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Abstract The association between cardiovascular disease and a pool of demo-
graphic and socioeconomic variables is analyzed, for a large Canadian city, by
means of multivariate spatial regression analysis. The analysis suggests that the
spatial dependence observed in the disease prevalence is driven by the spatial
distribution of senior citizens. A spatially autoregressive specification on a pool of
solely socio-economic variables produces a model whose main predictors are family
status, income, and educational attainments. This model can provide an effective
analytical tool to support policy decisions, because it identifies a set of
socioeconomic, not simply demographic predictors of disease. These socio-
economic variables can be targeted by social policies much more effectively than
demographic variables. A further analytical step recombines the significant
explanatory variables based on their spatial patterns. Thus the model is used to
identify areas of social and economic concern, and to enable the initiation of
specifically localized preventative health measures. Owing to its generality, the
method can be applied to other conditions and to analyze multivariate relationships
involving not only socioeconomic variables, but also environmental factors.
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Introduction

Many primary health concerns of contemporary western societies are inherently
spatial in nature: effective accessibility to health care services, prompt and efficient
response to epidemic outbreaks, detection and monitoring of environmental health
hazards, and consequent urban and regional planning. Management and planning
decisions are often supported by quantitative models; indeed the use of quantitative
and statistical methods in health research is well established, and the application of
spatial analytical methods has gained acceptance over the last several years (Elliott et
al. 2000; Waller and Gotway 2003; Elliott and Wartenberg 2004). It has been argued
that the integration of analytical and visual methods can improve the effectiveness of
spatial analysis as a decision support tool for policy and management (Guo 2007).
Further, it has been argued that, though some difficulties still exist, Geographic
Information Science has a potential role in improving public health (Rushton 2000).

Despite its potential role assisting management and planning decisions, the
application of quantitative methods to spatial data remains prone to estimate
uncertainty, which stems from two intrinsic properties of geographical phenomena:
spatial dependence (i.e., near things are more related than distant things) and spatial
non-stationarity (i.e., inconstant variability over space) (Cliff and Ord 1981).
Violation of either assumption inflates the variance—and hence the uncertainty—of
the regression estimates, resulting in less reliable models (Anselin 1988). Two broad
families of spatial analytical techniques have been developed to increase the
reliability of traditional statistical analysis when applied to spatial data: spatial
autoregressive methods to address spatial dependence, and geographically weighted
methods to address spatial non-stationarity (Fotheringham et al. 2002; Legendre et
al. 2002; Fortin and Dale 2005). Other spatial analytical methods exist, for example,
Bayesian approaches (Besag and Green 1993), and multilevel models (Duncan and
Jones 2000), among others. However, a simplistic application of such analytical
methods will not necessarily lead to the best results. Spatial analytical methods are
applied to data, i.e., to a simplified representation of the phenomena of interest. If
analytical models are to be truly meaningful, their mathematical rigour must be
complemented with a rich understanding of the phenomena under consideration.

This paper presents the use of multivariate regression analysis to identify
demographic and socio-economic variables significantly associated with cardiovas-
cular disease prevalence in a large Canadian city, Calgary. In consideration of the
available data, i.e., spatially aggregated records, spatial regression techniques are
applied, in the presence of spatial dependence, to enhance the reliability of the model
parameters. A comparative analysis of spatial dependence in the crucial variables
and in alternative model specifications provides an indication of the likely source of
the dependence, allowing for a deeper understanding of the processes involved. The
spatial distribution of the explanatory variables, along with the sign and value of
their regression coefficients, provide a reliable indication of areas of the city where
targeted health and social policies should be implemented, in order to effectively
reduce the disease incidence among high-risk population.

While the paper focuses on one application, it also discusses a general method
that can be applied to other conditions and extended to analyze their spatial
relationship not only with socioeconomic variables, but also with environmental
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factors. Subsequently, Section “Background and Case Study” provides some
background information and introduces the case study, Section “Methodology”
outlines the methods employed, Section “Results” presents the analytical results,
Section “Discussion” provides a critical discussion of the analyses, and Section
“Conclusion” offers some conclusions along with future lines of work.

Background and Case Study

Cardiovascular diseases remain one of the leading causes of death in the developed
world (Kaplan and Keil 1993; Manuel et al. 2003; Canadian Heart Health Strategy
and Action Plan 2009). Disease occurrence is related to personal characteristics, such
as age, gender, genetic background, and the simultaneous presence of other
conditions; all these are known as non-modifiable risk factors. In addition to these,
disease prevalence has been found in association with a number of modifiable risk
factors, including stress, limited physical activity, smoking, high intake of calories,
and high proportion of saturated fats. These modifiable risk factors, in turn, tend to
correlate with demographic and socio-economic characteristics of individuals, such
as age, occupation, or income, which can be measured by census variables (Diez
Roux et al. 2001; Chaix et al. 2007; Augustin et al. 2008; Canadian Cardiovascular
Outcomes Research Team Atlas 2009). At most geographical scales (and particularly
at the urban scale), demographic and socio-economic characteristics tend to display a
pattern, or spatial clustering; disease prevalence, likewise, tends to present
a characteristic geographical distribution, or spatial pattern. For this reason a
multivariate regression model is an effective tool to analyze the spatial pattern of
disease occurrence as a function of localized demographic and socio-economic
characteristics and of specific patterns of land use. The utility of the model is its
capacity to identify distinct spatial patterns of disease with a consideration for
localized socioeconomic variables in order to apply defined preventative social
policy.

In a city that is expanding in both space and populace, effective resource
allocation (hospitals, specialists, instruments, etc.) requires a thorough understanding
of disease distribution, but also of the target population segments and their
distribution in space. In addition, identifying demographic variables (e.g., age and
gender) and socio-economic variables (e.g., income and education levels) most
highly associated with disease prevalence helps to identify areas where higher
disease incidence may be expected in the near future, hence suggesting locational
decisions that could promote accessible health care services to the population at risk.

Calgary is one of the largest Canadian cities, with a population over 1 million
(2008 civic census), and the economic centre of the province of Alberta, based on
the tertiary activities induced by the mining of resources (oil and precious minerals)
in the northern part of the province. Over its historical development the city has
annexed many existing towns and it is now politically administered under a unicity
concept. In recent years, an economic boom, driven by geopolitical factors, has
increased the city’s prosperity, with a consequent population increase, largely driven
by internal immigration, mainly from some of the Canadian eastern provinces. This
has contributed to a more pronounced tendency toward urban sprawl and a
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residential pattern characterized largely by single-family housing. Industrial
productive activities are predominantly located in the eastern side of the city, along
with a north-easterly located airport. The socio-economic structure is characterized
by a relatively young population, with high average income and educational
attainment levels.1

Calgary’s geography and recent history make it a dynamic and diverse city, and
therefore a suitable case study for a pilot multivariate regression model application.
The city covers a large geographic area2 and a proportionally large residential area,
which is diverse in terms of housing type and neighbourhood age, residential
density, accessibility to urban services and proximity to noxious facilities. Overall,
there is a dichotomous geographic split between the residents with high income
located more to the west and low income residents nearer the industrial east. A
relatively low average age, coupled with a population predominantly formed by
young families implies the coexistence of many diverse age groups, ranging from
young children to the elderly. Over the last decades, alternating economic prosperity
and decline have been followed by an overall radial urban development pattern,
locally confounded with gentrification phenomena. As a consequence, the current
socio-economic landscape is characterized by a distinct spatial pattern driven mainly
by age, income, and education levels.

For all these characteristics, the city of Calgary constitutes a rich test bed to
analyze the spatial association between disease occurrence and demographic as
well as socio-economic variables. It should finally be noted that “In accordance
with the Canada Health Act, Alberta has a publicly administered and funded
health care system that guarantees Albertans receive universal access to medically
necessary hospital and health care services”, and that the modest health premiums
paid by Albertans have been eliminated as of January 1, 2009 (Alberta Health
and Wellness).

The medical data were provided by the APPROACH Project (Ghali and Knudtson
2000), a clinical registry, begun in 1995, that records information on all patients
undergoing cardiac catheterization in Alberta. Cardiac catheterization is an invasive
procedure for patients experiencing cardiovascular symptoms and defines coronary
anatomy, left ventricular and valvular function; it provides important prognostic
information for individuals affected by cardiovascular conditions (Ghali and
Knudtson 2000). The dependent variable is obtained by selecting from the provincial
database the records of Calgary residents (approximately 12,000) undergoing the
procedure at the Foothills Hospital between 1998 and 2002;3 patient address is
released at the postal code level.4

1 Median age is approximately 35 years, and median family income slightly over 63,000 CDN $, for the
2001 census.
2 Approximately 750 Km2.
3 This temporal interval was defined in order to best match the census data (particularly in a long-term
perspective) so that the analysis can be repeated for corresponding intervals as new census and medical
data become available.
4 The data consisted of complete postal codes, wherein the last three characters of the code identifies the
Local Delivery Unit (LDU), A LDU in an urban environment services an average of 19 households
specifically defined to one side of a road segment (Statistics Canada 2007).
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Socio-economic and demographic variables are drawn from the 2001 census of
Canada data. The analysis is conducted at the census tract level. The cardiac data
were spatially aggregated using Census Canada’s postal code conversion files
(PCCF) to match the census data, resulting in approximately 180 valid census tract
records. Figure 1b summarizes the distribution of catheterization cases over the
entire study period and the census tracts5 for Calgary. Figure 1a provides a synthetic
representation of the city’s major features and predominant land use: this shall serve
as reference for the interpretation of the spatial distribution of the variables discussed
throughout the paper.

The authors are aware of the limitations of the clinical database used in this work:
specifically, cardiac catheterization records are not necessarily the most accurate
representation of patients affected by cardiovascular disease. However, other clinical
records, e.g., hospitalizations for symptoms of acute coronary syndrome, are only
available, at the postal code level, over a very short period (2007–2008), which is
also a poor temporal match for any Census survey. For these reasons, the
catheterization database was preferred for this analysis. The limitations of the data
should not impact on the value of the analysis, which is presented in this paper as a
methodological exemplar.

Methodology

The prevalence of heart disease within a city can be modelled as a spatial process
(Cressie 1993), and so can all the demographic and socioeconomic variables
associated with the disease prevalence. Each of these observed processes is likely to
display spatial dependence and non-stationarity. With reference to the disease
prevalence, individuals living in the same or nearby neighbourhoods tend to have
similar age, income, and access to health care, and consequently similar rates of
disease prevalence: the process therefore displays positive spatial dependence. The
process is non-stationary, because the disease prevalence is inconstant over space:
prevalence rates vary from young and wealthy neighbourhoods to retirement
communities (inconstant mean), the variability within a young neighbourhood is
greater than in an older one (inconstant variance), and the spatial extent of the spatial
dependence varies across the city, from densely populated central areas to recent
suburban communities (inconstant covariance).

A multivariate regression model for the above spatial process should contain
specific procedures to minimize the model’s variance in the simultaneous presence
of spatial dependence and non-stationarities. As illustrated by the example, in this
type of process the two properties do not simply occur simultaneously, but they are
also mutually related. Despite the known effects of this relationship (Tiefelsdorf
2003), most existing advanced spatial methods address only one of the properties:
spatial autoregressive methods (Anselin 1988) focus on spatial dependence, but
typically disregard non-stationarity; and local, or geographically weighted, methods
(Fotheringham et al. 2002) focus on non-stationarity, but typically disregard spatial

5 Urban areas with a population greater than 50,000 are subdivided into census tracts which are spatial
units with populations ranging from 2,000 to 8,000.
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dependence. Only recently have some methods been proposed to integrate local and
autoregressive methods, for example, by Aldstadt and Getis (2006) and by Law et al.
(2006).

The scope of this paper is limited to the application of spatial autoregressive
procedures; the analytical implementation therefore begins with an examination of
the spatial dependence in all the processes involved. Spatial autocorrelation
measures based on the Moran’s I (Getis 2008) are commonly used to test clustering
tendency of medical data, including analysis in multivariate specifications (Lin and
Zhang 2007). Likewise, throughout this paper the traditional spatial autocorrelation
test, Moran’s I (Getis 2008), will be used. While the authors are aware of the
limitations of this index (Li et al. 2007), its results can be interpreted as a broad
indication of the presence and magnitude of spatial dependence. The use of a single
index for various analyses (i.e., exploratory analysis, individual variables, and model
residuals) is important for the discussion of spatial dependence presented in this
paper. The computation of this index requires the specification of a model of spatial
dependence, defined by a contiguity, or spatial weight matrix, which can be a simple
binary structure or a more complex specification, including various types of weights
that describe distance decay effects. There are several ways of specifying spatial
contiguity (Getis and Aldstadt 2004): a common method is the definition of k orders
of spatial neighbours; an alternative method is a threshold distance; a third method is
based on shared borders (for areal units only). While some methods are heavily
dependent on the topology of the spatial units, the computation of spatial neighbours
is a very general method. In all cases, the extent of the spatial dependence must be
defined, either via a maximum distance parameter, or via a maximum number (k) of
nearest neighbours.

Fig. 1 The city of Calgary and cardiac catheterization cases, 1998–2002
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Spatial autoregressive methods (Anselin 1988) include generalized least squares
(GLS) and maximum likelihood (ML) models; the covariance structure is typically
expressed by a conditional autoregressive (CAR), simultaneous autoregressive
(SAR), or moving average (MA) specification. Generally, a constant covariance
structure is assumed, and a spatial weight matrix determines which spatial units are
spatially dependent (Cressie 1993). The model is expressed formally by Eq. 1:

Y ¼ Xb þ rWY þ " ð1Þ
where ρ (rho) is the autoregressive parameter and W is the spatial weight matrix. The
autoregressive parameter represents a correlation coefficient, whose value can vary
between −1 and +1. For the definition of the spatial weight matrix, the same
considerations apply as for the calculation of the spatial autocorrelation index. For
the application discussed in this paper, a simultaneous autoregressive (SAR)
specification is used; the spatial weight matrix is the same one defined for the
computation of the spatial autocorrelation index. A backwards model selection
procedure is conducted for all the regressions. Following each regression
specification, the spatial autocorrelation index is computed, in the described fashion,
on the regression residuals.

Throughout the outlined methodology, a key role is played by the spatial weight
matrix, which largely determines the value of the spatial autocorrelation index—in
the variables as well as in the model residuals—and the efficacy of the spatial
autoregressive models. However, defining a spatial weight matrix remains
subjective, and rests on an estimate of the spatial dependence in the spatial
processes involved. Previous work (Bertazzon and Olson 2008) has focused on the
definition of an optimal spatial weight matrix: distance metric, number of nearest
neighbours and distance decay function were considered. An array of spatial weight
matrices was defined by altering the values of each of the three parameters. The
specification that produced the highest value of Moran’s I for the dependent variable
was preferred, as this was considered the neighbourhood specification that best
captures the spatial dependencies in the variable of interest. Using the same criteria,
the spatial weight matrix used throughout this paper was chosen: the neighbourhood
is defined by the two nearest neighbouring census tracts,6 the distance is calculated
following the Euclidean metric (Bertazzon and Olson 2008), and a squared inverse
distance decay function is employed, with the census tract area as weight. The
matrix thus defined is used to compute Moran’s I for all the variables and all model
residuals discussed.

For all the analyses presented, the variables are normalized, in most cases using
the total resident population as denominators (e.g., “Number of cardiac catheter-
izations”), in other cases using specific denominators (e.g., “Population over 20”
was used to standardize education levels and “Population over 15” to standardize
marital status). Following this normalization, all the variables that originally were
numbers become rates. The bivariate Pearson correlation is used to test the cross-
correlation among variables. The dependent variable is standardized for age and sex,
using inverse standardization. The standardization is conducted on the raw data, and

6 k=3, following the convention used in S-PLUS.
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the standardized variable is subsequently normalized like the other variables, using
the total resident population as denominator.

Distributions are cartographically represented in standard deviations from the
mean, with class width defined as a proportion of the standard deviation, and each
variable subdivided into six classes (Evans 1977; Mennis 2006). This method was
chosen because standard deviations allow for a direct comparison of population
characteristic distributions of areas, whereas other methods such as Jenks or
Quartiles do not maintain a consistent reference point between maps. Also, standard
deviations identify extreme population characteristics rather than suppressing them
in groups of equal interval: in this research the skewness of a distribution is
important information for identifying the specific population pockets considered to
be in dire need.

All the statistical computations are conducted in S-PLUS 7 and S-PLUS Spatial
Statistics 1.5, with the exception of the bivariate Pearson correlations, which are
computed in SPSS 15. Geographical data management and visualization are
implemented in ArcGIS 9.1.

Results

Correlation Analysis

A pool of variables was selected from the 2001 census. Table 1 summarizes the
name and definition of the variables used throughout all the analyses and reported in
the following tables.

Table 1 Variables: categories, names, and definitions

Variable category Variable name Variable definition

Dependent variable cases Cardiac catheterization cases

Demographic variables males Male residents

age 45–54 Residents aged between 45 years and 54 years

age 55–64 Residents aged between 55 years and 64 years

age over 65 Residents aged 65 years or older

Family variables families Families of two parents with children

couples Residents married or living in common law

single parents Single parent families

Housing variables owned Owned dwellings

detached Single family detached units

Education variables secondary Residents with grade 13 or lower education

non-university Residents with post-secondary, non university education

university Residents with university education

Economic variables income Family median income

unemployment Unemployment rate
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Initial exploratory analyses on these variables have indicated that most of them do not
follow a normal distribution, and in addition, preliminary regression analyses have
suggested that apparent multivariate relationships may be driven by the magnitude of the
variables recorded in each spatial unit. For both reasons, normalization is conducted on
all pertinent variables.7 In the interest of brevity, the following tables do not present
statistical analyses on the entire pool of variables, but on the subset of variables that
remain significant in the regressions presented throughout the paper. Table 2
summarizes the values of descriptive statistics computed on the dependent,
standardized dependent, and selected explanatory variables.

Based on the descriptive statistics presented in Table 2, it can be concluded that
the standardized variables are normally distributed. Table 3 summarizes the values of
the spatial autocorrelation index for the dependent, standardized dependent, and
selected explanatory variables. All the variables present significant and generally
high spatial autocorrelation values; specifically, the value for the dependent variable
(“cases”) is 0.62, and 0.70 for the standardized dependent (“std.cases”); the greatest
values (above 0.8) are displayed by the variables “families” and “secondary”, while
the lowest value is shown by the variable “non university” (Table 3). A cross-
correlation analysis among independent variables is used to identify sets of
uncorrelated variables on which regression models and model selection procedures
are run (Table 4). Due to the difficulty of effectively conveying the information
contained in the complete correlation matrix, in Table 5 the census variables are
grouped into homogeneous categories (defined in Table 1) and only a sample of two
representative variables for each category is presented.

The cross-correlations provide an exceptionally informative portrait of the socio-
economic structure of the city of Calgary. As an example, the correlations between
“owned”, “couples”, and “detached” suggests a predominant model of traditional family,
a relative stability and wealth, and a characteristic urban pattern (Section “Background
and Case Study”). Conversely, the demographic variables present low cross-correlations,
which allow for the inclusion of a rich set of age groups in the regression model.

The high cross-correlations imposed severe limitations on the choice of
independent variables for the regression models, but at the same time those cross-
correlations imply that the variables that are eventually entered in the regressions are
also representative of those that are not directly entered: therefore, the models are
conceptually richer and more meaningful than the set of independent variables may
suggest.

Regression Analysis

The first analytical test is a regression including socio-economic as well as
demographic variables. In this model the dependent variable is normalized, but not
standardized (Section “Methodology”). Given the high cross-correlations among
most of the independent variables,8 an array of combinations was tested and a

7 Such variables as median family income or male/female ratio were not normalized.
8 Alternative approaches were explored, for example the use of data reduction techniques, such as factor
analysis. While these alternative analyses are beyond the scope of this paper, exploratory tests have
indicated that their results are overall consistent with those discussed in this paper.
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backwards selection procedure was applied on each of them. In all cases, the
selection procedure led to the same subset of significant variables, converging to
the model described in Eq. 2 (see Table 1 for a definition of the variables in the
equation).

cases ¼ males; age45� 54; age55� 64; age� over � 65; university½ �b þ " ð2Þ
The main regression results and a selection of regression diagnostics are

summarized in Table 6. The variables are listed in decreasing order of significance.

Table 2 Descriptive statistics

***Summary statistics for data in Master.CT.2001***

Mean Median Variance Std. dev. SE mean Skewness Kurtosis

cases 1.34 1.28 0.22 0.47 0.03 0.40 −0.29
std. cases 1.34 1.31 0.18 0.42 0.03 0.38 −0.15
males 49.77 49.80 2.76 1.66 0.12 0.01 2.44

age 45–54 14.46 13.92 10.00 3.16 0.24 0.60 0.40

age 55–64 7.61 7.24 6.53 2.55 0.19 0.77 0.32

age over 65 9.64 8.16 32.66 5.71 0.42 0.81 0.11

families 47.31 48.18 181.27 13.46 1.00 −0.18 −0.53
secondary 30.64 28.47 122.98 11.09 0.82 0.64 −0.34
non university 36.68 37.04 29.90 5.47 0.41 −0.39 0.11

university 32.67 31.63 183.12 13.53 1.01 0.22 −0.58
income 66.61 63.13 330.68 18.18 1.35 0.61 −0.56

Table 3 Spatial autocorrelation on dependent and explanatory variables

Moran’s I

Correlation Variance Std. error Normal statistic Norm. p-val. 2-sided

cases 0.62 0.01 0.10 6.17 0.00

std. cases 0.70 0.01 0.10 6.96 0.00

males 0.47 0.01 0.10 4.73 0.00

age 45–54 0.48 0.01 0.10 4.80 0.00

age 55–64 0.57 0.01 0.10 5.68 0.00

age over 65 0.73 0.01 0.10 7.25 0.00

families 0.86 0.01 0.10 8.60 0.00

secondary 0.82 0.01 0.10 8.16 0.00

non university 0.37 0.01 0.10 3.69 0.00

university 0.70 0.01 0.10 6.97 0.00

income 0.63 0.01 0.10 6.25 0.00
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The results of this regression are important from a theoretical perspective as they
confirm the well known results of medical research, i.e., age and gender (male) are
key factors in cardiovascular disease prevalence (Gerber et al. 2006). The high value
of the R2 index (0.7896) suggests that the model (through this set of variables, which
point mostly to non-modifiable risk factors) explains almost 80% of the variation of
the disease prevalence. Among the regression diagnostics, the variance indicators
(σ2 and residual standard error) present relatively low values, and the spatial
autocorrelation index calculated on the regression residuals (Residual Moran)
presents a low and insignificant value of 0.0039 (normal statistic=0.1102; p-
value=0.9122). This suggests that, even though the dependent variable, and most
explanatory variables, present significant spatial autocorrelation values (Table 3),
there is no evidence of spatial dependence in the regression residuals. This is also
corroborated by the low values of individual variables’ standard errors. Consequent-
ly, the assumptions of the regression model are not violated by the presence of
spatial dependence, and parameter estimates can be considered reliable.

This set of explanatory variables points almost exclusively to non-modifiable risk
factors, demographic in nature, all linked to the dependent by positive coefficients.
The variable expressing retirement age, “age over 65”, is by far the most significant
(or leading) variable in the model. However, the regression also contains one
variable which is not demographic: the number of residents with university
education. This is the second variable by significance, with a negative coefficient,
describing a negative relationship between education and disease prevalence. The
spatial distribution of the dependent variable and the leading explanatory variable are
shown in Fig. 3, and Fig. 4 presents the spatial distribution of the remaining (or
secondary) explanatory variables.

Table 4 Bivariate correlations between dependent and explanatory variables

Dependent variables

cases std.cases

Demographic variables males −0.14 −0.34
age 45–54 0.04 0.18

age 55–64 0.57 0.69

age over 65 0.79 0.93

Family variables families −0.50 −0.43
couples −0.38 −0.29
single parents 0.32 0.10

Housing variables owned −0.29 −0.20
detached −0.27 −0.22

Education variables secondary 0.18 −0.12
non-university −0.24 −0.41
university −0.05 0.26

Economic variables income −0.23 0.05

unemployment 0.17 0.06

Cardiovascular Disease in Calgary (Canada) 11
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Perhaps the most interesting aspect of Fig. 2 is that the distribution of retirees
“age over 65” (Fig. 2b) spatially overlays almost exactly the distribution of disease
prevalence “cases” (Fig. 2a).

In Fig. 3a, the variable “university”, in consideration of its negative sign, is
represented by a reverse colour scheme, with lighter shades representing higher
values. Of the four variables, this is the one that presents the most interesting spatial
distribution, with a constantly strong presence in the western part of the city, and
consistently low values in the eastern part. It is worthwhile observing the clustering of
this variable around the main post-secondary institutions, easily identified as the
spatial units displaying the lightest colour.9 The variable “males” (Fig. 3b) presents
peaks in the downtown area, followed by a relatively strong presence in the northeast:
this pattern is likely related to young, wealthy, single males, with high job positions in
the downtown core, and blue-collar jobs in the north-east. This demographic pattern is
likely related to recent internal immigration and temporary positions induced by the
booming Alberta oil industry (Section “Background and Case Study”).

Based almost entirely on retirement age, marginally complemented by mostly
other demographic variables, this model is unlikely to provide an effective tool for
early detection of high risk population, based on socio-economic factors. As an
alternative, a second regression is proposed, which was obtained by deliberately
excluding all the demographic variables from the original pool of census variables.
Experiments were conducted using the normalized dependent variable and its age-
and sex-standardized version. In all cases, the use of either variable leads to the same
final model, with minor differences in the values of the regression coefficients and
the diagnostics. In all the regressions presented in the remainder of the paper the
dependent variable is the age- and sex- standardized variable. Following the
procedure outlined above, alternative regressions were tested and a backwards model
selection procedure was implemented. Again, all the alternative specifications
converged to the model defined by Eq. 3.

std: cases ¼ families; secondary; non� university; income½ �b þ " ð3Þ

9 The University of Calgary and Mount Royal College, and the Southern Alberta Institute of Technology:
the University of Calgary (in the Northwest) and Mount Royal College (with a more southern location) are
most easily discernible in Fig. 3a.

Table 6 Standard regression model

Value Std. error t value Pr(>|t|)

(Intercept) −2.0674 0.5917 −3.4940 0.0006

age over 65 0.0714 0.0040 17.6705 0.0000

university −0.0096 0.0014 −6.8076 0.0000

males 0.0492 0.0113 4.3519 0.0000

age 55–64 0.0343 0.0092 3.7343 0.0003

age 45–54 0.0228 0.0074 3.0977 0.0023

R^2 Sigma^2 Res. Std. Err Res. Moran

0.7896 0.0463 0.2189 0.0039
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The variables in this regression make it a more promising analytical tool;
however, the spatial autocorrelation index calculated on the regression residuals
shows a value of 0.6286, which is significant10 and largely increased in comparison
with the previous model. This suggests that the removal of the demographic
variables has caused an increase in the spatial dependence in the model’s residuals,
with consequent loss of reliability of its estimates. The parameter estimates produced
by this model are obtained in violation of one of the main model assumptions, and
for this reason they cannot be trusted; therefore, the complete regression coefficients
and diagnostics shall not be presented. Considering the potential practical value of
this model, a spatial regression model will be alternatively specified on the restricted
pool of variables.

The application of the usual cross-correlation and model selection procedures, but
within a spatially autoregressive specification, produces the model described in
Eq. 4.

std: cases ¼ families; secondary; non� university; income½ �b þ rW cases½ �" ð4Þ
Again, alternative combinations of variables led consistently to this subset of

significant variables, in addition to the autoregressive element. The main regression
results and diagnostics are summarized in Table 7.

The most important aspect of this model is the value of the spatial autocorrelation
in the regression residuals, which attests that the spatially autoregressive specifica-
tion produced a drastic reduction of the index, from 0.6286 in the residuals of the
standard regression model (Eq. 3), to -0.02681 (normal statistic=−0.2745; p-value=

10 Normal statistic=8.193; p-value=2.556×10−4.

Fig. 2 Standard regression model: dependent and leading explanatory variable
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0.7837) in the residual of the spatial regression model (Eq. 4). The effectiveness of
the spatial autoregressive specification is confirmed by the high value (0.94) of the
autoregressive parameter, rho. The spatial autoregressive procedure has rid the
model of the spatial dependence in the residuals, so that the regression hypotheses
are now met and the reliability of the parameter estimates is restored.

An important observation emerges from the comparison of the spatial autocor-
relation in the dependent variable and in the residuals of the various models. The

Fig. 3 Standard regression model: secondary explanatory variables
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value of the spatial autocorrelation index is 0.62 for the dependent variable, and 0.70
for its standardized version; 0.004 for the residuals of the standard regression on the
raw variable including demographic variables (Eq. 2); 0.63 for the residuals of the
standard regression on the standardized variable11 excluding demographic variables
(Eq. 3); and −0.003 for the residuals of the spatial regression on the standardized
variable excluding demographic variables (Eq. 4). This seems to suggest that the
spatial dependence observed in the dependent variable is induced by the spatial
dependence in the demographic variables (Table 3), which are also the variables
most highly correlated with the dependent. The explicit inclusion in the model of
these variables compensates for the spatial dependence in the dependent variable,
resulting in a model (Eq. 2) that even in a standard specification presents
insignificant spatial dependence in the residuals. The exclusion from the model of
the variables causing the dependence results in significantly spatially dependent
residuals (Eq. 3), that can only be corrected by a spatially autoregressive
specification (Equation 4). This consideration may be important to understand the
nature of the spatial dependence observed in the variable, and to identify the
processes that may have caused it. For this reason alone, a model that is mostly
based on demographic variables (Eq. 2) is unlikely to increase the spatial knowledge
of the process of interest, as its explanatory variables are likely to present the same
spatial clustering observed for the dependent variable (Fig. 2).

These considerations cast a new light on the measurement of spatial autocorre-
lation and the nature of the spatial dependence observed on the dependent variable.
The criteria used to define the spatial weight matrix for these models are currently
centered on the dependent variable (Section “Methodology”): in light of the above
considerations, alternative criteria, focusing on the demographic variables instead,
shall be explored. Likewise, these considerations impact on the meaning of the
observed dependence and the conceptualization of space underlying these models,
suggesting new lines of investigation.

The spatially autoregressive model (Eq. 4) describes the prevalence of cardiovas-
cular disease as a function of family structure, education, and income. Even without
the demographic variables, which have the greatest explanatory power, the model still

11 The value is 0.5011 for the same regression on the raw variable.

Table 7 Spatial regression model, excluding non-modifiable risk factors

Value Std. error t value Pr(>|t|)

(Intercept) 1.9705 0.3114 6.3270 0.0000

families −0.0188 0.0027 −7.0132 0.0000

non-university −0.0245 0.0044 −5.5963 0.0000

income 0.0106 0.0025 4.2718 0.0000

secondary 0.0130 0.0036 3.6283 0.0004

L.likelihood Pseudo-R^2 Rho Sigma^2 Res. Std. Err Res. Moran

−229.0000 0.3198 0.9406 0.0599 0.2483 −0.0268
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explains a large portion of the variation of the disease prevalence (pseudo-R2=0.32).12

This result has important theoretical and practical implications, as it suggests that over
30% of the disease prevalence can be explained by socioeconomic variables only,
even though demographic factors are implicitly accounted for by these variables. As
shown in Table 7, the significance (t value) is relatively constant across variables,
unlike in the standard regression model, where retirement age is by far the most
significant of all variables. The spatial patterns of this set of variables are shown in
Fig. 4. Again, the variables with positive coefficients are represented according to the
traditional convention, where darker colours represent higher values, while for
variables with negative sign, the colour scheme is reversed.

The negative and highly significant coefficient of the variable “families” (Fig. 4a)
suggests that the disease prevalence is lowest in areas characterized by the
predominance of families with children, likely formed by fairly young individuals,
at early to middle stages of their career, with relatively high education and
moderately high income, as these are the main traits of the spatial pattern of this
variable. The negative coefficient linking disease prevalence and “non-university”
(Fig. 4b) identifies areas of low disease prevalence in association with strong
presence of residents with a post-secondary, technical education: trade workers and
professionals, i.e, a category with fairly high income levels, not necessarily lower
than those of individuals with university degrees.13 The positive relationship
between disease prevalence and lower education or “secondary” (Fig. 4d) seems to
point to fringes of poverty and low social status, possibly related also to old age.
Mirroring the variable “university” (Fig. 3a), discussed within the standard
regression model, this variable displays a remarkably high presence in the eastern
part of the city. Overall, the education variables suggest that higher education
attainment levels are found in association with lower disease prevalence; from this it
may be inferred that higher education levels tend to be negatively associated with
modifiable risk factors, likely a consequence of a healthier lifestyle characterized, for
example, by higher levels of physical activity, lower consumption of tobacco and
alcohol, and healthier dietary choices. Finally, the positive relationship between
disease prevalence and “income” (Fig. 4c) suggests higher disease prevalence in
higher income areas, and may point to areas inhabited by mature professionals,
possibly implying also a latent age factor. The relationship between disease
prevalence and “income” also appears to be affected by extreme values of the latter,
i.e., areas of very high and very low income. This may be explained by the
consideration that the variable refers to median family income, which tends to
present the highest values for one-person families. Consistently, the cross-correlation
analysis has identified a link between disease and various categories of lonely
persons, ranging from singles with very high income to single parents, and divorced,
separated, or widowed persons. The high value of the variance of “income” (Table 2)
is another indication of the weight exerted by extreme values of this variable.

12 Following Anselin (1993), pseudo-R2 is defined as the squared correlation between observed and
estimated values of the dependent variable.
13 It should be observed that the variable “university” correlates almost perfectly (and negatively) with
“secondary”. The choice of entering either variable in the various models was dictated by the correlations
with other explanatory variables.
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Discussion

The spatial regression model (Eq. 4) represents a potential analytical tool for the
definition of social and health policies for the reduction of the prevalence of
cardiovascular disease. Through its final set of explanatory variables, their sign and
significance, the model casts a new light on the socio-economic pattern of the city.

Fig. 4 Spatial regression model: explanatory variables
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By an in-depth analysis of the areas where the explanatory variables present their
highest values (in the case of positive regression coefficients) or lowest values (in
the case of negative regression coefficients), the model can aid in identifying
localized pockets of high risk population, which may not be immediately apparent
from the spatial pattern of the disease prevalence. To realize this potential of
the model, it is imperative that the parameters linking each explanatory variable to
the dependent variable are estimated reliably, and this condition was met by the
transition from a standard to a spatial autoregressive specification.

In order to achieve the stated policy objective, an acceptable risk level should be
defined, along with a risk threshold for each independent variable. The definition of
a risk function is beyond the scope of this work; however, the results of this analysis
can serve as an example of the model’s potential. As discussed in Section
“Regression Analysis”, the standard model has little potential as a policy tool,
dominated as it is by the variable “age over 65”, which so closely mimics the spatial
distribution and clustering of the dependent variable. Conversely, all the four
variables in the spatial regression model provide meaningful contributions to the
model, without any single one dominating the regression; in addition, the spatial
distribution of all these variables is distinct from the spatial pattern of the dependent.
Of the four variables, “income” and “non-university”, both with positive sign, are
indicators of relatively high economic if not social status; even though this is not a
guarantee of wellbeing, areas dominated by high values of these variables present
relatively low urgency for the definition of social and health policies. In contrast,
areas dominated by low education levels and by scarcity of young families, i.e., high
values of “secondary” and low values of “families”, may point to situations of social
and economic concern, where the need for social and health policies is more urgent.
Interestingly, the two wealth indicators, “income” and “non-university” display
similar spatial patterns, and their greatest (positive) values are markedly located in
the west and northwest of the city (Fig. 4). On the contrary, a diffused high value of
“secondary” is a prevalent characteristic of the east, whereas low values of
“families” is more severe in the central areas, expanding to the east and south. The
latter variable presents an almost radial pattern, likely reflecting the age of settlement
of the various communities. The relative scarcity of families with children in the city
center is not found in association with low education (unlike in the north-east), as
these are areas mostly inhabited by single, young, and wealthy residents.

From the above considerations emerges a dichotomous spatial pattern, where
wealth and high social status are consistently found in the west part of the city,
whereas lower social and economic status characterizes the east. For demonstration
purposes we propose the spatial overlay14 of the two indicators of low social and
economic status, which, identifying areas of simultaneous presence of the two
variables, more narrowly define a set of potential risk pockets, shown in Fig. 5.

The pockets thus identified are mostly located in the eastern part of the city. Of
little relevance are the large census tracts, mostly occupied by the airport, industrial
installations, and farmland (Fig. 1a), while more important is the identification of the

14 For each variable, the two highest and lowest classes, respectively, were selected and spatially overlaid,
by means of a simple query. Alternative classifications were tested, but they all resulted in an almost
identical spatial pattern.
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north-eastern residential fringes west and south of the airport, which have lower
income levels and are located near the more noxious facilities and industries of the
city. This corridor is becoming an area of growing concern to city officials: it has
been confirmed to be home to greater than average numbers of elderly citizens and it
is becoming an area of high psycho-social stress and crime (Calgary Police Service
2008).

Large portions of the northeast do not emerge as areas of concern, where the
presence of low education is compensated by the abundance of young families.
Interesting is also the northwest corridor, nearing a wealthy area, but characterized
by situations of social isolation. This area consists of five census tracts, four of
which have median income levels well below the city average15 and have been
reported to contain a higher percentage of population that are considered socially
isolated according to the City’s civic census.16 Thus, although the northwest sector

Fig. 5 Potential high risk areas identified by the spatial regression model

16 According to the City Census, 9.1% of the population of Calgary is considered socially isolated. This
indicator presents an average value of 11.08% (1.98 above the city) for the 5 communities identified, and
rises to 12.075% (2.975 above the city), excluding the community of Wildwood. Likewise, the median
income of Calgary is 57,879, in contrast to an average of 51,823 for the 5 communities, and 46,676,
excluding Wildwood.

15 Lower income in this area is also confirmed through Fig. 4 above.
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of Calgary is usually considered affluent by its residents, four of the five areas
identified as high risk pockets in this area display variables that are more similar to
the eastern part of Calgary. This could also be attributed to the absolute age of the
census tracts. The census tracts in this corridor are not part of the peripheral
suburban expansion that has become accustomed to Calgary’s growth patterns;
instead, this area consisted of existing towns that were annexed many years ago.
This indicates more affordable housing for the lower income, less educated
population. Furthermore, an older, physically smaller housing style in this area
combined with contemporary ideals of necessary house size render these dwellings
more appropriate for families without children.

Even though the identification of potential risk areas was performed mainly for
demonstration purposes, it has identified areas that are not generally considered of
greatest social concern, but at a closer inspection, they present alarming signals.
Thus the analysis effectively demonstrates the potential use of the proposed model
for the identification of explicit, localized targets for early (and thus more effective)
health and social policies. In addition, the process that led to the final stage through
the spatial regression model provides a rich analysis of the socioeconomic pattern of
the city. The multiple cross-correlations among variables reflect the interplay of
several factors that appear to contribute to lifestyle choices that may affect
modifiable risk factors. One final remarkable aspect of the analysis is the strong
and constant presence of education variables in the regression models. Even though
each of these variables hints also to other variables, such as age and income, their
significance is so prominent as to raise the question as to whether a direct, negative
link may indeed exist between disease prevalence and education, and this in itself
might constitute a valuable policy recommendation.

Conclusion

The association between cardiovascular disease and a pool of demographic and
socioeconomic variables was analyzed, for the city of Calgary (Canada), over a
5-year interval around the 2001 census.

The analytical results suggest that the spatial dependence observed in the dependent
variable is driven by the spatial dependence in the variable “age over 65”, which is
considered representative of retirement age, and is most closely correlated with the
dependent. This finding may have important consequences not simply for the
specification of a reliable statistical model, but, more importantly, for a deeper conceptual
understanding of the roots of the spatial dependence observed in the disease prevalence.

A multivariate specification including demographic variables results in a model
characterized by insignificant residual spatial autocorrelation, but dominated by the
retirement age indicator (Driver et al. 2008). Conversely, a spatially autoregressive
specification on a pool of solely socio-economic variables produces a model whose
explanatory variables range from family status to income and education levels. This
regression presents the greatest potential as an analytical tool to support policy
decisions, because the disease prevalence is not associated simply with old age, but
with a set of social and economic variables that can be targeted by effective social
policies before the disease insurgence becomes inevitable.
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The reliable identification of variables associated with the disease prevalence is
followed by an analysis of the spatial distribution of each one of these variables; an
additional analytical step recombines the significant variables based on their spatial
patterns. Thus the analysis serves to identify localized areas of social and economic
concern, characterized by a significant presence of the variables found in association
with the disease prevalence.

Our future lines of investigation shall involve an analysis of the quantitative and
conceptual implications of the model of spatial dependence, as a complex pattern of
spatial dependence emerged from the comparison of different models. A separate
line of research shall investigate the local variation of the multivariate relationship,
in order to provide a more comprehensive analytical solution by the integration of
local and global analytical methods. Complementary to the latter investigation, an
analysis of the multivariate relationships emerging from this paper shall be
conducted at different geographical scales, due to the imperfection of any spatial
aggregation and the ever present modifiable areal unit problem. Also, further
analyses shall specifically include air pollution and other relevant environmental
data, to clarify their influence on the spatial pattern of disease prevalence and their
interaction with social and economic factors. Finally, the policy potential of the
model shall be enhanced by the construction of a spatial risk framework and the
definition of risk thresholds for each independent variable.
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