Skip to main content
Log in

Asymptotic analysis of expectations of plane partition statistics

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

Assuming that a plane partition of the positive integer n is chosen uniformly at random from the set of all such partitions, we propose a general asymptotic scheme for the computation of expectations of various plane partition statistics as n becomes large. The generating functions that arise in this study are of the form Q(x)F(x), where \(Q(x)=\prod _{j=1}^\infty (1-x^j)^{-j}\) is the generating function for the number of plane partitions. We show how asymptotics of such expectations can be obtained directly from the asymptotic expansion of the function F(x) around \(x=1\). The representation of a plane partition as a solid diagram of volume n allows interpretations of these statistics in terms of its dimensions and shape. As an application of our main result, we obtain the asymptotic behavior of the expected values of the largest part, the number of columns, the number of rows (that is, the three dimensions of the solid diagram) and the trace (the number of cubes in the wall on the main diagonal of the solid diagram). Our results are similar to those of Grabner et al. (Comb Probab Comput 23:1057–1086, 2014) related to linear integer partition statistics. We base our study on the Hayman’s method for admissible power series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publ., Inc., New York (1965)

    Google Scholar 

  2. Andrews, G.E.: The Theory of Partitions. Encyclopedia Math. Appl. 2. Addison-Wesley, Reading, MA (1976)

    Google Scholar 

  3. Bodini, O., Fusy, E., Pivoteau, C.: Random sampling of plane partitions. Comb. Probab. Comput. 19, 201–226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerf, R., Kenyon, R.: The low of temperature expansion of the Wulff crystal in the \(3D\) Ising model. Commun. Math. Phys. 222, 147–179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. New York J. Math. 4, 137–165 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Finch, S.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  8. Freiman, G.A., Granovsky, B.L.: Asymptotic formula for a partition function of reversible coagulation-fragmentation processes. Isr. J. Math. 130, 259–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grabner, P., Knopfmacher, A., Wagner, S.: A general asymptotic scheme for the analysis of partition statistics. Comb. Probab. Comput. 23, 1057–1086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Granovsky, B.L., Stark, D., Erlihson, M.: Meinardus’ theorem on weighted partitions: extemsions and a probailistic proof. Adv. Appl. Math. 41, 307–328 (2008)

    Article  MATH  Google Scholar 

  11. Hayman, W.K.: A generalization of Stirling’s formula. J. Reine Angew. Math. 196, 67–95 (1956)

    MathSciNet  MATH  Google Scholar 

  12. Kamenov, E.P., Mutafchiev, L.R.: The limiting distribution of the trace of a random plane partition. Acta Math. Hung. 117, 293–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krattenhaler, C.: Another involution principle—free bijective proof of Stanley’s hook-content formula. J. Comb. Theory Ser. A 88, 66–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. MacMahon, P.A.: Memoir on theory of partitions of numbers VI: partitions in two-dimensional space, to which is added an adumbration of the theory of partitions in three-dimensional space. Philos. Trans. R. Soc. London Ser. A 211, 345–373 (1912)

    Article  MATH  Google Scholar 

  15. MacMahon, P.A.: Combinatory Analysis, Vol. 2. Cambridge University Press, Cambridege (1916); reprinted by Cheksea, New York (1960)

  16. Meinardus, G.: Asymptotische aussagen über partitionen. Math. Z. 59, 388–398 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mutafchiev, L.: The size of the largest part of random plane partitions of large integers. Integers: Electr. J. Comb. Number Theory 6, A13 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Mutafchiev, L.: The size of the largest part of random weighted partitions of large integers. Comb. Probab. Comput. 22, 433–454 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mutafchiev, L.: An asymptotic scheme for analysis of expectations of plane partition statistics. Electron. Notes Discret. Math. 61, 893–899 (2017)

    Article  MATH  Google Scholar 

  20. Mutafchiev, L., Kamenov, E.: Asymptotic formula for the number of plane partitions of positive integers. C. R. Acad. Bulgare Sci. 59, 361–366 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with applications to local geometry of a random \(3\)-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pak, I.: Hook length formula and geometric combinatorics. Séminaire Lotharingen de Combinatoire 46, B46f (2001/02)

  23. Pittel, B.: On dimensions of a random solid diagram. Comb. Probab. Comput. 14, 873–895 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stanley, R.P.: Theory and applications of plane partitions I, II. Stud Appl. Math. 50(156–188), 259–279 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanley, R.P.: The conjugate trace and trace of a plane partition. J. Comb. Theory Ser. A 14, 53–65 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stanley, R.P.: Enumerative Combinarics 2. Vol. 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  27. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  28. Wright, E.M.: Asymptotic partition formulae, I: plane partitions. Quart. J. Math. Oxford Ser. 2(2), 177–189 (1931)

    Article  MATH  Google Scholar 

  29. Young, A.: On quantitative substitutional analysis. Proc. Lond. Math. Soc. 33, 97–146 (1901)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful the referee for the carefully reading the paper and for her/his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljuben Mutafchiev.

Additional information

Communicated by M. Schacht.

Appendix

Appendix

In the Appendix we deduce Wright’s formula (5), using Hayman’s result (24).

First, by (16) and (18) one has

$$\begin{aligned}&e^{nd_n} =\exp {((2\zeta (3))^{1/3} n^{2/3} -1/36+ O(n^{-\beta }))}, \end{aligned}$$
(A.1)
$$\begin{aligned}&\sqrt{2\pi b(e^{-d_n})} \sim \frac{(6\pi )^{1/2} n^{2/3}}{(2\zeta (3))^{1/6}}. \end{aligned}$$
(A.2)

An asymptotic expression for \(Q(e^{-d_n})\) can be obtained using a general lemma due to Meinardus [16] (see also [2, Lemma 6.1]). Since the Dirichlet generating series for the plane partitions is \(\zeta (z-1)\) (see also (8)), we get

$$\begin{aligned} Q(e^{-d_n})= & {} \exp {(\zeta (3)d_n^{-2} -\zeta (-1)\log {d_n} +\zeta ^\prime (-1) +O(d_n^{\beta _1}))}\\= & {} \exp {(\zeta (3)d_n^{-2} +\frac{1}{12}\log {d_n} +2\gamma +O(d_n^{\beta _1}))} \end{aligned}$$

where \(0<\beta _1<1\) and \(\gamma \) is given by (6) (more details on the values of \(\zeta (-1)\) and \(\zeta ^\prime (-1)\) can be found in [27, Section 13.13] and [6, Section 2.15]). Using (48) and (49), after some algebraic manipulations, we obtain

$$\begin{aligned} Q(e^{-d_n}) =\left( \frac{2\zeta (3)}{n}\right) ^{1/36} \exp {((\zeta (3))^{1/3}(n/2)^{2/3} +1/36 +O(n^{-\beta _1}))}. \end{aligned}$$
(A.3)

Combining (A.1A.3), we find that

$$\begin{aligned}&q(n) \sim \left( \frac{2\zeta (3)}{n}\right) ^{1/36} \frac{\exp {((2\zeta (3))^{1/3}-1/36+(\zeta (3))^{1/3}(n/2)^{2/3}+1/36+2\gamma )}}{(3\pi )^{1/2} n^{2/3}/(2\zeta (3))^{1/6}}\\&\quad =\frac{(\zeta (3))^{1/6+1/36} n^{-1/36-2/3}}{2^{1/2-1/6-1/36}(3\pi )^{1/2}} \exp {(3(\zeta (3))^{1/3}(n/2)^{2/3}+2\gamma )} \\&\quad =\frac{(\zeta (3))^{7/36}}{2^{11/36}(3\pi )^{1/2}} n^{-25/36} \exp {(3(\zeta (3))^{1/3}(n/2)^{2/3}+2\gamma )}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutafchiev, L. Asymptotic analysis of expectations of plane partition statistics. Abh. Math. Semin. Univ. Hambg. 88, 255–272 (2018). https://doi.org/10.1007/s12188-018-0191-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-018-0191-z

Keywords

Mathematics Subject Classification

Navigation