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Abstract
The multifractal description of complex phenomena has been introduced in the first half of the 1980s for the characterization 
of the anomalous scaling of the fully developed turbulence and the structure of the chaotic attractors. From a technical point 
of view, the idea of the multifractal is basically contained in the large deviations theory; however, the introduction of the 
multifractal description in 1980s had an important role in statistical physics, chaos, and disordered systems. In particular, to 
clarify in a neat way that the usual idea, coming from critical phenomena, that just few scaling exponents are relevant, cannot 
be completely accurate, and an infinite set of exponents is necessary for a complete characterization of the scaling features. 
We briefly review here the basic aspects and some applications of the multifractal model for turbulence.
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1 Introduction

Let us start by stressing the main difficulties in the building 
a theory of the fully developed turbulence (FDT) from the 
first principle; for a general introduction to FDT, we sug-
gest the book by Frisch (1995). As first, we note that the 
Navier–Stokes equations (NSE)

in the limit � → 0 and t → ∞ , has no relation at all with the 
Euler equation

 where � is the velocity field, � the fluid density, p the 
pressure, � the dynamic viscosity of the fluid, and � an 
external forcing driving the system. Actually, the limit 
� → 0 , � → 0 , � → ∞ of the NS equation does not approach 
to the Euler equations: we are in presence of a singular limit 
and the statistical features are completely different. This can 
be understood comparing the statistical features of the Euler 
equation with those of the FDT.

For the inviscid fluid, once an ultraviolet cutoff is intro-
duced in the Fourier series of the velocity field, it is enough 
to use the Liouville theorem and the energy conservation 
and follow the usual approach used for the standard statisti-
cal mechanics of Hamiltonian system (Bohr et al. 1998). 
Consider a fluid in a box L3 with periodic boundary condi-
tions and a cutoff

since the incompressibility condition �̂(�, t) ⋅ � = 0 , it is 
appropriate to use a set of independent variables {Xn} , evolv-
ing according to

�t� + (� ⋅ ∇)� = −
1

�
∇p + �Δ� + � , ∇ ⋅ � = 0

�t� + (� ⋅ ∇)� = −
1

�
∇p , ∇ ⋅ � = 0 ,

�(�, t) =
1

L3∕2

∑

|�|<KM

�̂(�, t)ei�⋅� ;
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For the Euler equation � = fn = 0 , it is easy to show that

and

therefore, following the same reasoning used for the statisti-
cal mechanics of Hamiltonian systems, one obtains

and equipartition ⟨X2
n
⟩ = 2E∕N , in the limit of large N, one 

has a Gaussian distribution

On the other hand, the Euler equation has a rather poor rela-
tion with the NSE in the limit Re → ∞ where  Re is the Reyn-
olds number, U being the r.m.s velocity and L the domain 
size. The main reason is due to the fact that in the limit 
Re → ∞ , one has � = �

2

∑
i,j⟨(�jui + �iuj)

2⟩ = O(1) (Frisch 
1995; Bohr et al. 1998).

Looking at the experimental data, we see that, instead 
of the equipartition for ⟨X2

n
⟩ , we have a rather different 

feature; in particular, in a wide range of kn , we have

After the many attempts in the last century, it is now rather 
clear that an analytical approach to FDT is very difficult 
(impossible?). The main reason is the nonlinear character 
of the system: a simple analysis is enough to show that to 
compute ⟨X2

n
⟩ , one has to deal with ⟨XnXjXk⟩ , and then, for 

these correlations, one need ⟨XnXjXkXm⟩ , and so on; this is 
the well-known problem of the hierarchy.

If we want to reach some result, it is necessary to close 
an infinite set of the equations. The situation is similar to 
the BGGKY hierarchy in kinetic theory for dilute gases, 
but here a simple approach, e.g., assuming that

gives inconsistent results.
Therefore, for the closure path, one is forced to use 

some phenomenological ideas, or some sophisticated 
theoretical approach: among the most relevant, we can 

dXn

dt
= −�k2

n
Xn +

∑

j,l

MnjlXjXl + fn , n = 1, 2, ....,N ∼ K3

M
.

∑

n

�

�Xn

dXn

dt
= 0

1

2

∑

n

X2

n
= E = const ;

P({Xn}) = C �

(
1

2

∑

n

X2

n
− E

)

P({Xn}) ∼ exp−
�

2

∑

n

X2

n
.

⟨X2

n
⟩ ∼ k

−
11

3

n .

⟨XnXjXkXm⟩ = ⟨XnXj⟩⟨XkXl⟩ + ⟨XnXk⟩⟨XjXl⟩ + ⟨XnXl⟩⟨XkXm⟩,

mention the attempts of R. Kraichnan. The reader can find 
a detailed discussion of the different attempt to the closure 
problem in the books by Lesieur (1983) and Leslie (1983) .

2  Self‑similarity and scaling in turbulence

In the following, we will discuss an alternative approach, 
which is surely less ambitious but allows for some interest-
ing results.

Perhaps, the scientist who realized in a clear way that it 
is not necessary to insist too much for a theory from the first 
principles was Kolmogorov (1941). His point of view had 
been clearly described by Sinai (2003):

When Kolmogorov was close to 80, I asked him about the 
history of his discoveries of the scaling laws. He gave me 
a very astonishing answer by saying that for half a year he 
studied the results of concrete measurements. ... Kolmogorov 
was never seriously interested in the problem of existence 
and uniqueness of solutions of the Navier–Stokes system. He 
also considered his theory of turbulence as purely phenom-
enological and never believed that it would eventually have 
a mathematical framework.

The ideas of Kolmogorov was based on the seminal intui-
tions of Richardson (1992), who, from just a few empirical 
data, guessed the self-similar structure of turbulence; here 
is how he summarised his insight in a verse (inspired by a 
satirical one by Swift):

Big whirls have little whirls 
that feed on their velocity,
and little whirls have lesser whirls
and so on to viscosity
in the molecular sense.
Now, we know that such a kind of behaviours is rather 

common and it appears in many natural phenomena; for 
instance, in turbulence, cosmology, and geophysics (Pala-
din and Vulpiani 1987b; Boffetta et al. 2008; Meakin 1998; 
Harte 2001).

Let us first summarize the basic idea of the Kolmogo-
rov theory (K41) which can be considered the first mod-
ern approach to turbulence. Kolmogorov was able to show 
an exact result from the Navier–Stokes equation: denoting 
with �v(�) the (longitudinal) velocity difference between two 
points at distance � , in the inertial range 𝜂 ≪ � ≪ L , where 
L and U are the typical length and velocity, respectively, 
� = LR

−
3

4

e  is the Kolmogorov length, Re =
UL

�
 is the Reynolds 

number, and we have the so-called 4/5 law

where � is the mean energy dissipation. Kolmogorov 4/5 law 
is “exact”, provided the limit � → 0 , L → ∞ can be defined 

⟨�v(�)3⟩ = −
4

5
�� + O(�),
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for statistically stationary solutions of the Navier–Stokes 
equation.

From the above result, some physical arguments as well 
as the experimental fact that � ∼ �|∇�|2 is O(1) in the limit 
Re → ∞ ; it is quite natural to assume

In mathematical terms, the K41 corresponds to an exact 
self similarity. A simple example of such a case is the self-
similar function of Weierstrass (Edgar 2004; Shen 2018)

if B is integer and A < B , f(x) is not differentiable 
in any point. One has f (x + Δx) − f (x) ∼ Δxh where 
h = 2 − DF = lnA∕ lnB < 1 , being DF the fractal dimension 
of the curve; this is a case of self-similarity with a single 
exponent.

The experimental results, e.g., for the energy spectrum, 
are in good agreement with the K41 ( Frisch 1995). On the 
other hand is now clear that the K41 cannot be completely 
correct. Perhaps, the first who realized this was L.D. Landau 
who noted that the K41 is a “sort of mean field” and there-
fore cannot be exact: it is necessary to take into account the 
fluctuations ( Frisch 1995; Bohr et al. 1998).

Experimental data about intermittency support Landau’s 
criticism: one exponent is not enough (Anselmet et al. 1984). 
This is well clear from the anomalous scaling of the struc-
ture functions

To reply to the Landau criticism in 1962, Kolmogorov pro-
posed a refined version of his previous theory, with a log-
normal approach (K62) (Kolmogorov 1962) which gives

where � is a measure of the fluctuations. K62 contains two 
parameters h = 1∕3 and � , and it is surely better than K41, 
but there are still some troubles.

3  The multifractal model

As first, let us note that the NSE are invariant under the scal-
ing transformation

The exponent h cannot be determined with only symmetry 
considerations; following the K41, the natural candidate is 

�v(�) ∼ �
h , h =

1

3
.

f (x) =

∞∑

n=1

A−n cos(2�Bn−1x) , 0 ≤ x ≤ 1

⟨��v(�)�p⟩ ∼ �
�p , �p ≠ p

3
.

�p =
p

3
+

�

18
p(3 − p),

� → �� , � → �h� , t → �1−ht , � → �1+h� .

h = 1∕3 . Notice that under the above scale transformation, 
the energy dissipation rate transforms as � → �3h−1� . We 
can say that the K41 theory corresponds to a global invari-
ance with h = 1∕3 , which leaves invariant � , and �p = p∕3 , 
in disagreement with several experimental investigations ( 
Frisch 1995; Bohr et al. 1998).

Actually, we have a rather interesting phenomenon, which 
goes under the name of intermittency and is a consequence of 
the breakdown of self- similarity and implies that the scaling 
exponents cannot be determined on a simple dimensional basis 
( Frisch 1995; Bohr et al. 1998). Here, we can use an informal 
definition of intermittency as relative large (non-Gaussian) 
fluctuations of �v(l) with respect to 

√
⟨�v(l)2⟩ . A more detailed 

definition is provided below in terms of anomalous scaling of 
the structure functions ⟨��v(�)�p⟩.

The multifractal model of turbulence is an attempt to treat 
intermittency; the idea has been introduced by Parisi and 
Frisch (1983), and then developed in Benzi et al. (1984): one 
assumes that the velocity has a local scale-invariance, i.e., 
there is continuous spectrum of exponents h, each of which 
belonging to a given fractal set.

As pioneering works which anticipated some aspects of the 
multifractal approach to turbulence, we can cite the log-normal 
theory of Kolmogorov (1962), the contributions of Novikov 
and Stewart (1964) and Mandelbrot (1974).

In the multifractal model, one assumes that in the inertial 
range, one has �v(�, �) ∼ �

h if � ∈ Sh where Sh is a fractal set 
with dimension D(h) and h ∈ (hm, hM) . Noting that the prob-
ability to have a given scaling exponent h at the scale � is

with simple steepest descent estimation, one has

This means that for each value p, one has a dominant singu-
larity h̃ determined by the equation

 So far, there is no successful idea on how to compute D(h) 
from the NSE The computation of D(h) from the NSE is 
not at present an attainable goal.  A first step is a phenom-
enological approach using multiplicative processes which 
generalize the K62 log-normal model, corresponding to a 
parabolic D(h)

P(�, h) ∼ �
3−D(h);

�p = inf
h

(
hp + 3 − D(h)

)
.

p =
dD

dh

|||h̃ → 𝜁p =
(
ph̃ + 3 − D(h̃)

)
.

D(h) = −
9

2�
h2 +

3

2
(2 + �)h −

4 − 20� + �2

8�
.
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4  Multifractals and singular measures

Let us briefly discuss an approach introduced by Halsey 
et al. (1986) for the description of anomalous scaling, 
sometimes called f (�) vs � formalism.

Given a singular measure �(�) , one can introduce a par-
tition with cells of size �

x and then a set of generalized dimensions dq , called 
Renyi dimensions defined in terms of scaling properties of 
moments of Pi(�)

Denoting with f (�) the fractal dimension of the regions such 
that Pi(�) ∼ �

� , one has the Renyi dimensions

For each value q, one has a dominant singularity �̃� deter-
mined by the equation

There is a rather close relation between the two approaches, 
i.e., f (�) vs � and D(h) vs h, it is enough to remind the K62 
theory.

Formulating the K62 approach in term of multifractals 
one has �v(�, �) ∼ (�

�
(�)�)1∕3 where �

�
(�) is the energy 

dissipation on the cell of size � and center in � . Since the 
energy dissipation is non-negative, one can introduce a 
measure

Simple manipulations show �q =
q

3
+
(

q

3
− 1

)
(d q

3

− 3) in 
addition

5  Toward physics

Coming back to FDT, to go on, one has to find a way to 
write down the D(h). Let us discuss a multiplicative pro-
cess, called random � model (Benzi et al. 1984): energy is 

Pi(�) = ∫Λi(�)

d�(�) ,

∑

i

Pi(�)
q ∼ �

(q−1)dq .

dq =
1

q − 1
inf
�
(�q − f (�)).

q =
df

d𝛼

|||�̃� → dq =
1

q − 1

(
�̃�q − f (�̃�)

)
.

�(�) ∝ �(�) .

h ⟷

� − 2

3
, D(h) ⟷ f (�) , f (�) ≤ � ⟷ D(h) ≤ 3h + 2

∃�∗ ∶ �∗ = f (�∗) = d1 ⟷ ∃h∗ ∶ 3h∗ + 3 − D(h∗) = �3 = 1.

injected at scale L; at the nth step of the cascade, a mother 
eddy of size �n = L2−n splits into daughter eddies of size 
�n+1 and the daughter eddies cover a fraction �j ∈ (0, 1) of 
the mother volume. Such a model was inspired by the � 
model (Frisch et al. 1978) which corresponds to assume a 
unique possible value of �.

Since the energy transfer is constant throughout the cas-
cade, for the velocity difference vn on the scale �n , one has 
vn = v0�

1∕3
n

∏n

j=1
�
−1∕3

j
 where �j are independent, identically 

distributed random variables. Simple computations give

 (Fig. 1).
Phenomenological arguments suggest �j = 1 with prob-

ability x and �j = 1∕2 with probability 1 − x . Notice that 
�j = 1∕2 corresponds to a velocity sheet and the phenom-
enology is borrowed by Saffman (1968). The scaling expo-
nents are

and

The two limit cases are x = 1 (the K41), and x = 0 which is 
the fractal � -model. Using x = 7∕8 , one has a good fit for 
the �q of the experimental data at high Reynolds numbers; 
see Fig. 2. Another very popular phenomenological model 
providing good fit for the anomalous scaling exponents is the 
She–Leveque model; see She and Leveque (1994).

Up to now, nobody had been able to obtain D(h) from the 
first principles, i.e., starting from the NSE, so we can say 
that the multifractal model is something less than a theory. 
Even so, it allows for the possibility to do precise previsions 
in terms of a unique “ingredient” which can be obtained 
from experimental data. Among the nontrivial previsions 
from the multifractal model, one has the existence of an 
intermediate dissipation range (Frisch and Vergassola 1991), 
the computation of the PdF for the gradient of the velocity 
(Benzi et al. 1991), as well as the acceleration of particle 
advected by a turbulent field (Biferale et al. 2004); for a 
detailed discussion about the statistical properties of the dis-
sipation range, see also Benzi and Biferale (2009).

In the K41, since one has a unique scaling exponent 
�v(�) ∼ �

1∕3 , then there is just a unique Kolmogorov length 
�

�q =
q

3
− ln2⟨�1−q∕3⟩ .

�q =
q

3
− ln2

(
x + (1 − x)2

q

3
−1
)

D(h) = 3 + (3h − 1)
[
1 + ln2

(
1 − 3h

1 − x

)]
+ 3h ln2

(
x

3h

)
.

�v(�)�

�
∼ 1 → � ∼

(
�

U

) 3

4

.
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In the multifractal model, one has different Kolmogorov 
lengths �(h) (Paladin and Vulpiani 1987) which are selected 
imposing the effective Reynolds number to be order one

Assuming, in agreement with the experiments, that at large 
scale, one has a Gaussian statistics, from the knowledge of 

Re(�(h)) =
�(h)�v(�(h)

�
∼ 1 → �(h) ∼ LR

−
1

1+h

e ∼
(
�

U

) 1

1+h
.

the D(h), one can derive the PdF of the velocity gradient s 
(Benzi et al. 1991)

see Fig. 3.
In a similar way, it is possible to find the PdF for the accel-

eration (Biferale et al. 2004), Fig. 4 shows the comparison with 

p(s) ∼ ∫ dh
(
�

|s|

)2−
h+D(h)

2

exp
(
−

�1−h|s|1+h
2U2

)
;

Fig. 1  a Schematic view of 
the �-model; b schematic view 
of the random �-model. The 
shaded areas are the zones 
active during the fragmentation 
process
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Fig. 2  ⟨��v(�)�p⟩ ∼ �
�p Circles and triangles are the experimental 

data; the solid line corresponds to K41 scaling p/3; the dashed line is 
the random �-model prediction; the dotted line is another moltiplica-
tive model due to She and Leveque (1994)

Fig. 3  PdF of the velocity gradient. Points represent experimen-
tal data, solid line is the multifractal prediction with the random �
-model, dotted and dashed lines represent the K41 and �-model 
results, respectively, and the dash-dotted line is the Gaussian distribu-
tion



476 Rendiconti Lincei. Scienze Fisiche e Naturali (2022) 33:471–477

1 3

the direct numerical simulation (DNS), and note the very large 
values of a∕�a.

6  Intermediate dissipative range

Frisch and Vergassola (1991) showed that the presence of a 
range of Kolmogorov lengths �(h) , as discussed in the previous 
section, has rather interesting consequences. Let us indicate 
�m and �M the minimal and the maximal Kolmogorov lengths, 
respectively, if, � ≫ 𝜂M for the structure functions of order p, 
one has the usual scaling, determined by h̃(p) ; on the contrary, 
in the intermediate dissipative range 𝜂m ≪ � ≪ 𝜂M , one has 
a less simple behaviour which involves not only h̃(p) but the 
whole D(h). Remarkably, such a result has rather interesting 
consequences which can be tested in experiments and numeri-
cal simulations.

Translating the above result for the energy spectrum, one 
has that the standard scaling (valid in the K41) gives

where kD ∼ �−1 , with F(z) ∼ z−5∕3 for z ≪ 1 , F(z) ∼ e−cz for 
z ≫ 1.

In presence of multifractality, one has a generalized scaling

the shape of G(z) depends on the D(h) for z < z∗ ; one has 
the usual scaling shape, depending only by the exponent �2 , 
while for larger value of z, the shape of D(h) plays a role.

E(k) = F(k∕kD) , kD =
1

�
∼ R3∕4

e
,

lnE(k)

lnRe

= G
(
ln k

lnRe

)
;

The above generalized scaling had been observed in the 
experimental data (Gagne et al. 1993). Similar results hold 
for the statistical Lagrangian features (Arnéodo 2008), and 
let us mention a very accurate test of the intermediate dis-
sipative range, for the (rescaled) structure function

where vi(t) is the Lagrangian velocity of a particles advected 
by the turbulent field. One has a correspondence with the 
behaviour observed for the Eulerian properties with � 
replaced by � . For large value of � , the exponent �(4, �) is 
constant, while for small values, it depends on the shape of 
D(h)).

7  Conclusions

Starting from the seminal ideas of Richardson and Kolmogo-
rov, we discussed the statistical features of the fully devel-
oped turbulence in the framework of the multifractal model. 
The still open problem is how to determine D(h) from first 
principles. On the other hand, it is possible use multiplica-
tive models motivated by phenomenological arguments. We 
have the nontrivial result that once D(h) is obtained with a 
fit of the experimental data from the scaling exponents �p , 
then one can obtain accurate predictions in the multifrac-
tal framework, e.g., the PDF of the velocity gradient, the 
existence of an intermediate dissipative range, the scaling of 
Lagrangian structure functions, are well verified.
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