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Abstract
A two-dimensional model of a quasi-crystal is the Penrose tiling (1974), which is an aperiodic “disjoint” covering of the 
plane generated by two rhombi R36◦ and R72◦ with equal side lengths. It is crucial that the areas’ ratio is irrational 

which in turn reveals a local five-fold symmetry, forbidden for crystals. Recent advances on “Wang tiles”, that is square tiles 
that cover the plane but cannot do it in a periodic fashion, are due to Jeandel and Rao (An aperiodic set of 11 Wang tiles, 
Advances in Combinatorics, pp 1–37, 2021), giving a definitive answer to the problem raised by Hao Wang in 1961. Other 
recent applications to variational problems in Homogenization are also mentioned (Braides et al. in C R Acad Sci Paris 
347(11–12):697–700, 2009).
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1 Introduction

The mathematical theory of quasi-periodic crystals, after the 
discovery of natural quasicrystals (Bindi et al. 2009), has 
become an important area of investigation both in theoreti-
cal and experimental sciences (see Bindi 2008; Bindi and 
Stanley 2020; Bindi and Parisi 2023; van Smaalen 2023).

In this note, we present some basic mathematical ideas 
about tilings in the plane ℝ2 , starting with the concepts of 
regular and semi-regular, or periodic and aperiodic, tiles.

In Sect. 2, we describe Wang’s conjecture and some 
recent advances (2021).

In Sect. 3, we examine Penrose tilings, which can be seen 
as two-dimensional models for quasicrystals. We shall pro-
vide details in the case where the prototiles, three rhombi 
R �

7

,R 2�

7

 and R 3�

7

 , produce a seven-fold symmetry.
In Sect.  4, we recall the Fibonacci sequence and in 

Sect. 5, we mention recent works regarding calculus of vari-
ations (in particular, the homogenization of Penrose tilings).

2  Wang tiles

For 0 < 𝛼 < 90 , we denote by R�◦ the planar rhombus with 
an acute angle of � degrees. A tiling (or tessellation) is a 
covering of a portion S ⊆ ℝ

2 by non-overlapping polygonal 
(or more generally, compact) shapes called tiles, which may 
differ in shape, size and orientation. Each tile is the projec-
tion of a d-dimensional face of a D-dimensional hypercube 
(d < D) onto Euclidean d-space.

A tiling is periodic if it is invariant under two given lin-
early independent directions (in other words, shifting the 
pattern without rotating it produces the same tiling).

One long-standing problem has been that of construct-
ing semi-regular tilings from regular ones. Starting from 

� =
areaR72◦

areaR36◦

=
1 +

√

5

2
(golden ratio) (�2 − � − 1 = 0),
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1960, the problem arose on whether there existed “tilesets” 
admitting only non-periodic tilings. Such sets are said to 
be aperiodic.

Remark It is not difficult to tesselate ℝ2 non-periodically, 
using only one triangle with angles 75◦–75◦–30◦.

In 1961, Wang conjectured that every tileset that realizes 
a tiling of ℝ2 must also admit a periodic tiling of ℝ2 . In 1966, 
his student Berger disproved the conjecture, by finding a set 
of more than 20,000 square tiles that cover the plane but 
cannot do it in a periodic way. The prototiles he employed 
are Wang tiles, namely square tiles with coloured edges. 
Wang tiles are juxtaposed so that adjacent edges share the 
same colour. Wang was motivated by his interests in math-
ematical logic.

The number of tiles needed was drastically reduced in 
1996, when an aperiodic tileset of only 13 Wang tiles was 
discovered. At the same time, it has been shown that it is 
impossible to obtain aperiodic Wang tilings consisting of 4 
tiles or less (1987).

In a 2021 paper published in Advances in Combinatorics 
Jeandel and Rao (2021) settled the matter for good, they 
found an aperiodic Wang tiling made of 11 pieces and 4 
colours, and showed there cannot exist aperiodic tilings with 
fewer than 11 Wang tiles.

3  Penrose tilings

The main discovery regarding aperiodic tilings is due to 
Penrose, who showed how to tessellate ℝ2 in a non-peri-
odic fashion using two rhombi ( R36◦ and R72◦ ). The Penrose 
tiling exhibits a five-fold symmetry, and can be seen as a 
two-dimensional model of a quasi-crystal.

Its prototiles are a “thin” rhombus R36◦ and a “fat” 
rhombus R72◦ , both with unit edges (Fig. 1).

Since the edge length is 1, we have:

and

so that

where � is the golden ratio: an irrational solution 
to x2 − x − 1 = 0. The solutions to x7 − 1 = 0 are 
1, e

i
2�

7 , e
i
4�

7 , e
i
6�

7 , e
i
8�

7 , e
i
10�

7 , e
i
12�

7  and their sum is zero:

Using elementary formulas, such as

areaR36◦ = sin 144◦ = 2 sin 72◦ cos 72◦

areaR72◦ = sin 72◦ = 2 sin 36◦ cos 36◦,

areaR72◦

areaR36◦

=
1

2 cos 72◦
= � =

1 +
√

5

2

cos
2�

7
+ cos

4�

7
+ cos

6�

7
= −

1

2
.

cos � cos � cos �

=
cos(� + � + �) + cos(−� + � + �) + cos(� − � + �) + cos(� + � − �)

4

Fig. 1  Penrose prototiles (� =
1+

√

5

2
) Fig. 2  Prototile rhombi of seven-fold tilings
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we have

and

In particular

A tiling with a seven-fold symmetry can be obtained using 
the three rhombi R �

7

,R 2�

7

,R 3�

7

 (Fig. 2).
A quasi-periodic 7-fold rhombic tiling, whose basic shapes 

are rhombi with acute angles of �
7
,
2�

7
 and 3�

7
 radians, enjoys 

the property that (e.g. R 2�

7

 ) the prototiles can be arranged to 
form a seven-pointed star, hence producing 7-fold rotational 
symmetry.

As in case of pentagonal symmetry, where the length of the 
long diagonal of R 2�

5

 equals the golden ratio � = 2 cos
�

5
 , here 

the length of the long diagonal of R 2�

7

 equals � = 2 cos
�

7
.

Similar to the five-fold case, the ratio of the areas of the 
3 prototile rhombi (or their reciprocals) are the irrational 
solutions to the algebraic equation:

namely

Actually

Quasicrystals consist of long-range ordered, but aperiodic 
arrangements of atoms. They reveal periodicity only in high-
dimensional hyperspaces, and no translational invariance.

Important for quasicrystals are the so-called rational 
approximant phases, which are periodic structures close to 
aperiodic quasicrystalline ones, and which can be described 
as projections of the quasicrystalline hyper-structure along 
rational directions in hyperspace with a rational slope 
approximating the golden ratio.

The method of hyperdimensional constructions and their 
projection to lower dimensions to obtain quasi-periodic 
structures are a powerful tool. By suitable rational approxi-
mation of irrational quantities, intrinsic in the projection 
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matrices, periodic structures are related to “perfect” Pen-
rose tilings modulo certain “defects”. One such example 
are “phasons” which, when inserted regularly in Penrose 
lattices, change them into periodic approximants.

4  Fibonacci chain

This is a basic representation of an aperiodic system in ℝ . 
Let us recall the Fibonacci numbers (Fk)k∈ℕ:

where each number is the sum of the two integers preceding 
it, according to the inductive definition

It is well known that

The Fibonacci tiling is obtained by projection from a 2D 
periodic structure, and represents an aperiodic covering of 
ℝ generated by two segments L (long) and S (short), whose 
lengths have ratio 

∣ L ∣

∣ S ∣
= � . The segments are juxtaposed as 

follows: as the length of the chain tends to ∞ , the ratio 
between the number of L edges and S edges contained in the 
chain tends to the golden ratio � (Fig. 3).

The chain does not have a translational symmetry, but has 
a clear “local” order. For example, there are no consecutive 
short segments SS, and no triples LLL. The projection acts 
from a 2d periodic lattice onto a straight line with slope � , a 
physical line.

To find a rational approximant, one defines an irrational 
“strip” which contains the lattice points that will be projected 
onto the physical line, thus filling the Fibonacci sequence.

In order to obtain a periodic 1d sequence that will approxi-
mate the Fibonacci chain, the irrational strip is replaced by a 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55,… ,

{

F1 = F2 = 1

Fk+2 = Fk+1 + Fk.

lim
k→∞

Fk+1

Fk

= � =

√

5 + 1

2
.

#L/#S chain
1 L
1 LS
2/1 LSL
3/2 LSLLS
5/3 LSLLSLSL
8/5 LSLLSLSLLSLLS
13/8 LSLLSLSLLSLLSLSLLSLSL

Fig. 3  Approximants of the Fibonacci chain
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suitable rational one. This “cut-and-project” construction was 
introduced by Harald Bohr for almost periodic functions.

Bohr introduced the notion of a hyperspace and showed that 
quasi-periodic functions arise as restrictions of high-dimen-
sional periodic functions to an irrational slice.

The difference between the Fibonacci algorithm and the 
approximant method becomes clearer once we look at their 
respective recursive formulas:

and

5  Homogenization of Penrose tilings

The homogenization theory deals with the description of the 
macroscopic properties of media with fine microstructure and 
has important applications to the study of the properties of 
composite materials. Originally ( ∼ 1970) it was introduced in 
case of periodic structures, when the period is “small”   with 
respect to the size of the region in which the system is to be 
studied.

The main problem consisting in going back from the 
microscopic quantities to the macroscopic ones, which are 
measurable.

The problem of homogenization of integral energies goes 
back to E. Sanchez Palencia, I. Babuska, E. De Giorgi-S. 
Spagnolo, F. Murat-L. Tartar, P. Marcellini for which we quote 
the reference books (Bensoussan et al. 1978) and Dal Maso 
(1993).

Functionals of the form ( Ω ⊂ ℝ
2)

for u ∈ W1,2(Ω;ℝm) , a Sobolev space of L2 functions with 
gradient in L2 , are considered and some natural limit as 
� → 0 is described as

with explicit expression for fH due to periodicity.
In other words, we are performing the asymptotic analysis 

of fast-oscillating integral functionals depending on a small-
scale parameter � , as � goes to zero.

Let us concentrate here to the special case 
f (x, �) =

∑2

i,j=1
aij(x)�i�j

wn+2 = wn+1 + wn

wn+2 = wn+1 + w.

F�(u) = ∫Ω

f
(

x

�
,Du(x)

)

dx

FH(u) = ∫Ω

fH(Du(x)) dx

F�(u) = ∫Ω

∑

i,j

aij

(

x

�

)

uxiuxj dx

where [aij(x)] is a bounded symmetric matrix, such that (for 
a 𝜆 > 0)

and  we  suppose  aij(x) i s  Y -pe r iod ic  where 
Y = {x ≡ (xi) ∈ ℝ

2 ∶ 0 < xi < yi} and y = (yi) , yi > 0 is 
fixed in ℝ2 namely, ∀x

If Ω ⊂ ℝ
2 is bounded, there exists, for any � ∈ L2(Ω) and 

𝜀 > 0 a unique solution u� to the minimum problem

such that u� = 0 are on the boundary �Ω . (Dirichlet 
problem).

It can be proved that there exists a constant symmetric 
positive-definite matrix [�ij] such that u� converges in L2 as 
� → 0 to the solution u of the minimum problem

and u = 0 on �Ω.
The interesting fact is that the matrix �ij is different from

Recently (Braides et al. 2009), a homogenization theorem 
was proved for energies which follow the geometry of an 
a-periodic Penrose tiling.

The authors consider mixtures of two linear conducting 
materials with different dieletric constants depending on the 
type of tiles. The coefficient a = a(y) only takes two val-
ues �, � ∈ ℝ depending on the tile type y (see Braides et al. 
2009). One can prove a homogenization-type theorem for 
energies that abide by the geometry of an aperiodic Penrose 
tiling. The result is obtained by showing that the already-
existing general homogenization theorems can be applied. 
The method applies to general quasicrystalline geometries.

Funding Open access funding provided by Università degli Studi di 
Napoli Federico II within the CRUI-CARE Agreement.

Data availability Data are available.

Declarations 

Conflict of interest The authors declare no conflict of interest.

� ∣ � ∣2≤ ∑

i,j

aij�i�j ∀� ∈ ℝ
2

aij(x + y) = aij(x) ∀i, j

∫Ω

{

f
(

x

�
,Du�

)

− �(x)u�

}

dx = minimum

∫Ω

{

∑

i,j

�ij
�2u

�xi�xj
− �(x)u

}

dx = minimum

1

meas(Y) ∫Y

aij(x) dx.



725Rendiconti Lincei. Scienze Fisiche e Naturali (2023) 34:721–725 

1 3

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
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