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Abstract
The slab effective index difference between the transverse-electric (TE) and transverse-magnetic (TM) polarizations was 
utilized to obtain complete photonic bandgap (CPBG) in a silicon nitride (SixNy) photonic crystal slab. For this, coincident 
frequency range in the TE photonic bandgap (PBG) and TM PBG, which denotes the CPBGs of the slab, must be found 
with the same structure. Through adjusting the effective index pair of TE and TM polarizations by changing the thickness 
of the SixNy core layer, and also optimizing the structure parameters within the photonic crystal plane, a large normalized 
CPBG of 5.62% was theoretically obtained in a slab of SixNy with a refractive index of 2.5. Moreover, based on the obtained 
CPBG, a microcavity which could support both TE and TM polarization was theoretically demonstrated. The cavity modes 
for different polarizations were both well confined, which proved the reliability of the CPBG. In addition, using the same 
method, the lowest refractive index of SixNy on silica slab for a CPBG could be extended to as low as 2. The results indicate 
that there is potential for development of various high-performance CPBG devices based on SixNy slab technology.
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1  Introduction

Because of the small mode volumes and high quality fac-
tors [1], silicon-based photonic bandgap (PBG) devices 
have been regarded as the essential elements for miniaturi-
zation and integration [2]. Compared with PBG for one sin-
gle polarization, the complete photonic bandgap (CPBG), 
which has PBGs for both transverse-electric (TE) and trans-
verse-magnetic (TM) polarizations, is of particular interest 
for reduced loss of light propagation [3] and the ability to 
polarize multiplex [4]. Therefore, various powerful silicon 
photonic devices based on CPBG have been demonstrated 
theoretically and experimentally, such as high-Q microcav-
ity [1], polarization beam splitter [2, 5, 6], polarization-
independent waveguide [7, 8], etc. However, currently most 
of these devices are based on the SOI platform which has 

a high refractive index contrast (RIC) [2, 3, 5–9]. Unfor-
tunately, bulk crystalline silicon has non-negligible two-
photon absorption [10] in all telecommunication bands with 
wavelengths shorter than about 2000 nm, which seriously 
affects the efficiency of nonlinear photonic chips in gener-
ating and processing all-optical signals [11, 12]. Therefore, 
some new platforms compatible with CMOS processes, such 
as silicon nitride (SixNy), Hydex, have been proposed previ-
ously [11]. But the RICs of these new material platforms 
are lower than that of SOI, which makes them difficult to 
obtain CPBGs. In other words, although the proposal of the 
new platforms relieves the problem of non-negligible two-
photon absorption in crystalline silicon, they cannot inherit 
the advantage of the easy access to CPBG that is provided 
by the SOI platform. Therefore, obtaining the CPBG under 
relatively low RICs corresponding to the new platforms 
remains a problem.

Many efforts have been made in the past few years to 
obtain a CPBG at lower RICs [13–15]. By rotation angle, 
a hexagonal air hole structure based on rutile TiO2 with a 
refractive index of 2.85 has been proposed and a CPBG of 
1.5% has been obtained [14]. Moreover, chalcogenide pho-
tonic crystal (PC) slow light waveguides with RICs of 2.85 
and 2.6 have been reported respectively [15, 16]. Through 
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focused ion beam milling technology, highly efficient eva-
nescent coupling between a chalcogenide glass PC wave-
guide with RIC of 2.7 and a silica fiber nanowire has been 
demonstrated [17]. Furthermore, by suitably designed super-
cell PCs, when the RIC is 2.57 corresponding to diamond 
and strontium titanate, a hexagonal connecting-rods PC slab 
has been found to be able to support a CPBG of 5.6% [18]. 
In summary, CPBGs could potentially be obtained in slabs 
with moderate RIC material platforms, such as rutile TiO2, 
strontium titanate, diamond and chalcogenide glasses. How-
ever, to the best of our knowledge, there is no report about 
CPBG in a SixNy slab. The transparent window of SixNy 
can be extended from infrared to the visible light band [19]. 
Moreover, because of the high-quality CMOS-compatible 
fabrication processes, and of the negligible two-photon 
absorption at telecommunication wavelengths, SixNy plat-
form technology is particularly promising [12]. Since the x 
and y parameters in SixNy are adjustable, the refractive index 
of SixNy also can be varied between 2 and 3.1 [11, 20, 21]. 
Therefore, in this work, CPBG in a PC slab with the SixNy 
index within 2–2.5 was engineered, making use of the slab 
effective index [22–24] difference between TE polarization 
and TM polarization, and which could be adjusted by the 
slab thickness.

2 � Scheme and structure

In 2D ideal PCs, the lowest RIC for TM PBG is usually 
lower than that for TE PBG; the lowest RIC for a CPBG is 
therefore restricted by that for a TE PBG. Accordingly, it has 

been widely thought that, when the slab effective index is 
lower than the lowest RIC for a TE PBG of its correspond-
ing 2D type, it is difficult to obtain CPBG in a slab type 
PC. Fortunately, in a sandwiched slab structure like SixNy 
on silica cladding, the slab effective index for TM polariza-
tion is usually lower than that for TE polarization, as shown 
in Fig. 1a. Thus, utilizing the lower slab effective index of 
TM polarization, and also considering the lowest RIC for 
TM PBG in 2D ideal PCs is lower than that for TE PBG 
[18, 25], it is possible to have a TM PBG with an effective 
index lower than that for a TE polarization. Therefore, if the 
coincident frequency range in the TE PBGs and TM PBGs 
could be found with the same structure parameters and with 
their corresponding effective indices for the two polariza-
tions, obtaining CPBGs of a slab with effective index for TM 
polarization lower than that for TE polarization is possible, 
as illustrated in Fig. 1b.

The detail of the scheme to obtain CPBG in a SixNy PC 
slab by utilizing the effective index difference between polar-
izations is shown in Fig. 1. In Fig. 1a, a typical example 
of the effective indices for the lowest two guided polariza-
tion modes in a SixNy slab is shown. The right lower inset of 
Fig. 1a shows a schematic structure of SixNy slab, in which 
a SixNy guided layer with a refractive index of 2.5 is sand-
wiched between a silica sub-cladding layer and an air upper-
cladding layer. The thickness of the SixNy guided layer (rep-
resented by b), corresponding to each frequency at 1.55 μm 
wavelength, is also shown. Here, the effective indices for the 
lowest two guided polarization modes in a SixNy slab were 
obtained by considering the light confinement in a vertical 
dimension (z direction) with a 1D method [23]. The effective 

z
y

x

TM
TE

2.5

2.0

1.5

1.0
0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.1718 0.3088

air
SixNy
SiO2

frequency (b/λ)

ef
fe

ct
iv

e 
in

de
x

155.0 232.5 310.0 387.5
372

465.0 542.5 620.0

st
ru

ct
ur

al
 p

ar
am

et
er

s

nTM nTE

CPBG

TM PBG
TE PBG
CPBG

refractive index

(d0 r0 R0)

)b()a(

thickness/nm

neff

nTE

nTM

∆

Ra r
d

0.2400

b

Fig. 1   a Effective indices of TE and TM polarizations with different frequencies in a SixNy slab, green shadow denotes the single-mode range, 
and the right lower inset shows a schematic structure of the slab, in which b represents the thickness of the SixNy guided layer. The lower axis 
represents the frequency, and the upper axis represents the corresponding thickness of the SixNy guided layer at the fixed wavelength of 1.55 μm. 
b Schematic diagram of obtaining CPBG in a SixNy PC slab by utilizing the effective index difference between polarizations. The left upper inset 
shows a schematic structure of the connecting annular holes PC (CAPC) proposed in this paper, in which the black color represents SixNy and 
the white color represents air



Frontiers of Optoelectronics           (2022) 15:20 	

1 3

Page 3 of 7     20 

indices and the photonic band structures in this paper were all 
calculated with the MPB software developed by MIT, which 
casts the Maxwell equations as a Hermitian eigenvalue prob-
lem with the plane wave expansion technique [26].

In Fig. 1a, one may easily find that the effective index 
of TM polarization (denoted as nTM) is lower than that of 
TE polarization (denoted as nTE) at the same wavelength or 
frequency. And at the same wavelength or frequency, the nTE 
and nTM are a pair, corresponding to each other. Between 
normalized frequencies 0.1718 and 0.3088 (b/λ), we con-
firmed that both TE and TM polarizations are single mode. It 
means that within the single mode frequency range denoted 
as green, there is usually a nonzero Δneff between nTE and 
nTM. Meanwhile, as shown in Fig. 1b, using the correspond-
ing pair of effective indices found in Fig. 1a, TM PBGs and 
TE PBGs can be obtained with different structural parameter 
ranges represented by the green slash areas and the blue 
vertical line areas, respectively. Thus, if the overlapped fre-
quency range of the TE PBGs and TM PBGs can be found 
under the same structural parameter, marked as (d0, r0, R0), 
CPBG in a PC slab can be obtained, as shown in the yellow 
area of Fig. 1b. In other words, CPBG in a SixNy PC slab 
with low RIC can be obtained.

The key point for obtaining the CPBGs becomes whether 
we could find the overlap region of TE and TM PBGs under 
the same structural parameters. To test this, a conventional 
triangular lattice PC slab was tried first, but the CPBG could 
not be obtained when the refractive index of the guided layer 
was lower than 3.5. Therefore, the choice of PC structure is 
important for obtaining CPBG in the lower RIC. Previous 
investigations have shown that both annular hole PCs [27, 
28] and connecting-rods PCs [29–33] can increase the width 
of the 2D CPBGs. So here, a new PC formed by connecting 

annular holes (denoted as CAPC), as shown in the upper 
left corner of Fig. 1b, was proposed to inherit the features 
of previous two PCs. In Fig. 1b, r and R are the inner and 
outer radii of the annular hole, d represents the width of the 
connecting-rods, a is the lattice constant. Since CAPC has 
more adjustable parameters and greater degrees of freedom, 
the possibility of obtaining CPBGs should also be greater.

3 � Optimization for complete photonic 
bandgap

In this stage of the work, optimization of structural param-
eters was performed to achieve a CPBG in the SixNy CAPC 
slab. Firstly, as shown in Fig. 2b, within the whole single-
mode frequency range, the effective index pairs (nTE, nTM) 
could be varied by changing the parameters b or λ. To obtain 
the maximum normalized CPBG, effective index pairs 
between single mode normalized frequencies 0.1718 and 
0.3088 (b/λ) with a step size of 0.01 were chosen. Then, 
at each specific pair of nTE and nTM, the PBGs of TE and 
TM polarizations in the CAPC were calculated, respec-
tively. Therefore, optimized parameters of planar structure in 
CAPC could be obtained. During the optimization, each of 
the three key structural parameters (d, r, R) was first scanned 
with a step of 0.01a, 0.025a, and 0.025a respectively, to 
obtain a preliminary view of the coincident frequency range 
of TE PBGs and TM PBGs under the same parameters. Then 
the parameter step of R and r was reduced to 0.005a for 
the structural parameter zones where CPBGs were located. 
Finally, as shown in Fig. 2a, when nTE = 2.15 and nTM = 1.8, 
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the largest normalized CPBG of 5.62% was obtained for 
d = 0.26a, r = 0.3a, and R = 0.4a.

Figure 2b shows the maximum normalized CPBG of the 
CAPC slab with different effective index pairs in the single-
mode range. It can be clearly seen from Fig. 2b that, when nTE 
within the range of 2.13–2.25 (corresponding to nTM within 
the range of 1.76–2.05), relatively large CPBG could be main-
tained. However, when the nTE is lower than 2.09 and nTM is 
lower than 1.65, the size of CPBG begins to decrease sharply. 
Finally, when nTE = 2 and nTM = 1.45, CPBG disappears. The 
results indicate that CPBG is relatively stable within a certain 
wavelength or frequency range. Thus, in the whole single-mode 
frequency range, the largest normalized CPBG of 5.62% with 
nTE = 2.15 and nTM = 1.8 can be obtained. Moreover, as shown 
in Fig. 1a, for a wavelength of 1.55 μm, each frequency corre-
sponds to a different thickness of the SixNy slab. That means, in 
this frequency range where larger CPBGs are located, we can 
intentionally choose the SixNy slab thickness within the fabri-
cation limits. Considering for 1.55 μm wavelength, the struc-
ture parameters of the optimized CAPC slab with the largest 
normalized CPBG of 5.62% can all be designed: b = 372 nm, 
d = 293.96 nm, r = 339.2 nm, and R = 452.2 nm, which should 
be possible to fabricate using state of the art technology [34, 35].

4 � Microcavity structure based 
on the complete photonic bandgap

To further confirm how reliable the CPBG obtained in the 
triangular-lattice CAPC slab could be, as an example a dual-
polarization microcavity was theoretically demonstrated 

by directly making use of the optimized CAPC slab with 
n(SixNy) = 2.5. We considered removing three CAPC in the 
middle to form a microcavity for the sake of simplicity, as 
shown in the upper left illustration in Fig. 3a. To study the 
light confinement of the microcavity, the effective index 
model which is the same as in Sect. 2, was considered. It 
should be clear that the microcavity could support both TE 
and TM modes. Figure 3a shows the quality factors of the 
resonance cavity modes as a function of the number of cells 
surrounding the defect, and when the number of cells is 14, 
the Q values of 197616 and 4968 have been obtained in the 
CAPC cavity for TE and TM resonance modes, respectively. 
Figure 3b shows the HZ field for TE cavity mode having a Q 
value of 197616 with 14 cells, and Fig. 3c shows the EZ field 
for TM cavity mode having a Q value of 4968 with 14 cells. 
Actually, during our investigation, we varied the number of 
the cells, from 10 to 20 with steps of 2. As shown in Fig. 3a, 
when increasing the number of cells, the Q value hugely 
increases due to existing CPBG of CAPC. This behavior has 
been explained in a photonic crystal book written by MIT 
[36]. In our investigation, the Q values were obtained by using 
the Harminv command in the MEEP software [37], accompa-
nied by running very narrow-bandwidth point sources.

5 � CPBG for SixNy slab with other refractive 
indices

After the CPBG of CAPC slab with the RIC of 2.5 had 
been investigated, another question arose: could it be fur-
ther extended to a SixNy slab with lower RIC? Therefore, 

Fig. 3   a Quality factor of the CAPC cavity, the left upper shows schematic structures of microcavity with cells of 14. b HZ field for TE cavity 
mode having a Q value of 197616 with 14 cells, the z direction is shown in the coordinate system in the lower right corner of Fig. 1a. c EZ field 
for TM cavity mode having a Q value of 4968 with 14 cells, the z direction is shown in the coordinate system in the lower right corner of Fig. 1a
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based on the same method, we also calculated the CPBG of 
CAPC slab for SixNy guided layer with other lower refrac-
tive indices.

It can be seen from Fig. 4 that as the refractive index of 
SixNy decreases, the CPBG gradually becomes smaller. In 
other words, the size of the CPBG has a lot to do with the 
RIC of the material platform. More specifically, the higher 
the RIC of the material platform, the easier access is to 
CPBG, which leads to the higher possibility of TE PBGs 
and TM PBGs overlapping. Actually, the lowest refractive 
index of SixNy for a CPBG can be extended to as low as 2. 
At this time, a normalized CPBG of 0.96% with nTE = 1.8 
and nTM = 1.67 can be obtained, the corresponding structural 
parameters are d = 0.21a, r = 0.25a, R = 0.375a.

6 � Conclusions

In conclusion, by utilizing the difference between effective 
index of TE polarization and TM polarization, large nor-
malized CPBG of 5.62% can be obtained in the 2D SixNy 
slab consisting of triangular-lattice CAPC. The investigation 
indicates that both the method of using effective index dif-
ference between TE and TM polarizations and the structure 
of CAPC are essential for obtaining a large CPBG in the 
lower RIC. The method is a prerequisite or offers a short-
cut for engineering a suitable PC structure to obtain a large 
CPBG. However, if the method is not compatible with a 
good performance structure, the effect may not be beneficial. 
Therefore, the adoption of CAPC is also crucial.

Moreover, a microcavity which could support both TE 
and TM polarization in the CAPC slab was theoretically 
demonstrated by making use of the optimized CPBG. Both 
HZ field and EZ field could show that the microcavity has 
good performance in confining light, which demonstrated 
the reliability of the CPBG obtained in the triangular-lattice 
CAPC slab. Based on our study as reported in this paper, 

other useful applications like polarization-independent 
waveguide devices can also be suitably designed. Further-
more, the CPBG of CAPC slab for SixNy with other refrac-
tive indices was also performed. We noticed that the CPBG 
of the SixNy slab could remain existing until a record low 
index contrast of 2 in this work. The result indicates that 
development of high-performance CPBG devices in SixNy 
slab would be possible. It also provides encouragement that 
there may be significant improvements remaining to be dis-
covered in designing and optimizing silicon based CPBG 
devices.
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