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Abstract
Integrated waveguides with slot structures have attracted increasing attention due to their advantages of tight mode con-
finement and strong light-matter interaction. Although extensively studied, the issue of mode mismatch with other strip 
waveguide-based optical devices is a huge challenge that prevents integrated waveguides from being widely utilized in large-
scale photonic-based circuits. In this paper, we demonstrate an ultra-compact low-loss slot-strip converter with polarization 
insensitivity based on the multimode interference (MMI) effect. Sleek sinusoidal profiles are adopted to allow for smooth con-
nection between the slot and strip waveguide, resulting reflection reduction. By manipulating the MMI effect with structure 
optimization, the self-imaging positions of the TE0 and TM0 modes are aligned with minimized footprint, leading to low-loss 
transmission for both polarizations. The measurement results show that high coupling efficiencies of − 0.40 and − 0.64 dB are 
achieved for TE0 and TM0 polarizations, respectively. The device has dimensions as small as 1.1 μm × 1.2 μm and composed 
of factory-available structures. The above characteristics of our proposed compact slot-strip converter makes it a promising 
device for future deployment in multi-functional integrated photonics systems.
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1  Introduction

Silicon photonics is emerging as an extensively universal 
platform due to their integration of various low cost, high-
density photonic devices and the maturity of complemen-
tary metal-oxide semiconductor (CMOS) manufacturing 
technology [1–4]. Silicon-based slot waveguides are con-
structed with a narrow low-index slot (SiO2 or air) embed-
ded between two high-index silicon waveguides. Owing to 
their unique optical field distributions [5–7], slot waveguides 
are irreplaceable in many applications, such as optical sen-
sors [6], high speed modulators [8, 9], polarization control-
ling devices [10–12], and nonlinear optical devices [13]. 

However, the propagation loss of slot waveguides, which is 
almost one order of magnitude larger than that of strip wave-
guides [14, 15], poses serious challenges for realizing low 
loss photonic circuits based solely on slot waveguides. Thus, 
a compact slot-strip converter is necessary to effectively con-
nect the slot waveguide-based functional device with other 
photonic components. To date, various schemes have been 
proposed to achieve high coupling efficiency for slot-strip 
converters. The adiabatic evolution structure [16–18] is 
widely used while the sharp tips cannot be avoided during 
gradual mode conversion, which pose great challenges for 
high-precision fabrication. For example, multimode inter-
ference (MMI) schemes [19, 20] produce reflections due to 
mutation of the waveguide. Moreover, overly narrow slots 
(which also existed in Ref. [21]) and non-standard silicon 
thicknesses also make large-scale production extremely 
difficult, not to mention the advanced fabrication process. 
Furthermore, the compactness of most schemes is insuffi-
cient. Despite its numerous challenges, polarization multi-
plexing technology is still an effective approach to enhance 
the capacity of on-chip optical interconnects [22], making 
polarization-insensitive mode converters [20] paramount for 
applications that involve multiple modes [12, 23].
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In this paper, a polarization-insensitive slot-strip con-
verter is proposed and demonstrated based on novel sinu-
soidal-profile MMI, which not only decreases the optical 
mode field mismatching but also has an ultra-compact 
device size. The insertion losses for TE0 and TM0 polariza-
tions are measured as low as 0.40 and 0.64 dB, respectively. 
The polarization-dependent loss is 0.24 dB, indicating that 
the converter can handle a variety of applications where both 
TE0 and TM0 polarizations are needed. Theories and pre-
liminary simulation results have been roughly investigated 
in Ref. [24], while this paper will present more detailed prin-
ciples, simulation, and experimental results.

2 � Design and principles

As illustrated in Figs. 1(a) and (b), the proposed converter 
is based on a silicon-on-insulator (SOI) platform, with a 
220 nm top Si and 2 μm SiO2 cladding. The width (Wi) of 

the slot waveguide is set at 300 nm for specific needs and 
the gap (g) is fixed at 200 nm, which is compatible with 
standard 180 nm CMOS processes. The output strip wave-
guide width (Wo) is 400 nm for single mode operation. The 
core region, where the MMI effect and optical mode evo-
lution take place from slot mode to strip mode, is shown 
in Fig. 1(d). In the calculation, {Etv, Htv} represent the 
transverse optical fields of the slot waveguide, while that 
of the eigenmodes in the MMI region is denoted as {Etm, 
Htm}. Based on the coupled mode theory, the mode overlap 
ratio (Γ) between the two structures can be described as

According to Eq.  (1), the TE0 of slot mode can be 
expanded into TE0 and TE2 of strip mode in the MMI 
region and the self-imaging points would be periodically 
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Fig. 1   a 3D schematic of the device. b 2D schematic of the device with structural parameters. c 2D optical mode distribution on cross section of 
slot and strip waveguides. d Optical field (Ex or Hx) evolution with the input of slot waveguide and output of strip waveguide for both TE0 and 
TM0 respectively
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restructured. For the 800 nm width strip waveguide, the 
proportion of TE0 and TE2 is 89.7% and 7.6%, respectively, 
when the slot mode is injected. The MMI process differs 
from the previous MMI principle in that the proposed struc-
ture is spatially modulated by the profile. Thus, the propa-
gation constant of each mode is variable and the position 
and proportion of different onefold image modes are dif-
ferent with each change of profile. Therefore, by appropri-
ately designing the shape of the sinusoidal-MMI region, the 
desired mode distribution can be obtained at the output port.

The core region is composed of two different sinusoids 
with longitudinal lengths of L1 and L2. The junction of these 
two arcs determines the maximum width (Wt). The function 
of the profile is

and

The first order derivative of the sinusoidal arcs is zero at 
points –π/2 and π/2, which forms a smooth mode transition 
at the butt-joint area between the slot waveguide and MMI 
region for reflection reduction. To demonstrate this theory, 
a conventional structure in which a slot waveguide directly 
couples to a regular rectangle waveguide (1.2 μm width) 
as the MMI region was simulated. In comparison, the pro-
posed structure can theoretically achieve a 30% reflection 
reduction. Other core region profiles in reality demonstrate 
geometric similarities when the first order derivative is zero. 
The differences between these structures may not be as 
apparent following production. Since high performance have 
been obtained with a sinusoidal function, this simple and 
easily available profile function was adopted. While previous 
structures require a tapered structure after the MMI/directly 
coupling region for single mode operation, our proposed 
structure does not require the additional tapered region to 
function, allowing for further size reduction. This is because 
our design combines the functions of both regions, so that 
the optical field can be manipulated inside the sinusoidal-
MMI and the mode profile of the MMI onefold image highly 
overlaps with that in the 400 nm single-mode waveguide.

The ideal way to achieve polarization-insensitive mode 
conversion is to calculate the self-imaging positions of TE0 
and TM0, where polarization constructs the onefold images. 
However, this may result in a larger device size since the 
coincident point may be located further from the starting 
position. In our design, the first onefold image for both TE0 
and TM0 is the optimal solution because the relatively small 
distance between the two points can still guarantee low-loss 
transmission of both polarizations. Optimization of the core 
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region structure was achieved through parameter traversing 
of {Wt, L1, L2} around the first onefold image as shown 
in Figs. 2(a) and (b), where the figure of merit (FOM) is 
defined as

where TTE ( TTM ) represent the normalized transmission of 
TE0 (TM0). A high FOM indicates high transmission for 
both TE0 and TM0 polarizations. Finally, dimensions of 
Wt = 1.1 μm, L1 = 0.4 μm, and L2 = 0.8 μm were selected 
for low-loss polarization-insensitive slot-strip conversion. 
All 3D simulations presented in this paper were carried 
out using finite element method (FEM). Figure 2(c) and 
(d) show the fabrication tolerance analysis. The waveguide 
width variation, ΔW (including the variation of Wi, Wt, and 
Wo), and the slot gap variation, Δg, are significant param-
eters when determining the fabrication tolerance. The simu-
lation results indicate that the conversion efficiency decline 
are less than 0.3% for TE0 mode, 0.7% for TM0 mode with 
the variation of g within ± 20 nm, and 2.1% for TE0, 1.4% 
for TM0 with the variation of W within ± 20 nm.

3 � Fabrication and experimental 
measurements

The proposed converter was fabricated in the United Micro-
electronics Center (CUMEC), based on standard 180 nm SiP 
process (Fig. 3(a)). Figure 3(b) exhibits the scanning electron 
microscope (SEM) image of the converter. The total length 
of the proposed converter is 1.2 μm. A polarization-sensitive 
grating coupler was used to guide the light into the chip, 
while maintaining high polarization selectivity for either 
TE0 or TM0 modes. To characterize device performance, 
a tunable continuous wave (CW) laser (AQ 2200-136TLS, 
YOKOGAWA) was used as the source and the polarization 
was adjusted using a polarization controller (DPC5500, 
THORLABS). Then, the light was coupled into the chip 
through the polarization-sensitive grating coupler. An opti-
cal spectrum analyzer (AQ 6370C, YOKOGAWA) was used 
to measure the output spectrum coupled from the output 
grating coupler. Figure 3(c) shows the measured transmis-
sion for both TE0 and TM0 modes, which are extracted by 
normalizing the measured spectra with a 400 nm width 
waveguide to exclude the loss of grating coupling.

The normalized spectra still show a small amount 
of reflection from the butt-joint since the ripple of 
the spectrum especially for TE0, is observed as a 
result of Fabry–Perot resonance. The robust locally 
weighted regression method has been implemented 
[25] to suppress the noise (shown as solid black 
lines in Fig.  3(c)). The insertion loss (IL), defined as 

(2)FOM = TTE × TTM,
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ILTE0,TM0
= 10 log10

(

PTE0,TM0
∕Pin

)

 , is used to character-
ize the transmission loss. At approximately the 1550 nm 
wavelength, the IL is − 0.40 and − 0.64 dB (single-ended 
loss) for TE0 and TM0, respectively, indicating that the 
proposed converter is capable of low loss transmission 
for both polarizations. The polarization-dependent loss 
(PDL), defined as PDL = |

|ILTE − ILTM
|
| , is used to char-

acterize the polarization insensitivity of the converter. The 
PDL of the converter is about 0.24 dB, meaning it can sup-
port most polarization-insensitive applications. Compared 
to other studies, the converter proposed in this paper is 
the most compact in size, though the IL may be slightly 
lower than others in Refs. [19, 20]. However, according 
to the coupled mode theory, a wider slot can exacerbate 
mode mismatch, as illustrated in Ref. [21]. With that said, 
we still need to overcome many challenges in order to 
eliminate mode mismatch for a 200 nm slot, the widest of 
all previous works.

4 � Conclusion

In conclusion, this paper numerically and experimentally 
demonstrates an ultra-compact polarization-insensitive slot-
strip converter that takes advantage of low-loss transmission 
of the MMI effect. Due to the characteristic shape of the 
sinusoidal arcs, the converter can create a smooth connection 
between the slot and single-mode strip waveguide, with only 
slight reflections. The proposed device is easily manufactured, 
with a compact dimensions of 1.1 μm × 1.2 μm. The IL for 
both TE0 and TM0 polarizations is lower than 0.65 dB and 
the PDL is about 0.24 dB at around 1550 nm. These charac-
teristics are advantageous for various applications that require 
both TE0 and TM0 polarizations, such as optical sensing, high 
speed modulation, and polarization controlling devices.
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Fig. 2   Simulation results of a TE0 and b TM0 normalized transmission with different lengths of L1 and L2 under the width Wt of 1.1 μm. c and d 
show the simulation results of fabrication tolerance
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