈ [0, t],
v(s − t) otherwise.

(B4) (Uniform upper semicontinuity with respect to initial data) For every sequence
{u j } ⊂ G with u j (0) → z as j → ∞, there exist a subsequence {uμ} ⊂ {u j }
and u ∈ G such that for every compact set J ⊂ R+

lim
μ→∞ sup

t∈J
d(uμ(t), u(t)) = 0.

(B5) (Continuity) Every trajectory u ∈ G is a continuous function from [0,∞) to X .

The functions u ∈ G will be called trajectories of the generalized semiflow G. We
will use the notation Gx = {u ∈ G : u(0) = x}.

Next, we recall the definition of upper semicontinuity of multifunctions.

Definition 2.2 Let X1, X2 be metric spaces. A multifunction F : X1 → P(X2) is said
to be upper semicontinuous at x ∈ X1, if for every sequence x j → x in X1 and every
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open set U ⊂ X2 such that F(x) ⊂ U then there exists j0 ∈ N such that for every
j ≥ j0 we have F(x j ) ⊂ U.

The following fact is well known in set-valued analysis. Its proof follows the lines
of the proof of [21, Proposition 4.1.11], we provide it only for the completeness of
exposition.

Lemma 2.3 Let X1, X2 bemetric spaces. Themultifunction F : X1 → P(X2) is upper
semicontinuous and compact valued for each x ∈ X1 if and only if for every sequence
x j → x in X1 and every sequence y j ∈ F(x j ), j ∈ N, there exists a subsequence
{yμ} ⊂ {y j } such that yμ → y in X2 and y ∈ F(x).

Proof We first prove the sufficiency. Take x j → x as j → ∞ and y j ∈ F(x j ), j ∈ N.
Suppose that no subsequence of {y j } converges to a point in F(x). This means that
for every y ∈ F(x) there exists m0(y) and an open neighborhood U(y) such that
y j /∈ U(y) for all j ≥ m0(y). The sets U(y) constitute an open cover of the compact
set F(x), whereas F(x) ⊂ ⋃n

i=1 U(ȳi ) = U. There exists m0 such that for every
j ≥ m0 there holds y j /∈ U. On the other hand, by the upper semicontinuity of F it
follows that there exists j0 such that for every j ≥ j0 there holds F(x j ) ⊂ U, whereas
y j ∈ U, which is a contradiction.

We pass to the proof of necessity. It is clear that F(x) must be a compact set for
every x ∈ X1. Let x j → x in X1 as j → ∞ and let U ⊂ X2 be an open set such that
F(x) ⊂ U. If F is not upper semicontinuous, there must exist a sequence y j ∈ F(x j )
and j0 such that y j /∈ U for j ≥ j0. By hypothesis, for a subsequence, denoted by the
same index, y j → y where y ∈ F(x), which is a contradiction. 
�
Remark 2.4 If we equip G ⊂ C([0,∞); X) with the following metric of the uniform
convergence on compact subsets of R+,

dG(u, v) =
∞∑
n=1

1

2n
maxt∈[0,n] d(u(t), v(t))

1 + maxt∈[0,n] d(u(t), v(t))
,

then, by Lemma 2.3, it is not difficult to see that condition (B4) actually means that
the mapping

x � X 
→ Gx ⊂ G ⊂ C([0,∞); X)

is upper semicontinuous and compact valued in C([0,∞); X).

Remark 2.5 Our definition enforces in the definition of the generalized semiflow con-
ditions (C3) and (C4) presented in [3,4]. These conditions are needed to build the
impulsive theory of generalized semiflows. Note that Ball [3,4] uses a weaker defini-
tion, he does not impose (B5), and in place of (B4) he has a weaker assertion of upper
semicontinuity with respect to initial data, not necessarily uniform with respect to t
in compact sets, that is, Ball considers the following condition
(B4′) For every sequence {u j } ⊂ G with u j (0) → z as j → ∞, there exist a
subsequence {uμ} ⊂ {u j } and u ∈ G such that u(0) = z and

lim
μ→∞ d(uμ(t), u(t)) = 0.
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In our theory, we will need (B4) and (B5) for the global attractor existence, so we
incorporate these two assertions in the definition. Our conditions (B4) and (B5) are
restrictive; however, they usually hold for generalized semiflows governed by ordinary
differential equations (ODEs). They also hold for the weakly damped semilinear wave
equation with cubic growth on the nonlinearity (without any growth assumptions on
its derivative), cf., [3, Example 2.3].

The theory of generalized semiflows will be the starting point in the construction
of the multivalued impulsive dynamical systems. We will, however, also need some
notions from an alternative theory, namely multivalued semiflow theory. Hence, fol-
lowing Melnik and Valero [28], we remind the definition of a multivalued semiflow
(m-semiflow).

Definition 2.6 A family {π(t)}t≥0 of multivalued maps π(t) : X → P(X) is called
an m-semiflow if the following conditions hold:

(A1) π(0)x = {x} for every x ∈ X ;
(A2) π(s + t)x ⊂ π(s)π(t)x for every t, s ∈ R+ and x ∈ X .

If in (A2) we have the equality π(s + t)x = π(s)π(t)x in place of the inclusion, then
the m-semiflow is said to be strict.

The comparison of the two theories has been done in [9]. From [9, Proposition
2] it follows, that having, from a generalized semiflow G we can construct a strict
m-semiflow by the formula

y ∈ π(t)x ⇔ there exists a trajectory u ∈ G such that u(0) = x and u(t) = y,

valid for all x ∈ X and t ≥ 0.
Now, we are in position to define an impulsive generalized semiflow.

Definition 2.7 An impulsive generalized semiflow (G, M, I ) consists of a generalized
semiflowG, a nonempty closed setM ⊂ X and an upper semicontinuousmultifunction
I : M → P(X). We assume that for every x ∈ M there exists εx > 0 such that for
every u ∈ Gx ⋃

t∈(0,εx )

{u(t)} ∩ M = ∅ (1)

and

if u(t0) = x for some t0 ∈ (0, εx ) and u ∈ G then
⋃

t∈[0,t0)
{u(t)} ∩ M = ∅.

(2)

Let (G, M, I ) be an impulsive generalized semiflow. By condition (1), we are able to
define the impact time of a trajectory u ∈ G by the function

φ(u) = inf{t > 0 : u(t) ∈ M},
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where we use the notation φ(u) = ∞ if u(t) /∈ M for all t > 0.

Remark 2.8 Note that φ(u) > 0 for every trajectory u ∈ G. Indeed, if u is a trajectory
in G with u(0) ∈ M then it is clear from (1) that φ(u) > 0. On the other hand, let
u ∈ Gwith u(0) /∈ M and φ(u) = 0. Thus there exists a sequence t j → 0+ as j → ∞
with u(t j ) ∈ M for all j ∈ N, whereas due to condition (B5) of Definition 2.1 and
closedness of M , it must be that u(0) ∈ M , which is a contradiction.

Remark 2.9 For every trajectory u ∈ G such that φ(u) �= ∞ there holds u(φ(u)) ∈ M .
In fact, if we assume that u(φ(u)) /∈ M then there exists a sequence t j → 0+ as
j → ∞ such that u(φ(u) + t j ) ∈ M for all j ∈ N. The assertion follows by the
continuity of u and closedness of M .

Next, we define the concept of impulsive trajectory of an impulsive generalized
semiflow. Let us define Nk = {0, 1, 2, . . . , k} for k ∈ N and N∞ = N.

Definition 2.10 Amapping ũ : [0, ω) → X (0 < ω ≤ ∞)will be called an impulsive
trajectory of an impulsive generalized semiflow (G, M, I ) if there exists a division of
[0, ω) into a family of intervals

[0, ω) =
⋃
n∈Nk

[tn, tn+1) with t0 = 0, tn < tn+1 and 0 ≤ k ≤ ∞,

such that for every n ∈ Nk there exists a trajectory un ∈ G satisfying:

(i) either φ(un) = ∞ or φ(un) = tn+1 − tn ;
(ii) ũ(t + tn) = un(t) for t ∈ [0, φ(un));
(iii) if φ(un) �= ∞ then ũ(tn+1) ∈ I (un(φ(un))).

The time points tn for n ∈ Nk\{0}will be called jump points of the impulsive trajectory
ũ. The family of impulsive trajectories of an impulsive generalized semiflow will be
denoted by G̃.

Remark 2.11 In Definition 2.10, if ω = ∞ then t1 = ∞ when k = 0, tk+1 = ∞ when
1 ≤ k < ∞ and lim

j→∞ t j = ∞ when k = ∞. On the other hand, if ω < ∞ then

k = ∞ as the functions in G are defined on [0,∞).

Having the definition of an impulsive trajectory, we may define a new family of
multivalued mappings {π̃(t)}t≥0 with π̃(t) : X → P(X) by the formula

y ∈ π̃(t)x ⇔ there exists ũ ∈ G̃ such that ũ(0) = x and ũ(t) = y.

Note that, we first construct the family of trajectories G̃, and then, from this family, we
construct the multivalued mappings π̃(t), t ≥ 0. This is similar to the construction of
anm-semiflow from the generalized semiflow described in [9]. In the sequel, we prove
several properties of π̃ and of G̃which will indeed signify that π̃ is a strict multivalued
semiflow.
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Proposition 2.12 Assume that (G, M, I ) is an impulsive generalized semiflow. Then
for every x ∈ X there exists ũ ∈ G̃ defined in some interval J = [0, ω) (ω may be ∞)

with ũ(0) = x.

Proof Let x ∈ X and u0 ∈ Gx . If φ(u0) = ∞ then the construction is complete.
Otherwise, by Remark 2.8 we have φ(u0) > 0. Denote t1 = φ(u0). By Remark 2.9,
u0(t1) ∈ M . Let x1 ∈ I (u0(t1)). Now, take u1 ∈ Gx1 . If φ(u1) = ∞ then we end the
construction and define

ũ(t) =
{
u0(t) for t ∈ [0, t1)
u1(t − t1) otherwise.

If φ(u1) is finite, then we denote t2 = t1 + φ(u1) and we choose x2 ∈ I (u1(φ(u1))).
Take u2 ∈ G, a trajectory with u2(0) = x2. Again, either u2 does not touch M which
allows us to end the construction by taking

ũ(t) =

⎧⎪⎨
⎪⎩
u0(t) for t ∈ [0, t1)
u1(t − t1) for t ∈ [t1, t2)
u2(t − t2) otherwise,

or φ(u2) is finite, in which case we continue the construction recursively. Either the
construction ends after a finite number of steps, in which case

ũ(t) =
{
un(t − tn) for t ∈ [tn, tn+1), n ∈ {0, . . . , M − 1}
uM (t − tM ) for t ≥ tM ,

or

ũ(t) = un(t − tn) for t ∈ [tn, tn+1), n ∈ N.

Note that

either J = [0,+∞) or J = [0, ω) with ω =
∞∑
j=0

φ(u j ),

whence we have constructed an impulsive trajectory starting from x which ends the
proof. 
�

In the proof of Proposition 2.12, if we assume that there exists ξ > 0 such that
φ(u) ≥ ξ for every u ∈ G with u(0) ∈ I (M) and φ(u j ) < ∞ for all j ∈ N, then

∞∑
j=0

φ(u j ) = ∞.

Consequently, we have the next result.
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Corollary 2.13 Assume that (G, M, I ) is an impulsive generalized semiflow and there
exists ξ > 0 such that φ(u) ≥ ξ for every u ∈ G with u(0) ∈ I (M). Then every
trajectory ũ ∈ G̃ is defined in J = R+. Consequently, for every x ∈ X there exists
ũ ∈ G̃ defined in R+ such that ũ(0) = x .

In this way, we shall assume from now on the following condition:

(H) There exists ξ > 0 such that φ(u) ≥ ξ for every u ∈ G with u(0) ∈ I (M).

Lemma 2.14 below shows that G̃ satisfies the translation and concatenation prop-
erties and π̃ is a strict multivalued semiflow.

Lemma 2.14 Assume that (G, M, I ) is an impulsive generalized semiflow satisfying
(H). Then

(i) G̃ satisfies the translation and concatenation properties from Definition 2.1.
(ii) {π̃(t)}t≥0 satisfies π̃(s + t)x = π̃(s)π̃(t)x for every x ∈ X and every s, t ≥ 0.

Proof (i) Let ũ ∈ G̃ and τ ≥ 0. Define the function ũτ by ũτ (t) = ũ(t + τ) for t ≥ 0.
Assuming without loss of generality that the impulsive trajectory ũ admits infinite
number of impulses, we may write

ũ(t) = un(t − tn) for t ∈ [tn, tn+1) n ∈ N,

where {un} ⊂ G, t0 = 0 and tn = φ(u0)+ . . .+φ(un−1) for every n ∈ N
+. There

exists k ∈ N such that tk ≤ τ < tk+1. Denote τ0 = 0, τn = tk+n − τ for n ∈ N
+,

v0 = uk(· + τ − tk) and vn = un+k for n ∈ N
+. Then

ũτ (t) = vn(t − τn) for t ∈ [τn, τn+1) and n ∈ N,

φ(vn) = τn+1 − τn , ũ(τn+1) ∈ I (vn(φ(vn))) and R+ = ⋃
n∈N[τn, τn+1). Hence,

ũτ ∈ G̃.
We pass to the proof of the concatenation property. Let ũ, ṽ ∈ G̃ be such that
ũ(t) = ṽ(0), t ≥ 0. Define w̃ by

w̃(s) =
{
ũ(s) when s ∈ [0, t],
ṽ(s − t) otherwise.

Assuming that ũ and ṽ admit infinite numbers of impulses, we may write

ũ(t) = un(t − tn) for t ∈ [tn, tn+1) n ∈ N,

and

ṽ(t) = vn(t − sn) for t ∈ [sn, sn+1) n ∈ N,
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where {un}, {vn} ⊂ G, t0 = s0 = 0, tn = φ(u0) + . . . + φ(un−1) and sn =
φ(v0) + . . . + φ(vn−1) for all n ∈ N

+. Let k ∈ N be such that tk ≤ t < tk+1.
Define the sequence {τn} by τ0 = 0, τ j = t j for 1 ≤ j ≤ k, and τk+ j = t + s j for
j ∈ N

+. Also, let w j = u j for 0 ≤ j ≤ k − 1,

wk(s) =
{
uk(s) when s ∈ [0, t − τk],
v0(s − t + tk) when s ∈ [t − τk, τk+1 − τk],

and wk+ j = v j for j ∈ N
+. Note that {wk} ⊂ G. Then R+ = ⋃

n∈N[τn, τn+1),
φ(wn) = τn+1 − τn , w̃(t + τn) = wn(t) for t ∈ [0, φ(wn)) and w̃(τn+1) ∈
I (wn(φ(wn))). Hence, w̃ ∈ G̃.

(ii) Let y ∈ π̃(s + t)x . Then there exists an impulsive trajectory ũ ∈ G̃ such that
ũ(0) = x and ũ(t + s) = y. Let ũ(s) = z which implies in z ∈ π̃(s)x . Note that

ṽ(r) = ũ(s + r), r ≥ 0,

belongs to G̃, ṽ(0) = z and ṽ(t) = y. Hence, y ∈ π̃(t)z, that is, y ∈ π̃(t)π̃(s)x .
On the other hand, let y ∈ π̃(t)π̃(s)x . Then there is z ∈ π̃(s)x such that y ∈ π̃(t)z.

Thus, there are impulsive trajectories ũ, ṽ such that ũ(0) = x , ũ(s) = z, ṽ(0) = z and
ṽ(t) = y. Since

w̃(r) =
{
ũ(r) when r ∈ [0, s],
ṽ(r − s) otherwise,

belongs to G̃, w̃(0) = x and w̃(t + s) = y, we obtain y ∈ π̃(s + t)x . Therefore,
π̃(s + t)x = π̃(s)π̃(t)x for every x ∈ X and every s, t ≥ 0. 
�

3 First Results on Attractors

We follow the approach of Chepyzhov, Conti, and Pata who define the global attrac-
tor as the smallest compact attracting set, see [10]. Note that in [17] this approach
was applied for pullback attractors of nonautonomous multivalued systems, and the
same approach was also used in [19], where such type of attractor was called a mini
attractor. In [10,17,19], no invariance is assumed in the definition of the attractor and
no continuity of the underlying semiflow is required for the existence of this object.
After obtaining the attractor existence in this “minimal” sense, one tries to recover
the attractor invariance (or semi-invariance) after assuming something on the semi-
flow continuity. Since, in the impulsive case, the semiflow continuity and the attractor
invariance are most difficult and delicate to deal with, this approach appears especially
well suited in this situation.
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3.1 Existence of the Global c-Attractor

Following [5] we define the c-attractor of an impulsive generalized semiflow as its
smallest compact attracting set. While the existence of such an object is easy to guar-
antee under standard assumptions of existence of an absorbing set and asymptotic
compactness, this set, in general, will not necessarily be invariant. First, we present
the definition of an impulsive ω̃-limit set which is a generalization to the multivalued
case of [6, Definition 3.1].

Definition 3.1 Let B ∈ B(X) and (G, M, I ) be an impulsive generalized semiflow.
The impulsive ω̃-limit set is defined as

ω̃(B) =
⋂
t≥0

⋃
s≥t

π̃(s)B.

It is clear that the above definition is equivalent to the following one

ω̃(B) = {x ∈ X : there exist sequences {t j } ⊂ R+ and {ũ j } ⊂ G̃

such that ũ j (0) ∈ B, j ∈ N, t j → ∞ and ũ j (t j ) → x as j → ∞}.

Weare in position to define the asymptotic compactness of an impulsive generalized
semiflow. Similar as in the nonimpulsive situation the asymptotic compactness will
turn out to be equivalent to the fact that the ω̃-limit set of B ∈ B(X) is nonempty,
compact, and attracts B.

Definition 3.2 An impulsive generalized semiflow (G, M, I ) is said to be asymptot-
ically compact if given a set B ∈ B(X), a sequence {t j } ⊂ R+ with t j → ∞, a
sequence {ũ j } ⊂ G̃ with ũ j (0) ∈ B, j ∈ N, then the sequence {ũ j (t j )} possesses a
convergent subsequence in X .

Lemma 3.3 Let B ∈ B(X). Assume that (G, M, I ) is asymptotically compact, satisfies
the condition (H) and for each x ∈ B there exists an impulsive trajectory ũ ∈ G̃ such
that ũ(0) = x. Then ω̃(B) is nonempty, compact, and attracts the set B.

Proof The proof is standard and follows by Corollary 2.1 in [25]. 
�
Definition 3.4 An impulsive generalized semiflow is said to be dissipative if there
exists a set B0 ∈ B(X) such that for every B ∈ B(X) there exists a time t = t(B) ≥ 0
such that for every ũ ∈ G̃with ũ(0) ∈ B and for every s ≥ t(B) there holds ũ(s) ∈ B0.

Next, we define the c-attractor of an impulsive generalized semiflow G̃.

Definition 3.5 A setAc ⊂ X is called a global c-attractor for an impulsive generalized
semiflow (G, M, I ) if the following properties hold

• Ac is compact;
• Ac is attracting, i.e.,

lim
t→∞ distX (π̃(t)B,Ac) = 0 for every B ∈ B(X);
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• Ac is minimal in the class of all closed attracting sets.

The next result follows directly from [17, Theorem 3.6].

Theorem 3.6 Let (G, M, I ) be an impulsive generalized semiflow satisfying condi-
tion (H). Then it has a uniquely defined global c-attractor Ac if and only if it is
asymptotically compact and dissipative. The attractor Ac is given by

Ac = ω̃(B0) =
⋃

B∈B(X)

ω̃(B),

where B0 is an absorbing set of (G, M, I ).

The notion of global c-attractor was defined for nonautonomous and single-valued
case in [5]. This set does not have to be invariant, since it is possible to construct an
example where Ac contains points from M and I (M) ∩ M = ∅, whereas elements of
M can only be the initial points of trajectories in G̃, see [7]. Hence, a natural candidate
for the global attractor is the set A = Ac\M . Two questions appear: if the set A
is invariant and if it still attracting. While we postpone the more difficult question
of invariance to the next sections, we will first provide the affirmative answer to the
second one.

3.2 Existence of Global Attractor

The next property allows us to deduce that if an impulsive generalized semiflow has
a c-attractor Ac, then the possibly noncompact set Ac\M is still attracting. This set
will be called a global attractor of an impulsive generalized semiflow. Note that the
next lemma is a multivalued counterpart of [6, Lemma 3.13].

Lemma 3.7 Let (G, M, I ) be an impulsive generalized semiflow which is asymptoti-
cally compact and satisfies the condition (H). If B ∈ B(X) then

ω̃(B) ∩ M ⊂ ω̃(B)\M .

Proof Take B ∈ B(X) and x ∈ ω̃(B) ∩ M . There exist sequences {z j } ⊂ B and
t j → ∞ as j → ∞, and a sequence of impulsive trajectories {ũ j } ⊂ G̃ such that
ũ j (t j ) → x as j → ∞ and ũ j (0) = z j for every j ∈ N. For each j ∈ N, there is an

integer n j ≥ 0 such that τ j
n j ≤ t j < τ

j
n j+1 and

ũ j (t j ) = v
j
n j (t j − τ

j
n j ),

where v
j
n j ∈ G and ũ j (t) = v

j
n j (t − τ

j
n j ) for τ

j
n j ≤ t j < τ

j
n j+1 (if there is no jump

in the trajectory ũ j for time less than t j , then we may just take τ
j
n j = 0). Let m ∈ N

be such that 1
m < min{εx , ξ

4 }, where εx comes from Definition 2.7. There exists a
subsequence of indexes, which we do not renumber, such that one of the next two
assertions hold
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(i) τ
j
n j < t j − ξ/4, j ∈ N

(ii) t j + ξ/4 < τ
j
n j+1, j ∈ N.

We continue the proof separately for the two cases.
Case (i).Definewm

j = ũ j (t j − 1
m ) form ∈ N

+, j ∈ N. By the asymptotic compactness
of the impulsive generalized semiflow, if we fixm, then for a subsequence of j , denoted
by the same index and possibly different for each m, there exists ym ∈ ω̃(B) such that
wm

j → ym as j → ∞. At first, note that ym /∈ M for all m ∈ N
+. In fact, let

ηmj (s) = v
j
n j

(
s + t j − 1

m
− τ

j
n j

)
for s ≥ 0.

Since ηmj (0) → ym as j → ∞, it follows by condition (B4) of Definition 2.1 that
there exists ηm ∈ G with ηm(0) = ym such that for a subsequence of j , which we still
denote by the same index, ηmj → ηm as j → ∞, uniformly on compact subsets of
R+. Hence,

d(ηm(1/m), x) ≤ d(ηm(1/m), ηmj (1/m)) + d(ηmj (1/m), x)

≤ sup
t∈[0,1]

d(ηm(t), ηmj (t)) + d(ũ j (t j ), x).

The last expression can be made arbitrarily small by taking j large enough, and hence
ηm(1/m) = x ∈ M . Since ηm(0) = ym and 1/m < εx , we deduce that ym /∈ M , i.e.,
ym ∈ ω̃(B)\M for every m ∈ N

+.
Second, the compactness of ω̃(B) implies that ym → x0 as m → ∞ (passing to a

subsequence if necessary). If x0 �= x , then taking another subsequence if necessary,
there exists η ∈ G with η(0) = x0 such that ηm → η as m → ∞, uniformly on
compact subsets of R+ (see condition (B4)). Thus,

d(x, x0) = d(ηm(1/m), η(0)) ≤ d(ηm(1/m), η(1/m)) + d(η(1/m), η(0))

≤ sup
t∈[0,1]

d(ηm(t), η(t)) + d(η(1/m), η(0)).

The right-hand side of the last expression can be made as close to zero as we want
by taking large m. Hence, it has to be x = x0. It follows that the whole sequence ym
converges to x and the proof for case (i) is complete.

Case (ii). Define wm
j = ũ j (t j + 1

m ) for m ∈ N
+, j ∈ N. Similarly as in the case (i),

using the asymptotic compactness, it follows that for each m there exists ym ∈ ω̃(B)

such that, for a subsequence, still denoted by j , there holds wm
j → ym as j → ∞.

We will prove that ym /∈ M for all m ∈ N
+. In fact, let

η j (s) = v
j
n j

(
s + t j − τ

j
n j

)
for s ≥ 0.

Since η j (0) → x as j → ∞, it follows by condition (B4) of Definition 2.1 that there
exists η ∈ G with η(0) = x such that for a subsequence of j , still denoted by the
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same index, η j → η as j → ∞, uniformly on compact subsets of R+. In particular,
wm

j = η j (1/m) → η(1/m) as j → ∞, which means that ym = η(1/m). Since
η(0) = x ∈ M and 1/m < εx we deduce that ym /∈ M , i.e., ym ∈ ω̃(B)\M for allm ∈
N

+. Now, since η is a continuous function it follows that ym = η(1/m) → η(0) = x
as m → ∞ and the proof for case (i i) is complete. 
�

Next, we define the concept of global attractor for an impulsive generalized semi-
flow.

Definition 3.8 A set A ⊂ X is called a global attractor for an impulsive generalized
semiflow (G, M, I ) if

(i) A = A\M and A is compact;
(ii) A is attracting;
(iii) A is the smallest closed attracting set.

The difference between the above definition and the definition of the c-attractor stands
in the fact that we demand that after we remove elements of M from the smallest
closed attracting set, the resulting set should still be attracting.

Theorem 3.9 Let (G, M, I ) be an impulsive generalized semiflow which satisfies the
condition (H). Then (G, M, I )has aglobal attractorA if andonly if it is asymptotically
compact and dissipative.

Proof If the global attractor exists then its closure is a c-attractor, consequently the
dissipativity and the asymptotic compactness follow from Theorem 3.6. For the proof
of the opposite assertion, we assume that the impulsive generalized semiflow is asymp-
totically compact and dissipative. Theorem 3.6 implies the existence of the c-attractor
Ac. Define A = Ac\M . We need to show that A = Ac and that A is attracting.
By Theorem 3.6 the c-attractor is the impulsive ω-limit of an absorbing set B0, i.e.,
Ac = ω̃(B0). It is clear that A ⊂ Ac. The opposite inclusion follows from Lemma
3.7. Indeed,

Ac = (ω̃(B0)\M) ∪ (ω̃(B0) ∩ M) ⊂ (ω̃(B0)\M) ∪ ω̃(B0)\M = ω̃(B0)\M
= A.

Now, for B ∈ B(X),

distX (π̃(t)B,A) = distX (π̃(t)B,Ac) → 0 as t → ∞,

and hence A is attracting, which concludes the proof. 
�
Remark 3.10 We stress that the statement of the above theorem is similar to [20,
Lemma 1]. We note, however, that in [20] the authors do not prove that A = Ac\M
is attracting. So, the result of [20, Lemma 1] is equivalent to our Theorem 3.6 which
is the intermediate step to get Theorem 3.9. The novelty of Theorem 3.9 is the proof,
that if we remove the elements of the impulse set M from Ac, then the resulting set
will still be attracting. We also stress that the above result is the improvement of [6,
Lemma 3.13] even for the single-valued case, as we show that the Tube Condition
assumed in [6, Lemma 3.13] is in fact not needed for this result to hold.
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3.3 Is the Global Attractor Invariant?

The question that remains is, whether the global attractor A of an impulsive general-
ized semiflow is an invariant set. Typically, we need to impose some continuity type
assumption on the semiflow to recover the attractor invariance. The following exam-
ple shows that although the underlying generalized semiflow G satisfies (B4), i.e., it
is upper semicontinuous with respect to the initial data, and the jump multifunction I
is upper semicontinuous, the global attractor does not have to be invariant.

Example 3.11 Consider the single-valued semiflow given by the solutions of the ODE

{
x ′ = x(1 − x)(1 + x)
y′ = −y.

Let M = {1/2} × [−1, 0] and let I (1/2, y) = {(3/4, y)} for y ∈ [−1, 0]. It is not
hard to verify that Ac = [−1, 1] × {0}. Therefore, Ac\M = ([−1, 1]\{1/2}) × {0}.
This set is attracting but it is neither positively nor negatively invariant. In fact, the
largest invariant set included in Ac is ([−1, 1/2) ∪ [3/4, 1]) × {0}.

Hence, despite both the semiflow G is upper semicontinuous with respect to the
initial data (in fact, it is single-valued and continuous in the above example) and
the jump multifunction is upper semicontinuous (in the above example it is single-
valued and continuous), the global attractor does not have to be neither positively nor
negatively invariant. This implies that if we want the global attractor to be invariant,
then we need some additional assumptions. In the following section, we will provide
such assumptions.

4 Invariance of Global Attractor

In Sect. 3,we have proved a result on the existence of the c-attractorAc for an impulsive
generalized semiflow. This c-attractor could intersect with the set M , thus there was
no chance for it to be invariant as in many cases, namely if I (M) ∩ M = ∅, points
in M can be only the initial points of the trajectories in G̃. We have also defined the
set A = Ac\M and we proved that although this set could be no longer compact, it is
still attracting. We called this set as the global attractor. This section is devoted to the
proof of the invariance of this attractor.

4.1 Definitions and Preliminary Facts

In this subsection, we prove that it is sufficient to obtain the negative semi-invariance
of the global attractor on any given time interval. This approach is convenient for
problemswith impulses as we can restrict our considerations to the short time intervals
on which there can occur only at most one jump.

We first remind the definitions of negative and positive semi-invariances for multi-
valued semiflows (and, equivalently, for impulsive generalized semiflows).
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Definition 4.1 A set S ⊂ X is negatively semi-invariant under the impulsive general-
ized semiflow (G, M, I ) if for every t ≥ 0 there holds

S ⊂ π̃(t)S,

or, in other words, for every x ∈ S and every t ≥ 0 there exists an impulsive trajectory
u ∈ G̃ such that u(0) ∈ S and u(t) = x .

Definition 4.2 A set S ⊂ X is positively semi-invariant under the impulsive general-
ized semiflow (G, M, I ) if for every t ≥ 0 there holds

π̃(t)S ⊂ S,

or, in other words, for every x ∈ S, every impulsive trajectory u ∈ G̃ with u(0) = x
and every t ≥ 0 there holds u(t) ∈ S.

Definition 4.3 A set S ⊂ X is said to be invariant under the impulsive generalized
semiflow (G, M, I ) if it is both negatively and positively semi-invariant.

The proof of the next result follows the lines of the proof of [17, Proposition 4.3].
Since impulsive generalized semiflows are strict multivalued semiflows, it states that
it is sufficient to prove the negative semi-invariance for some small time t∗ > 0
and, consequently, both negative and positive semi-invariances (and hence the full
invariance) will follow for every t ≥ 0.

Lemma 4.4 Let (G, M, I ) be an impulsive generalized semiflow satisfying condition
(H) such that I (M) ∩ M = ∅. Assume that A is the global attractor of this semiflow.
If for some t∗ > 0 there holds A ⊂ π̃(t∗)A, then A is invariant.

Proof Using the fact that π̃ is strict, we obtain

A ⊂ π̃(t∗)A ⊂ π̃(t∗)π̃(t∗)A = π̃(2t∗)A ⊂ . . . ⊂ π̃(nt∗)A for every n ∈ N
+.

(3)

Pick any s > 0. It follows that

distX (π̃(s)A,A) ≤ distX (π̃(s)π̃(nt∗)A,A) = distX (π̃(s + nt∗)A,A).

As A is attracting, we can pass with n to ∞ whence

lim
n→∞ distX (π̃(s + nt∗)A,A) = 0.

Thus

distX (π̃(s)A,A) = 0,
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or, in other words,

π̃(s)A ⊂ A.

Since points inM can be only the initial points of the trajectories in G̃ as I (M)∩M = ∅,
we deduce that

π̃(s)A ⊂ A\M = A for every s ≥ 0. (4)

This implies that A is positively semi-invariant. We pass to the proof of the negative
semi-invariance. Using (3) and (4) we deduce that

A ⊂ π̃(nt∗)A ⊂ A for every n ∈ N,

whence

A = π̃(nt∗)A for every n ∈ N.

Let s ≥ 0 be fixed and choose n such that s ≤ nt∗. Then, by the strictness of π̃ and
(4) it follows that

A = π̃(nt∗)A = π̃(s)π̃(nt∗ − s)A ⊂ π̃(s)A,

whence the assertion follows. 
�
In the next subsection, we give the criterion for the negative invariance of A for

t∗ = ξ/2. In consequence, the full invariance for every t ≥ 0 will follow by Lemma
4.4.

4.2 Negative Invariance of the Global Attractor

It is clear fromExample 3.11 that without any additional assumptions the invariance of
the global attractor is not true in general. We formulate an additional hypothesis which
will guarantee this invariance. The hypothesis relates the set M with the generalized
semiflow G:

(T ) If x ∈ M , {u j } ⊂ G and t ∈ (0,∞) are such that {u j (0)} converges in X
and u j (t) → x then there exist a subsequence {uμ} and a sequence {αμ} ⊂ R,
αμ → 0, such that t + αμ ≥ 0 and uμ(t + αμ) ∈ M .

Remark 4.5 Since condition (B4) holds, the condition (T ) is equivalent to the following
condition: if x ∈ M , {u j } ⊂ G and t ∈ (0,∞) are such that u j (t) → x and

lim
j→∞ sup

r∈J
d(u j (r), u(r)) = 0 on every compact set J ⊂ R+ and for some u ∈ G,

then there exist a subsequence {uμ} and a sequence {αμ} ⊂ R, αμ → 0, such that
t + αμ ≥ 0 and uμ(t + αμ) ∈ M .
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Remark 4.6 We stress that the condition (T) is equivalent to the condition introduced in
[20, formula (20), p. 201], aswe prove in Sect. 7.2.We remark, however, that in [20] the
authors obtain the invariance under this condition, and additional condition given by
[20, formula (26), p. 204]. In the following result, we prove that indeed condition (T )

guarantees the global attractor invariance, without the need of additional conditions.
In Sect. 7.2, we recall [20, formula (26), p. 204] and we give a simple example where
this condition is not satisfied and hence the results of [20] cannot be applied, but our
next theorem still works.

Theorem 4.7 Let (G, M, I ) be an impulsive generalized semiflow satisfying condition
(H) such that I (M) ∩ M = ∅. Let A be the global attractor of (G, M, I ). If the
condition (T ) is satisfied then there holds

A ⊂ π̃(ξ/2)A.

Proof Theorem 3.6 and Theorem 3.9 imply that there exists a set B0 ∈ B(X) such
that A = ω̃(B0)\M . Let x ∈ A. There exist sequences {x j } ⊂ B0, t j → ∞, and
{ũ j } ⊂ G̃ such that ũ j (t j ) → x as j → ∞ and ũ j (0) = x j , j ∈ N. The jump

points in the trajectory ũ j are denoted by {τ j
i }N j

i=1, where we set τ
j
0 = 0 and either

N j = ∞ or N j < ∞ and τ
j
N j+1 = ∞. For each j ∈ N, let n j be an integer such that

τ
j
n j ≤ t j < τ

j
n j+1. For simplicity, we will write in the remaining part of the proof just

τ j in place of τ
j
n j . We consider three possibilities.

Case 1. There holds t j − τ j → ξ/2 as j → ∞. For each j ∈ N, there exist

trajectories v j , w j ∈ G such that v j (t) = ũ
τ j−ξ/2
j (t) for t ∈ [0, ξ/2) with

v j (ξ/2) = lim
t→ξ/2− ũ

τ j−ξ/2
j (t) ∈ M , and w j (t) = ũ

τ j
j (t) for t ∈ [0, t j − τ j ]

with w j (0) ∈ I (v j (ξ/2)). Asymptotic compactness of G̃ implies that there exist
y, z ∈ ω̃(B0) such that, for a subsequence of indexes, that we still denote by j , there
holds ũ j (τ j ) = w j (0) → z and ũ j (τ j − ξ/2) = v j (0) → y as j → ∞. Property
(B4) of Definition 2.1 implies that, for another subsequence, there exist trajectories
v,w ∈ G such that v j converges to v and w j converges to w uniformly on compact
subsets ofR+. In particular, v j (ξ/2) → v(ξ/2) as j → ∞. FromLemma 2.3, we have
w(0) = z ∈ I (v(ξ/2)) ⊂ I (M). As I (M)∩M = ∅ it follows that z ∈ ω̃(B0)\M = A.
Moreover, as φ(w) ≥ ξ it follows that w(t) /∈ M for t ∈ (0, ξ/2]. This means that the
function w|[0,ξ/2] is a prefix of a trajectory in G̃. Moreover,

d

(
w

(
ξ

2

)
, x

)
≤ d

(
w

(
ξ

2

)
, w j (t j − τ j )

)
+ d(w j (t j − τ j ), x)

≤ d

(
w

(
ξ

2

)
, w(t j − τ j )

)
+ d

(
w(t j − τ j ), w j (t j − τ j )

)
+ d(ũ j (t j ), x),

and, using (B4) and (B5) of Definition 2.1, all sequences on the right-hand side of
the last expression converge to zero, whence w(ξ/2) = x . Hence, as w|[0,ξ/2] is a

123



1430 E. de M. Bonotto, P. Kalita

prefix of a trajectory in G̃ with w(0) ∈ A and w(ξ/2) = x , the proof for this case is
complete.

Case 2. There exists ε > 0 and a subsequence of indexes, still denoted by j , such that

t j − τ j > ξ/2 + ε. There exist trajectories v j ∈ G such that v j (t) = ũ
t j−ξ/2−ε

j (t)
for every t ∈ [0, ξ/2 + ε], j ∈ N. As v j (0) = ũ j (t j − ξ/2 − ε) the asymptotic
compactness of G̃ implies that, for a nonrenumbered subsequence, v j (0) → z as
j → ∞ for some z ∈ ω̃(B0). Using (B4) of Definition 2.1, there exists a trajectory
v ∈ G with v(0) = z such that, for another subsequence of indexes, v j converges to v

uniformly on the compact subsets of R+. In particular, v j (ε) = ũ j (t j − ξ/2) → v(ε)

and ũ j (t j ) = v j (ε+ξ/2) → v(ε+ξ/2) as j → ∞. But, as ũ j (t j ) → x as j → ∞, it
must be that v(ε +ξ/2) = x . Now, we show that for every t ∈ [ε, ε +ξ/2) there holds
v(t) /∈ M . Indeed, if v(s) ∈ M for a certain s ∈ [ε, ε+ξ/2) then condition (T ) implies
that, for a subsequence of indexes, still denoted by j , there exists a sequence α j → 0
such that s + α j ≥ 0 and v j (s + α j ) ∈ M . But for sufficiently large j , there holds
s + α j ∈ (0, ε + ξ/2) and hence ũ j (t j − ξ/2− ε + s + α j ) ∈ M . This is impossible
since points in M can only be initial point of trajectories in G̃ as I (M) ∩ M = ∅.
Consider the translation vε . This is a trajectory in G with vε(0) ∈ ω̃(B0)\M = A,
vε(ξ/2) = x and vε(t) /∈ M for t ∈ [0, ξ/2]. It follows that vε |[0,ξ/2] is a prefix of a
trajectory in G̃ which makes the proof for this case complete.

Case 3. There exists a subsequence of indexes, still denoted by j , such that t j − τ j →
s ∈ [0, ξ/2) as j → ∞. In this case, one may obtain trajectories v j ∈ G such

that v j (t) = ũ
t j−3ξ/4
j (t) for t ∈ [0, τ j − t j + 3ξ/4) and v j (τ j − t j + 3ξ/4) ∈ M ,

j ∈ N. As v j (0) = ũ j (t j − 3ξ/4), asymptotic compactness of G̃ implies that, for
a subsequence still denoted by j , v j (0) → y as j → ∞. From condition (B4) of
Definition2.1, there exists a trajectoryv ∈ G such thatv(0) = y and, for a subsequence,
we have the uniform convergence of v j to v on compact time intervals. Condition
(B5) of Definition 2.1 implies the convergence v j (τ j − t j + 3ξ/4) → v(3ξ/4 − s)
as j → ∞, whence, by the closedness of M we must have v(3ξ/4 − s) ∈ M .

Moreover, ũ j (τ j ) = ũ
t j−3ξ/4
j (τ j − t j + 3ξ/4) ∈ I (v j (τ j − t j + 3ξ/4)) and, by

the asymptotic compactness of G, ũ j (τ j ) → w as j → ∞. From Lemma 2.3, it
follows that w ∈ I (v(ξ/2 − s)) ⊂ I (M). Consider the sequence {z j } ⊂ G such that
z j (t) = ũ

τ j
j (t) for t ∈ [0, t j − τ j ] and j ∈ N. The fact that ũ j (τ j ) → w implies

that z j (0) → w and by (B4) of Definition 2.1, for a subsequence of indexes, which
we do not renumber, we have the uniform convergence z j → z for some z ∈ Gw on
the compact subsets of R+. This fact, together with continuity of trajectories in G, cf.,
(B5) of Definition 2.1, implies that z j (s) → z(s) and z j (t j − τ j ) → z(s) as j → ∞.
But, since z j (t j − τ j ) = ũ j (t j ), we have z(s) = x . We construct the trajectory

θ(t) =
{

v(t + ξ/4) for t ∈ [0, ξ/2 − s)

z(t − ξ/2 + s) for t ∈ [ξ/2 − s, ξ/2].

First note that θ(0) = v(ξ/4). Sincev j (ξ/4) → v(ξ/4) as j → ∞, and for sufficiently
large j there holds v j (ξ/4) = ũ j (t j − ξ/2), there must hold θ(0) ∈ ω̃(B0). We must
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show that θ is a prefix of a trajectory in G̃ and θ(0) /∈ M . Since z(0) = w ∈ I (M)

and z ∈ G it is clear that z(r) /∈ M for r ∈ [0, s] which means that θ(t) /∈ M for t ∈
[ξ/2−s, ξ/2]. It remains to prove that v(t+ξ/4) /∈ M for t ∈ [0, ξ/2−s). The proof is
analogous to the proof in Case 2. Suppose that v(r) ∈ M for some r ∈ [ξ/4, 3ξ/4−s).
Condition (T ) implies that there exists a subsequence of indexes, still denoted by j ,
and a sequence of real numbers {α j } ⊂ R such that α j → 0 as j → ∞, r + α j ≥ 0
and v j (r + α j ) ∈ M . There exists j0 ∈ N such that 0 ≤ r + α j0 < τ j0 − t j0 + 3ξ/4.
Indeed, suppose that for every j ∈ N there holds r + α j ≥ τ j − t j + 3ξ/4. We
can pass to the limit with j to infinity, whence r ≥ −s + 3ξ/4, a contradiction with
r ∈ [ξ/4, 3ξ/4 − s). Hence, as 0 ≤ r + α j0 < τ j0 − t j0 + 3ξ/4 it follows that
v j0(r + α j0) = ũ j0(r + α j0 + t j0 − 3ξ/4) /∈ M , a contradiction as I (M) ∩ M = ∅.
The proof is complete. 
�

As a consequence of Theorem 4.7 and Lemma 4.4, we obtain the following result.

Corollary 4.8 Let (G, M, I ) be an impulsive generalized semiflow satisfying condition
(H) with a global attractor A such that I (M) ∩ M = ∅. If the condition (T ) holds,
then the attractor A is invariant.

5 Continuity of the Impact TimeMap

A natural question that appears when studying the theory of impulsive dynamical
systems is whether the mapping that defines the impact time, i.e., the time of the
first jump for the trajectory, is continuous. It turns out that for multivalued dynamical
systems the same condition (T ) which guarantees the global attractor invariance is
also sufficient for the impact time map continuity. In precise words, we will study the
continuity of the mapping φ : G → (0,+∞] given by

φ(u) = inf{t > 0 : u(t) ∈ M}.

In a standard way, we make (0,+∞] a locally compact space by defining the neigh-
borhoods of +∞ as the sets (K ,+∞] for K > 0. We will also consider a multivalued
map � : X → P((0,+∞]) given by

�(x) = {φ(u) : u ∈ Gx }.

For the set M ⊂ X , we denote by GX\M the set of all the trajectories with the initial
points not belonging to M . We will show that (T ) guarantees the continuity of the
function φ on GX\M and upper semicontinuity of � on X\M . We remind that G and
GX\M are equipped with the metrics given by the uniform convergence of the compact
subsets of R+. The next example demonstrates that, in general, the function φ is not
continuous on GX\M and the multifunction � is not upper semicontinuous on X\M .

Example 5.1 Consider the system governed by following ODEs

{
x ′ = 0
y′ = −1,
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and let G be the set of its classical solutions (in fact, these solutions generate a single-
valued semiflow).LetM = [−1, 1]×{0}be an impulsive set and consider the sequence

u j (t) =
(
1 + 1

j
, 1 − t

)
for t ∈ R+ and j ∈ N

+.

Then u j → u uniformly on compact subsets of R+, where

u(t) = (1, 1 − t) for t ∈ R+.

It is clear that u j ∈ GX\M and u ∈ GX\M . Also note that u j (0) → u(0) = (1, 1),
φ(u j ) = ∞ for all j ∈ N

+ and φ(u) = 1. Consequently, we have lim inf
n→∞ φ(un) ≥

φ(u), but we do not have lim sup
n→∞

φ(un) ≤ φ(u). Thus φ is not continuous on GX\M
and � (which is single-valued whence upper semicontinuity is just continuity) is not
continuous on X\M .

The next result demonstrates that (T ) in fact guarantees the continuity of φ.

Theorem 5.2 LetG be a generalized semiflow and let M ⊂ X be a closed set satisfying
the condition (T ). The mapping φ : GX\M → (0,+∞] is continuous.
Proof Let z ∈ X\M , u ∈ Gz and {u j } ⊂ G be a sequence such that

sup
t∈J

d(u j (t), u(t)) → 0 as j → ∞ (5)

for all compact set J ⊂ R+. Since u(0) = z /∈ M , there is j0 ∈ N such that u j ∈ GX\M
for every j ≥ j0. We first prove that

φ(u) ≤ lim inf
j→∞ φ(u j ).

If lim inf
j→∞ φ(u j ) = ∞ then the result follows. Now, let us assume that lim inf

j→∞ φ(u j ) =
r ∈ [0,∞). Using (5) and condition (B5), we may obtain a subsequence {uμ} such
that

uμ(φ(uμ)) → u(r) as μ → ∞.

As uμ(φ(uμ)) ∈ M for all μ ∈ N, we conclude that u(r) ∈ M , which means that
r ≥ φ(u), and the assertion follows.

Now, let us prove that

lim sup
j→∞

φ(u j ) ≤ φ(u).

If φ(u) = ∞ then the result is trivial. Otherwise, take a subsequence {uμ} ⊂ {u j }
such that φ(uμ) → c as μ → ∞. We will prove that c ≤ φ(u). As u(φ(u)) ∈ M ,
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using condition (T ) we may assume that there exists a subsequence of indexes {μ′},
a sequence {αμ′ } with αμ′ → 0, such that uμ′(φ(u) + αμ′) ∈ M . Then,

c = lim
μ′→∞

φ(uμ′) ≤ lim
μ′→∞

[φ(u) + αμ′ ] = φ(u).

The proof is complete. 
�
We deduce the following result on the multifunction � : X\M → (0,+∞].

Theorem 5.3 LetG be a generalized semiflow and let M ⊂ X be a closed set satisfying
the condition (T ). If x j → x in X\M and t j ∈ �(x j ), j ∈ N, then, for a subsequence
of indexes we have tμ → t ∈ (0,+∞], where t ∈ �(x).

Proof The result follows immediately from the condition (B4) and Theorem 5.2. 
�
Remark 5.4 Lemma 2.3 implies that if a closed set M satisfies the condition (T ) then
themultifunction� : X\M → (0,+∞] is upper semicontinuous and compact valued.

We summarize the results of this section in the following Theorem.

Theorem 5.5 Let (G, M, I ) be an impulsive generalized semiflow satisfying condition
(T ). Then

(i) The function φ is continuous on GX\M.
(ii) If x j → x in X\M and t j ∈ �(x j ), j ∈ N, then, for a subsequence of indexes,

we have tμ → t ∈ (0,+∞], where t ∈ �(x).
(iii) Equivalently to (ii) we may say that the multifunction � is compact valued (in

the interval (0,+∞] compactified at +∞) and upper semicontinuous on X\M.

6 Criteria for Asymptotic Compactness

In the previous sections, we have given conditionswhich characterize the global attrac-
tor existence and its invariance for impulsive generalized semiflows. One of these
conditions, given by Definition 3.2 is the asymptotic compactness of an impulsive
generalized semiflow. In this section, we prove two results which relate the asymp-
totic compactness of an impulsive semiflow with the properties of the underlying
generalized semiflow G. The first result says that asymptotic compactness of G and
compactness of the set I (M) guarantee the asymptotic compactness of G̃.

Recall that the definition of asymptotic compactness of G is the same as presented
in Definition 3.2 by replacing G̃ by G.

Lemma 6.1 Let (G, M, I ) be an impulsive generalized semiflow satisfying condition
(H). Assume that G is asymptotically compact and I (M) is compact. Then G̃ is asymp-
totically compact.

Proof Let B ∈ B(X), t j → ∞ and {ũ j } ⊂ G̃ be such that ũ j (0) ∈ B for every j ∈ N.

Denote by v
j
k ∈ G the trajectories such that

v
j
k (t) = ũ j (t + τ

j
k ) for t ∈ [0, τ j

k+1 − τ
j
k ).

123



1434 E. de M. Bonotto, P. Kalita

Clearly, for each j ∈ N, there exists m j ∈ N such that τ
j
m j ≤ t j < τ

j
m j+1, with the

possibility that τ
j
m j+1 = ∞. For simplicity, let us denote τ j = τ

j
m j , τ j+1 = τ

j
m j+1

and v j = v
j
m j .

Case 1. There exists a subsequence of {τ j }, denoted by the same index, such that

τ j = 0 (m j = 0). In this case, ũ j (t j ) = v
j
0 (t j ) which has a convergent subsequence

by the asymptotic compactness of G.

Case 2. For all but finite number of indexes there holds τ j �= 0.
We split this case into two separate subcases.

Subcase 2.1. For an infinite number of indexes there holds t j = τ j . In this case,

ũ j (t j ) ∈ I (v j
m j−1(t j )) ⊂ I (M) for an infinite number of indexes, and the result

follows by the compactness of I (M).

Subcase 2.2. For all but finite number of indexes there holds τ j < t j < τ j+1. We may
assume that there is j0 ∈ N such that τ j �= 0 and τ j < t j < τ j+1 for all j ≥ j0. Note
that ũ j (t j ) = v j (t j − τ j ) and v j (0) ∈ I (M) for every j ≥ j0. Thus, we may assume
that there is x ∈ I (M) such that

v j (0) → x as j → ∞.

By condition (B4), there is u ∈ G with u(0) = x such that, up to a subsequence,

sup
t∈J

d(v j (t), u(t)) → 0 as j → ∞ (6)

for all compact J ⊂ R+. Now, if the sequence {t j − τ j } is bounded, we may assume
that for a subsequence, still denoted by the same index, t j − τ j → t0 as j → ∞, and
then

ũ j (t j ) = v j (t j − τ j ) → u(t0) ∈ X as j → ∞.

On the other hand, if t j − τ j → ∞ then ũ j (t j ) = v j (t j − τ j ) converges by the
asymptotic compactness of G. 
�

In the second result, we present the criterion for the asymptotic compactness of
(G, M, I ) for the situation when I (M) is not necessarily a compact set.

Definition 6.2 The generalized semiflow G is compact if for any sequence {u j } ⊂ G

with u j (0) bounded and t > 0, the sequence {u j (t)} is relatively compact.

Lemma 6.3 Let (G, M, I ) be an impulsive generalized semiflow such that the condi-
tions (H) and (T ) hold. Assume that G is compact and G̃ is dissipative. Then G̃ is
asymptotically compact.

Proof Let B ∈ B(X), t j → ∞ and {ũ j } ⊂ G̃ with ũ j (0) ∈ B for every j ∈ N. By the
dissipativity of G̃ there exists a set B0 ∈ B(X) and tB ≥ 0 such that ũ j (s) ∈ B0 for
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all s ≥ tB and j ∈ N. Let j0 ∈ N be such that t j ≥ tB + ξ + 1 for all j ≥ j0. Since

ũ j ∈ G̃, for each fixed j , there exists a sequence {v j
k }

N j
k=0 ⊂ G (0 ≤ N j ≤ ∞) such

that

ũ j (t) = v
j
k (t − τ

j
k ) for t ∈ [τ j

k , τ
j
k+1) and k ∈ {0, . . . , N j },

where {τ j
k }N j

k=0 are the jump times of ũ j with τ
j
0 = 0. For each j ∈ N there exists

m j ∈ N such that τ
j
m j ≤ t j < τ

j
m j+1. Let us denote τ j = τ

j
m j , τ j+1 = τ

j
m j+1 and

v j = v
j
m j .

Case 1. There exists a subsequence, still denoted by {t j }, such that t j < φ(v
j
0 ) for all

j ≥ j0. Define

w j (t) = v
j
0 (t + t j − 1) for all t ≥ 0, j ≥ j0.

Note that w j ∈ G and w j (0) = ũ j (t j − 1) ∈ B0 for all j ≥ j0. By the compactness
of G there exists a subsequence, which we also denote by {w j }, such that w j (t) is
convergent for each t > 0. Consequently,

ũ j (t j ) = v
j
0 (t j ) = w j (1)

is convergent, and the assertion for this case is proved.

Case 2. For all but finite number of indexes there holds t j ≥ τ
j
1 . Here, we my choose

j1 ≥ j0 such that t j ≥ τ
j
1 for all j ≥ j1. Since τ j ≤ t j < τ j+1 and condition (i i)

holds, it follows that

τ j+1 − τ j ≥ ξ for every j ≥ j1.

We split the rest of the proof into three subcases.

Subcase 2.1. τ j < tB for all j ≥ j1, taking a subsequence if necessary. In this case, we
definew j (t) = v j (t+t j−τ j−ξ) for t ≥ 0 and j ≥ j1. Since τ j < tB ≤ t j−ξ < τ j+1,
it follows that w j (0) = ũ j (t j − ξ) ∈ B0 for all j ≥ j1. By the compactness of G, we
conclude that ũ j (t j ) = w j (ξ) is relatively compact in X and the assertion follows.

Subcase 2.2. There is j2 ≥ j1 such that τ j ≥ tB and t j > τ j + ξ
2 , for every j ≥ j2. In

this case, we define w j (t) = v j (t + t j − ξ/2 − τ j ) for t ≥ 0 and j ≥ j2. Using the
previous argument, we conclude that ũ j (t j ) = w j (ξ/2) is relatively compact and the
proof is complete.

Subcase 2.3. There is j3 ≥ j1 such that τ j ≥ tB and t j ≤ τ j + ξ
2 for every j ≥ j3.

Note that τ j−1 < t j − ξ < τ j , where τ j−1 = τ
j
m j−1 and j ≥ j3. For j ≥ j3, set

v j−1 = v
j
m j−1 and define

w j (t) = v j−1(t + t j − ξ − τ j−1) for every t ≥ 0.
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There holds w j ∈ G and w j (0) = ũ j (t j − ξ) ∈ B0, j ≥ j3. By the compactness of G,
we may assume that

ũ j

(
t j − 7ξ

8

)
= v j−1

(
t j − 7ξ

8
− τ j−1

)
= w j

(
ξ

8

)
→ a as j → ∞

for some a ∈ X . Define z j = w
ξ/8
j for j ≥ j3, i.e.,

z j (t) = w j

(
t + ξ

8

)
= v j−1

(
t + t j − 7ξ

8
− τ j−1

)
for every t ≥ 0.

Condition (B4) of Definition 2.1 implies that, for a subsequence of indexes, still
denoted by j , there holds

lim
j→∞ sup

s∈J
d(z j (s), z(s)) = 0 for some z ∈ Ga, (7)

on compact subsets J ⊂ R+. In particular,

z j

(
ξ

8

)
= w j

(
ξ

4

)
→ z

(
ξ

8

)
as j → ∞.

We claim that z (ξ/8) /∈ M . In fact, suppose to the contrary that z (ξ/8) ∈ M . By
condition (T ), there exists a subsequence of {z j }, which we denote by the same index,
and a sequence {α j } ⊂ R, α j → 0 as j → ∞, such that

ξ

8
+ α j ≥ 0 and z j

(
ξ

8
+ α j

)
∈ M .

But, for j sufficiently large, we get τ j−1 < t j − 3ξ
4 + α j < τ j , that is,

z j

(
ξ

8
+ α j

)
= w j

(
ξ

4
+ α j

)
= v j−1

(
t j − 3ξ

4
+ α j − τ j−1

)

= ũ j

(
t j − 3ξ

4
+ α j

)
/∈ M

which is a contradiction. Hence, z (ξ/8) /∈ M .
Now, let us define

θ j (t) = zξ/8
j (t) = z j

(
t + ξ

8

)
= v j−1

(
t + t j − 3ξ

4
− τ j−1

)
for t ≥ 0, j ≥ j3.

Then θ j ∈ G and θ j (0) = z j (ξ/8) → z(ξ/8) /∈ M as j → ∞. Moreover, from (7)
and Theorem 5.2, it follows that

sup
t∈J

d(θ j (t), z
ξ/8(t)) → 0 and φ(θ j ) → φ(zξ/8), as j → ∞,
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for every compact interval J ⊂ R+. Thus,

θ j (φ(θ j )) → zξ/8(φ(zξ/8)) as j → ∞.

As v j (0) ∈ I (θ j (φ(θ j ))) and I is upper semicontinuous, for a subsequence, still
denoted by j , there holds

v j (0) → b ∈ I (zξ/8(φ(zξ/8))) as j → ∞.

Again, using condition (B4), there exists w ∈ G with w(0) = b such that

sup
t∈J

d(v j (t), w(t)) → 0 as j → ∞,

for every compact interval J ⊂ R+. Note that t j = τ j + s j for s j ∈ [0, ξ/2] and
ũ j (t j ) = v j (s j ), j ≥ j3. For a subsequence of indexes, still denoted by j , there holds
s j → λ ∈ [0, ξ/2], and

ũ j (t j ) = v j (s j ) → w(λ) as j → ∞.

The proof is complete. 
�

7 Comparison Between Condition (T) and Other Conditions used to
get Invariance for Impulsive Systems

7.1 Condition (T) and Tube Condition for Single-Valued Systems

For single-valued impulsive semiflows it is proved in [6] that the so-called tube con-
dition guarantees the global attractor invariance. We have proposed the condition
(T ) which guarantees this invariance in the general multivalued situation and, thus,
also in the single-valued one. In this section we prove that the tube condition, in the
single-valued case, implies condition (T ). In this way, we assume that the generalized
semiflow G is single-valued, i.e., for every x ∈ X the set {u ∈ G : u(0) = x} is a
singleton. In such case, we will use the notation

S(t)x = u(t) for u ∈ G with u(0) = x .

For D ⊂ X and � ⊂ [0,∞), we define

F(D,�) = {y ∈ X : there exists β ∈ � such that S(β)y ∈ D}.

Definition 7.1 Let λ > 0. A closed set S containing x ∈ X is called a λ-section
through x , if there exists a closed set L such that

(T1) F(L, λ) = S;
(T2) F(L, [0, 2λ]) contains a neighborhood of x ;
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(T3) F(L, μ) ∩ F(L, η) = ∅, for 0 ≤ μ < η ≤ 2λ.

The set F(L, [0, 2λ]) is called a λ-tube and the set L is called a bar.

We recall the following Lemma, cf. [15, Lemma 1.9].

Lemma 7.2 Let {S(t)}t≥0 be a single-valued semiflow. If S is a λ-section through x,
then S is a μ-section through x.

The notion of section allows us to define the following property for a tube.

Definition 7.3 Let M ⊂ X be an impulsive set. We say that a tube F(L, [0, 2λ]) given
by a section S through x ∈ M is a TC-tube if

S ⊂ M ∩ F(L, [0, 2λ]).

A point x ∈ M satisfies the Tube Condition (TC) if there exists a TC-tube through
x .

As a consequence of Lemma 7.2, we obtain the next result.

Lemma 7.4 Let x ∈ X be a point satisfying TC with a λ-section S. Then for any η < λ

the set S is an η-section with a TC-tube.

In the next result, for single-valued semiflows, we prove that the tube condition
implies the condition (T).

Theorem 7.5 Let (G, M, I ) be an impulsive generalized semiflow such that the under-
lying generalized semiflow G is single-valued. If x ∈ X satisfies TC then x satisfies
the condition (T ).

Proof Let x ∈ M , t > 0 and {u j } be a sequence of trajectories of the single-valued
semiflow {S(t)}t≥0 such that

lim
j→∞ sup

r∈J
d(u j (r), u(r)) = 0 for every compact J ⊂ R+ and for some u ∈ G,

and that u j (t) → u(t) = x for a certain t > 0, see Remark 4.5. It is not difficult to
see that

sup
r∈J

d(utj (r), u
t (r)) → 0 as j → ∞, (8)

for all compact J ⊂ R+. By condition (1) from Definition 2.7, there exists εx > 0
such that ⋃

s∈(0,εx )

{ut (s)} ∩ M = ∅. (9)

Now, as x satisfies the condition TC, let F(L, [0, 2λ]) be a λ-tube through x given by
a section S, with λ < εx . By condition (T2) of a tube, there exists j0 ∈ N such that

z j = u j (t) ∈ F(L, [0, 2λ]) for all j ≥ j0.
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Then there exists s j ∈ [0, 2λ] such that u j (t + s j ) ∈ L for every j ≥ j0. We may
assume that s j → s̄ ∈ [0, 2λ] as j → ∞.

Case 1. There exists a subsequence, which we denote by the same index, such that

s j > λ. Since u j (t + s j ) = u
t+s j−λ

j (λ) ∈ L and F(L, λ) = S by (T1), we get

u
t+s j−λ

j (0) ∈ S ⊂ M for every j ≥ j0. Set α j = s j −λ, j ≥ j0. We claim that s̄ = λ.
Indeed, assume that s̄ > λ. Using (8) and (B5), it follows that

utj (α j ) → ut (s̄ − λ) as j → ∞.

But utj (α j ) ∈ M , which implies that ut (s̄ − λ) ∈ M and it contradicts (9). Thus, for
j ≥ j0,

α j → 0, t + α j > 0 and u j (t + α j ) ∈ M .

Case 2. There exists a subsequence, which we denote by the same index, such that
s j ≤ λ. Define α j = s j − λ, j ≥ j0. By (8) and (B5) it follows that

utj (s j ) → ut (s̄) ∈ L as j → ∞.

But, as ut (0) = x ∈ M ⊂ S and 0 ≤ s̄ ≤ λ, it follows from the definition of the tube
that s̄ = λ. Let j1 ∈ N, j1 ≥ j0, be such that t + α j > 0 for all j ≥ j1. Then, for
j ≥ j1,

u
t+α j
j (λ) ∈ L whereas u j (t + α j ) = u

t+α j
j (0) ∈ S ⊂ M .

Hence,

α j → 0, t + α j > 0 and u j (t + α j ) ∈ M for all j ≥ j1.

The proof is complete. 
�

7.2 Condition (T) and Conditions of [20]

The authors in [20, formula (20), p. 201] use the following condition in their proof of
the global attractor invariance for generalized impulsive semiflows.

(T ∗) If x ∈ X\M , {u j } ⊂ G is such that u j (0) → x and for some u ∈ Gx there holds

lim
j→∞ d(u j (t), u(t)) = 0 for every t ≥ 0,

then φ(u) = ∞ if φ(u j ) = ∞ for infinitely many j , or φ(u j ) → φ(u)

otherwise.

We establish the following result.
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Lemma 7.6 The impulsive generalized semiflow (G, M, I ) satisfies the condition (T ∗)
if and only if it satisfies the condition (T ).

Proof Assume first that (T ∗) is satisfied. In view of Remark 4.5, let {u j } ⊂ G be a
sequence and u ∈ G be such that

lim
j→∞ sup

s∈J
d(u j (s), u(s)) = 0

for every compact J ⊂ R+, and u j (t) → x for some x ∈ M and t ∈ (0,∞). Define
δ = min

{
t, εx

2

}
, where εx > 0 comes from condition (1) of Definition 2.7. Consider

the sequence {ut−δ
j }. Then

lim
j→∞ sup

s∈J
d(ut−δ

j (s), ut−δ(s)) = 0,

for every compact J ⊂ R+. Condition (2) from Definition 2.7 implies that for s ∈
[0, δ) there holds ut−δ(s) /∈ M . In particular, ut−δ(0) /∈ M . Hence, as ut−δ(δ) =
u(t) = x ∈ M (thus, δ = φ(ut−δ)), condition (T ∗) implies that φ(ut−δ

j ) → φ(ut−δ)

as j → ∞, so we can define α j = φ(ut−δ
j ) − φ(ut−δ) and obtain j0 ∈ N such that

t + α j ≥ 0 for every j ≥ j0. Thus the assertion follows.
On the other hand, assume that (T ) holds. Take x ∈ X\M , {u j } ⊂ G such that

u j (0) → x as j → ∞, and for some u ∈ Gx there holds

lim
j→∞ d(u j (t), u(t)) = 0 for every t ≥ 0.

As every subsequence of {u j } has another subsequence such that for some v ∈ Gx

there holds

lim
μ→∞ sup

s∈J
d(uμ(s), v(s)) = 0 for every compact J ⊂ R+,

the uniqueness of the limit implies that v(s) = u(s) for every s ≥ 0, and the con-
vergence holds for the whole sequence {u j }. Thus, the continuity of φ established in
Theorem 5.2 implies that (T ∗) holds. 
�

Thus we have established that the condition (T ) in Corollary 4.8 can be replaced
with its equivalent condition (T ∗). In consequence, there holds the following result.

Corollary 7.7 Let (G, M, I ) be an impulsive generalized semiflow satisfying condition
(H) with a global attractor A such that I (M) ∩ M = ∅. If the condition (T ∗) holds,
then the attractor A is invariant.

In [20, Lemma 8], the authors establish the negative invariance for an impulsive
generalized semiflow, assuming the condition (T ∗) and the following additional con-
dition, which appears there as [20, formula (26), p. 204]:

123



On Attractors of Generalized Semiflows with Impulses 1441

(T ∗∗) If x ∈ M and {u j } ⊂ G is such that u j (0) → x as j → ∞, then there exists a
subsequence {uμ} such that either φ(uμ) → 0 as μ → ∞ or φ(uμ) = ∞ for
infinitely many indexes μ.

We have proved that (T ∗) is equivalent to our condition (T ) and no additional
conditions, such as (T ∗∗), are needed for the attractor invariance. Next, we exhibit an
example where (T ∗∗) is not satisfied, and the global attractor, being an invariant set,
exists by Corollary 7.7.

Example 7.8 Let the generalized semiflow G (single-valued) be given by the solutions
of the following ODE

x ′ = −x .

DefineM = {1, 2} and I (1) = I (2) = 3.Note that the impulsive generalized semiflow
(G, M, I ) is also single-valued. It is not difficult to see, that conditions of Corollary
7.7 as well as (T ) (or equivalently (T ∗)) are satisfied. In order to see that (T ∗∗) does
not hold, let us consider the sequence of initial data

x j = 2 − 1

j
for j ≥ 2.

It is clear that x j → 2 ∈ M as j → ∞. We denote the trajectories that start from x j
by u j . Since

u j (t) =
(
2 − 1

j

)
e−t ,

by a simple calculation we see that

φ(u j ) = ln

(
2 j − 1

j

)
,

whereas

lim
j→∞ φ(u j ) = ln(2),

and (T ∗∗) does not hold. It is easy to see that for this example Ac = {0} ∪ [2, 3], and
the global attractor A = {0} ∪ (2, 3] is an invariant set.

8 Examples

We complement this article by several additional examples that illustrate the obtained
results.
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Example 8.1 Let F : R → 2R be given by

F(x) =
⎧⎨
⎩

[−1, 1] if x ∈ {−1, 0, 1},
1 if x ∈ (−∞,−1) ∪ (0, 1),

−1 if x ∈ (−1, 0) ∪ (1,+∞).

Consider the ordinary differential inclusion

dx

dt
(t) ∈ F(x(t))

and let G be the set of its solutions, i.e., absolutely continuous functions x : R+ → R

which satisfy the inclusion for almost every t ∈ R+. For the initial data not equal to
zero, the solutions are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if x0 < −1, x(t) =
{
x0 + t for t ∈ [0,−1 − x0],
−1 for t > −1 − x0.

if x0 = −1, x(t) = −1 for t ≥ 0.

if x0 ∈ (−1, 0), x(t) =
{
x0 − t for t ∈ [0, 1 + x0],
−1 for t > 1 + x0.

if x0 ∈ (0, 1), x(t) =
{
x0 + t for t ∈ [0, 1 − x0],
1 for t > 1 − x0.

if x0 = 1, x(t) = 1 for t ≥ 0.

if x0 > 1, x(t) =
{
x0 − t for t ∈ [0,−1 + x0],
1 for t > −1 + x0.

If x0 = 0 we get a family of trajectories originating from x0 given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = 0 for t ≥ 0.

x(t) =

⎧⎪⎨
⎪⎩
0 for t ∈ [0, T ],
T − t for t ∈ [T , T + 1],
−1 for t ≥ T + 1.

x(t) =

⎧⎪⎨
⎪⎩
0 for t ∈ [0, T ],
t − T for t ∈ [T , T + 1],
1 for t ≥ T + 1.

Verification that the trajectories of the formulated problem constitute a generalized
semiflow according to Definition 2.1 is straightforward. This semiflow is moreover
compact. Let M = {1/2} be the impulsive set and let I (1/2) = {−1/2}. It is clear
that with these defined M and I the problem constitutes an impulsive generalized
semiflow. This semiflow is dissipative, and if x(0) ∈ I (M), then φ(x) = ∞. It
is also not hard to see that condition (T ) holds, so, according to Lemma 6.3 the
constructed impulsive generalized semiflow is asymptotically compact. By Theorem
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3.6, it has the global c-attractor. It is also not hard to see that the c-attractor is given by
Ac = [−1, 1/2]∪ {1}, and hence the global attractor is given byA = [−1, 1/2)∪{1}.
Corollary 4.8 implies that the global attractor is invariant, which is also clearly seen
from the explicit formulas for the underlying generalized semiflow.

Example 8.2 Consider the generalized semiflow G given by the solutions of the ODE
x ′ = −x , the set M = {1} and I (1) = {2, 3}. Assumptions of Lemma 6.3, Theorem
3.6 and Corollary 4.8 are satisfied, so the global attractor, an invariant set, exists. It is
easy to see that the global attractor isA = {0} ∪ (1, 3]. Let us show that the impulsive
generalized semiflow has an uncountable number of distinct eternal and bounded
trajectories. Indeed, let {ai }i∈Z be a sequence of zeros and ones, i.e., {ai }i∈Z ∈ {0, 1}Z.
Set t0 = 0 and define a sequence {ti }i∈Z by the following recursive formulas

ti+1 − ti = ln 2 if ai = 1,

ti+1 − ti = ln 3 if ai = 0.

Now, construct the trajectories of the impulsive generalized semiflow by the formulas

x(t) = 2eti−t if ai = 1 and t ∈ [ti , ti+1),

x(t) = 3eti−t if ai = 0 and t ∈ [ti , ti+1).

It is visible from the example that introduction ofmultivalued impulses even in a simple
one-dimensional ODE can lead to an uncountable number of distinct nonperiodic
complete trajectories in the attractor. Eachof these trajectories canbeuniquely encoded
by an infinite sequence of zeros and ones and each sequence of zeros and ones gives rise
to a distinct trajectory. So, the dynamics of the impulsive system can be transformed
to the symbolic dynamics over alphabet {0, 1} with the nonzero topological entropy.
Hence, the dynamics ofmultivalued impulsive problems can potentially bemuch richer
than that of single-valued problems without impulses, in particular it is possible that
the dynamics of a one-dimensional impulsive system is topologically chaotic [22]. We
stress the fact that it is crucial for the system in this example to be both multivalued
and impulsive in order to generate the topologically chaotic symbolic dynamics.

Example 8.3 Consider the phase space X = L2(�), where � ⊂ R
n is an open and

bounded set with sufficiently smooth boundary. Consider the problem

ut − �u = 0 for (x, t) ∈ � × (0,∞),

u(x, t) = 0 for (x, t) ∈ ∂� × (0,∞),

u(x, 0) = u0(x) for x ∈ �.

Clearly, if u0 ∈ L2(�), then the problem has a unique weak solution, and the trajecto-
ries of the problem constitute a generalized semiflow G, in fact single-valued. Define
M = {v ∈ L2(�) : ‖v‖L2(�) = 1}. Denote by {ei }∞i=1 the orthonormal sequence in
L2(�) of the eigenfunctions of the−�operatorwith theDirichlet boundary conditions
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on ∂�, and the corresponding eigenvalues given by

0 < λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . → ∞.

Every function from L2(�) can be represented by the Fourier series

u =
∞∑
n=1

(u, en)L2(�)en,

where (u, en)L2(�) = αn(u) is the n-th Fourier coefficient, and ‖u‖2
L2(�)

=∑∞
n=1 α2

n(u). If the initial condition has the decomposition

u0 =
∞∑
n=1

αn(u0)en,

then the trajectories of the system are given by

u(t) =
∞∑
n=1

αn(u0)e
−λn t en .

Now, define

I (v) = (α1(v) + [3, 4])e1 +
∞∑
n=2

αn(v)en for v ∈ M .

The multifunction I is upper semicontinuous and each trajectory of the underlying
problem crosses the set M only at most once, hence the problem constitutes an impul-
sive generalized semiflow.

We show that I (M) ∩ M = ∅. Indeed, let v ∈ M , then ‖v‖2
L2(�)

= 1, i.e.,∑∞
n=1 α2

n(v) = 1. If u ∈ I (v), then for some c ∈ [3, 4] there holds

u = (α1(v) + c)e1 +
∞∑
n=2

αn(v)en .

Then, as |α1(v)| ≤ 1,

‖u‖2L2(�)
= (α1(v) + c)2 +

∞∑
n=2

αn(v)2

= 1 + 2α1(v)c + c2 ≥ 1 − 2c + c2 = (c − 1)2 ≥ 4,

and I (M) ∩ M = ∅. Next, we study the quantity

φ(u) = inf{t > 0 : u(t) ∈ M} for every u ∈ G with u(0) = u0 ∈ I (M).
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For u0 ∈ I (M) there exists v ∈ M such that u0 ∈ I (v), and hence for some c ∈ [3, 4]

u0 = (α1(v) + c)e1 +
∞∑
n=2

αn(v)en for
∞∑
n=1

α2
n(v) = 1.

We can decompose the dynamics starting from u0 into modes, whence,

u(t) = (α1(v) + c)e−λ1t e1 +
∞∑
n=2

αn(v)e−λn t en,

and, since the ‖u(t)‖2
L2(�)

is continuous and decreasing it suffices to find the lower
bound on t such that

(α1(v) + c)2e−2λ1t +
∞∑
n=2

α2
n(v)e−2λn t = 1.

It follows that

22e−2λ1t ≤ 1,

whence

t ≥ 1

2λ1
ln 4,

and

φ(u) ≥ 1

2λ1
ln 4,

for every u ∈ G with u0 ∈ I (M). Finally, we demonstrate the condition (T ). Let
x ∈ M , {un} ⊂ G and t0 > 0 such that un(t0) → x as n → ∞ and

lim
n→∞ sup

r∈J
‖un(r) − u(r)‖L2(�) = 0 for every compact J ⊂ R+ and some u ∈ G.

Let un(0) = un0 and u(0) = u0, u0, un0 ∈ L2(�). It is clear that u(t0) = x and
un0 → u0 as n → ∞. Since ‖u(t)‖L2(�) is decreasing to zero for any nonzero initial
data, in fact

‖u(t)‖L2(�) ≤ e−λ1t‖u0‖L2(�), (10)

it follows that ‖u0‖L2(�) > 1 and ‖un0‖L2(�) > 1 for sufficiently large n. It follows that
for every natural n there exists tn > 0 such that un(tn) ∈ M . Moreover, the sequence
{tn} is bounded (as un satisfies (10)), so, for a subsequence, there holds tn → t̄ as
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n → ∞. It suffices to prove that t̄ = t0. Indeed, take a compact interval J such that
{tn} ⊂ J , then

‖un(tn) − u(t̄)‖L2(�) ≤ ‖un(tn) − u(tn)‖L2(�) + ‖u(tn) − u(t̄)‖L2(�)

≤ sup
r∈J

‖un(r) − u(r)‖L2(�) + ‖u(tn) − u(t̄)‖L2(�).

This means that un(tn) → u(t̄) as n → ∞, and, as un(tn) ∈ M and M is a closed set,
it follows that u(t̄) ∈ M . Since t0 is the only time such that u(t0) ∈ M it must be that
t̄ = t0. Finally, take αn = tn − t0, which yields un(t0 + αn) = un(tn) ∈ M and the
proof of condition (T ) is complete.

We have proved that assumptions of Lemma 6.3, Theorem 3.6, and Corollary 4.8
are satisfied, which implies the existence of the global attractor, being an invariant set.
By studying the behavior of the impulsive generalized semiflow on separate modes, it
is not hard to verify that its attractor is given by

A = {0} ∪ {ce1 : c ∈ (1, 4]}.

Comparing this example with the examples of [20,30,31], the impulsive set M is no
longer a part of a hypersurface of codimension one, but a sphere. The dynamics on
the attractor is, however, similar as in [20,30,31] still reduced to a finite number of
first Fourier modes (in fact to the first mode, only). It remains open, to our knowledge,
to construct an example of an infinite dimensional impulsive dynamical system such
that its attractor contains impulsive trajectories, and the dynamics cannot be reduced
to the dynamics on the finite number of first Fourier modes.

Example 8.4 Next, we discuss the example of [20]. We consider the same initial and
boundary value problem as in Example 8.3. Consider the impulsive set defined as, cf.
formula (34) in [20]

M =
{
v ∈ L2(�) : α1(v) + α2(v) = 1 and α1(v), α2(v) ≥ 0

}
.

Then we define the sequence of the initial data

un0 = −1

n
e1 + 2e2, n ∈ N

+.

The trajectories of the system are given by

un(t) = −1

n
e−λ1t e1 + 2e−λ2t e2, n ∈ N

+.

For n ∈ N
+, un(t)will never touchM asα1(un(t)) is always negative.Hence,φ(un) =

∞. Now un0 → u0 as n → ∞, where u0 = 2e2. The trajectory that starts from u0 is
given by the formula

u(t) = 2e−λ2t e2.
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Clearly, for every t , we have the uniform convergence un(t) → u(t) on compact
subsets of R+. The trajectory u will hit M at time given by

2e−λ2t = 1,

so

t = ln 2/λ2.

This means that φ(u) = ln 2/λ2 and φ(un) = ∞ for every n ∈ N
+. Condition (T ∗),

and equivalently, the condition (T ) is violated. Hence,we cannot deduce the invariance
of the global attractor from Corollary 7.7. Still, if we fix μ > 0 and define, for v ∈ M

I (v) =
{
c1e1 + c2e2 +

∞∑
n=3

αn(v)en : c1, c2 ≥ 0, c1 + c2 = 1 + μ

}
,

it is clear that the constructed impulsive multivalued dynamical system has a global
attractor defined as, cf. [20, Lemma 10],

A = {
c1e

−λ1t e1 + c2e
−λ2t e2 : t ∈ [0, τ ), c1, c2 ≥ 0, c1 + c2

= 1 + μ, c1e
−λ1τ + c2e

−λ2τ = 1
}
.

The example shows that the condition (T ), and equivalently (T ∗), as well as the
tube condition, are only sufficient for the global attractor invariance, and there are
cases, when the set M has a boundary, for which the global attractor for the impulsive
problem exists but its existence is not guaranteed by the conditions known so far. This
observation motivates the further work on impulsive problems, to find the condition
which would hold for the case such as Example 8.4, but which would exclude the
situation such as inExample 3.11, andwhichwould be sufficient for the global attractor
existence for the case when the impulsive set M has a boundary.

Example 8.5 In the last example, we come back to the integrate-and-fire neuron model
given in the introduction. We assume that the excitation S > 0 is constant in time but
there are two possible reset values. The model is given by the equation

u′(t) = −γ u(t) + S, (11)

with the reset condition

if u(t) = θ then u(t) is reset to one of values u1r , u
2
r ,

with u1r < u2r < θ . Indeed, in integrate-and-fire neuron models the reset values can
vary for different action potentials, cf. [8, Fig. 1C]. We also assume that γ > 0 and
θ > 0. We demonstrate that the model satisfies all our assumptions. First, in our
case, the family G are just solutions of the ODE (11), continuous functions, so they
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constitute, in particular, a generalized semiflow on X = R, according to Definition
2.1. We define M = {θ} and I (θ) = {u1r , u2r }. Now, if only we assume that S �= γ θ ,
then the triple (G, M, I ) constitutes an impulsive generalized semiflow in concordance
with Definition 2.7. As ur1 < ur2 < θ it is straightforward to see that the condition (H)
is satisfied. It is also easy to see that the set

B0 = [ur1, θ ] ∪
[
S

γ
− 1,

S

γ
+ 1

]

is absorbing, and so the impulsive generalized semiflow (G, M, I ) is dissipative in
agreement with Definition 3.4 and asymptotically compact in agreement with Defini-
tion 3.2. We can use Theorem 3.9 to deduce the existence of the global attractor A.
Since the ODE (11) can easily be integrated exactly, is not hard to see that

if θγ > S then A =
{
S

γ

}
,

if θγ < S then A = [ur1, θ) ∪
{
S

γ

}
.

If the excitation S is small, less than the threshold value θγ , then the membrane
voltage u always stabilizes to the value S/γ . On the other hand, under sufficiently
large excitation S, the structure of the attractor drastically changes, meaning that the
neuron can then generate action potentials. It is also not hard to see that the condition
(T) is satisfied, which leads to the attractor invariance. For the case θγ < S, the
dynamics in the attractor on the interval [ur1, θ) can be transformed into the symbolic
dynamics with positive topological entropy, as in Example 8.2, since each jump from
value θ can occur either to u1r or to u

2
r . This means that as S passes the value θγ there

occurs the change of the dynamics from the existence of the globally asymptotically
stable equilibrium to the dynamics which is topologically chaotic.
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