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in the power sector. It is now the tasks of national 
regulators to implement them effectively.

Keywords  Energy Efficiency First · Power · 
Demand-side resources · Flexibility · DSOs

Introduction

Even though Energy Efficiency First (EE1st) is consid-
ered to be an established principle in European Union 
(EU) legislation, it is less so in the mindset of actors 
across the energy value chain. Applying the simple idea 
behind EE1st consistently in decision making proved 
to be a major challenge so far. Mandatory reporting on 
EE1st, for example, does not go further than use of the 
term in the National Energy and Climate Plans submit-
ted by Member States in 2020 (European Commis-
sion 2020a). However, the integration of demand-side 
resources is crucial for a quick and least-cost energy 
transition by reducing and flexing demand. The Euro-
pean Commission published a guidance to close this 
implementation gap (European Commission 2021).

EE1st is more and less than energy efficiency (Pató 
et al., 2019b). It is “more” than traditional energy effi-
ciency programs in that its logic applies across many 
areas of energy policy making and energy investment 
that are not themselves primarily aimed at reduc-
ing energy use. This includes topics such as power 
market design, power and heat network planning, 
and resource adequacy assessments (Zondag et  al., 
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2020). It is “less” than an efficiency-only policy in 
that it does not command efficiency-only outcomes. 
EE1st requires decision makers to thoughtfully con-
sider demand-side resources as an alternative to sup-
ply-side resources prior to investment decisions and 
requires that those demand-side options be imple-
mented whenever they are more cost-effective than 
the supply-side solutions they replace (Mandel et al., 
2022; Pató et  al., 2019b). Investing into generation 
and network infrastructure that can be avoided by 
demand-side options does not only mean unnecessary 
capital expenditures but often runs the risk of becom-
ing stranded, especially in the case of fossil fuels (van 
der Ploeg & Rezai, 2020).

EE1st is a new term but not a new concept. Inte-
grated Resource Planning (IRP) of power systems that 
was introduced in the USA to avoid the overbuilt of 
generation capacities and meet environmental goals 
at the same time recognised the role of demand-side 
options (Duncan & Burtraw, 2018). The substitution 
of network investment with non-wire solutions1 is an 
expanding practice in the USA, especially in those 
states (mainly California and New York) where leg-
islation requires utilities to consider these options in 
their development plans (Frick et  al., 2021). Since 
2008, the first FERC order (no. 719) on eliminat-
ing barriers to the participation of demand response 
in organised markets, federal regulation developed 
on distributed energy resources (DERs) (including 
demand response). Its latest Order 2222 (FERC, 2020) 
tries to close the regulatory gap on DER aggregations 
participating in the wholesale energy, capacity, and 
ancillary service markets (Brown & Chapman, 2021).

Even though the concept of demand-side resources 
includes demand response and end-use energy effi-
ciency as well, in the power sector the former has 
special importance since supply and demand need to 
be maintained in constant balance (Cretì & Fontini, 
2019).2 This second-by-second equilibrium increases 
the need for flexible load in a power system increasingly 

dominated by variable renewable generation, both for 
short-term operation and long-term system planning 
perspectives. Demand, which has been considered ine-
lastic for long time, is an important source of flexibil-
ity as consumers do respond to price signals (Faruqui 
et al., 2017). Whereas demand response can be mobi-
lised in a short time frame, end-use energy efficiency 
is a demand/side resource primarily relevant for a long-
term perspective (deferring network infrastructure) as it 
means permanent load reduction. 

Exploiting the untapped energy efficiency and 
demand response potential in Europe (Knoop & 
Lechtenböhmer, 2017; Gils, 2014; European Com-
mission, 2016) would bring significant benefits. 
Buildings are the key source of demand response 
and remain so in the future. IEA forecast that build-
ing will have approximately twice as much flexibility 
potential in 2040 than transport, industry, and agri-
culture together (IEA, 2020).

A swift power system transition relies on the active 
involvement of all actors and regulation has a prime 
role in realigning the interest of these actors to the 
goal of reaching a decarbonised European power 
system ahead of the 2050 economy-wide net zero 
target.3 What are the key regulatory tools to activate 
consumers to offer their flexibility and distribution 
system operators (DSOs) to use this flexibility? This 
paper first discusses the multiple ways consumers can 
be a resource for the power system. Then it looks at 
key regulatory tools to incentivise (a) consumers to 
supply and (b) DSOs to use demand flexibility. The 
paper also provides some best practice illustrations of 
these regulatory tools. Our findings are based on the 
review of academic and policy literature, interviews 
with practitioners both in the EU and the USA in the 
framework of the Enefirst project.4

Consumers as multiple power system resources

It is fundamentally consumer choice that drives 
power systems both on the short, operational and the 1  Non-wire solutions are DERs that can be solicited by net-

work companies (utilities) to defer network investment. DERs 
also include demand resources (such as energy efficiency, 
demand response), distributed supply (PV, micro-CHP), and 
storage.
2  The US discussions usually consider demand-side resources 
together with distributed generation and small-scale storage 
together as DERs. The underlying rationale is that they appear 
jointly as net load reduction for the power system.

3  The EU wants to achieve the carbon neutrality of the power 
sector by 2040 (European Commission 2020b). The Interna-
tional Energy Agency has demonstrated that respecting the 
Paris Agreements means reaching zero emissions in the power 
sector in industrialized economies by 2035 (IEA 2021).
4  www.​enefi​rst.​eu

http://www.enefirst.eu


Energy Efficiency (2022) 15:57	

1 3

Page 3 of 14  57

Vol.: (0123456789)

long, investment horizon. Consumers have discretion 
on how much electricity they consume and when. 
Naturally, this is a function of the level of desired 
energy service and his/her capabilities to acquire it 
in different ways (being able to finance energy effi-
ciency investment for a lower bill or invest into smart 
appliances to be able to sell his/her demand flex-
ibility). These behind-the-meter investment decisions 
made by consumers include all energy consuming or 
generating assets such as space and water heating, 
electrical appliances, lighting, photovoltaics (PV), 
micro-storage, automation, and smart meters allowing 
demand response. Due to self-consumption, the elec-
tricity generated by PVs and the consumption consti-
tute the net load at the distribution system level.

Consumer choices have repercussions along the 
entire power supply chain. They alter the needed 
volume and timing of power supply, and the infra-
structure generating and delivering it to the con-
sumer. Hence, the policies and regulation influ-
encing the energy use and production of end users 
have important upstream implications that need to 
be considered systematically in those decisions to 
arrive at an optimal asset portfolio. Households 
that electrify their heating or change their inter-
nal combustion engine car to an electric one, for 
example, will use both the distribution network 
and the whole power system differently by the 
additional demand created and changing the load 
pattern depending on tariff design (Maier et  al., 
2019). In-front-of-the-meter infrastructure deci-
sions — pertaining to generation, energy trans-
mission and distribution, and utility scale storage 

— are taken by utilities, including both regulated 
network companies, and generators and storage 
owners operating under market conditions. Ide-
ally, they all incorporate the behind-the-meter 
decisions of a multitude of consumers for efficient 
investment and operation. In particular, DSOs can 
use consumer flexibility and energy efficiency to 
operate the grid more efficiently, reaching higher 
utilization rates and minimise the needed grid 
expansion to cope with additional load of heat and 
transport electrification. 

Demand as a system resource does not stop at peak 
shedding at emergency situation that has been its 
major utilisation in the past but is capable of provid-
ing various services on different timescales at a con-
tinuous basis (Hledik et al., 2019). Figure 1 illustrates 
the various possible services provided by demand for 
the power system as a whole.

Shape captures demand-side resources that 
reshape the underlying load profile through rela-
tively long-run price response and demand-side 
management (DSM) measures that result in struc-
tural changes to the stock of loads. For example, 
utilities or government can use energy audits, 
information provision, or subsidies to incentivise 
consumer adoption of energy-efficient equipment 
(Gellings, 2017). In the USA, utilities are required 
to invest into energy efficiency in the framework of 
integrated resource planning to provide a resource 
plan for least cost energy service (Gellings, 2017). 
Energy efficiency obligation schemes (EEOS) in 
Europe, similarly, require suppliers or DSOs to 
achieve a predefined level of final energy savings 

Fig. 1   Services of demand-side resource in power systems at different timescales.  Source: Alstone et al. (2017)
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amongst consumers (Fawcett et  al., 2019). Shift 
represents demand response that induces the shift 
of energy consumption from times of high demand 
and tight grid capacity to times of day when there 
is surplus of renewable generation and/or grid is 
available. This can smooth net load ramps associ-
ated, for example, with the evening phase-out of 
solar generation. Shift technologies include, for 
example, behind-the-meter storage, reschedul-
ing electric vehicle charging or pre-cooling with 
air conditioning and ventilation units (Michaelis 
et  al., 2017). Shed describes loads that can occa-
sionally be curtailed to reduce peak capacity and 
support the system in emergency or contingency 
events, without compensating the load reduction 
at another time. Examples are interruptible indus-
try processes, advanced lighting controls, air-con-
ditioner cycling, and behind-the-meter storage. 
Shimmy involves using loads to correct the real-
time, continual gap between expected demand and 
actual demand at timescales ranging from seconds 
up to an hour by means of advanced lighting, fast 
response motor control, and EV charging (Alstone 
et  al., 2017). Whereas shedding load is usually a 
one-off reduction, shimmy is a continuous, bidirec-
tional adjustment of load to follow net load changes 
and assist in frequency control. Even though each 
system service has its own typical timescale, they 
partly overlap: the power system can require both 
shedding for ramp management and shifting to 
match renewable production on an hourly basis.

Incentivising the consumer

Consumers are having more and more flexible assets 
such as electric vehicles and heat pumps. At the same 
time, their flexible use increasingly becomes hassle-
free due to automation. Consumers are essentially 
interested in reducing their electricity bill without 
compromising their desired level of energy service. 
Stacking the various values the use of demand-side 
resources create for the power system and remuner-
ating them is key in arriving at a high enough level 
of bill reduction to incentivise consumers to use them 
(Lazar & Colburn, 2013). This section discusses reg-
ulatory incentives to mobilise consumers to become 
multiple system resources.

To “shape”

A fundamental tool to shape load is to expose con-
sumes to energy prices that are based on market fun-
damentals. Prices kept artificially low for residential 
consumers results in higher than optimal consump-
tion and is a major impediment to energy efficiency 
improvements. Even with cost-reflective prices, the 
multitude of market and behavioural failures (Gill-
ingham & Palmer, 2014) justifies incentives and sup-
port for reaching an optimal level of energy efficiency 
investment. The involvement of utilities in energy 
use reduction depends on the market structure of 
the power sector. In the USA, several states require 
utilities to reduce a certain amount of energy amongst 
their consumers (Gellings, 2017). DSM programmes 
implemented by utilities mainly focus on energy effi-
ciency improvement in the residential and commer-
cial sectors. In the former, they provide incentives to 
switch to more efficient appliances (Aniti, 2019). In 
Europe, most member states use EEOSs that impose 
similar energy saving requirement on energy com-
panies. The European legislation provides flexibility 
with regards to the obliged network companies or 
retailers but almost all countries opted for retailers 
(Broc et al., 2020; Fawcett et al., 2019). Even though 
network companies have better access to consumption 
data, retailers are better suited to extend their port-
folio of activities with this new service both legally 
(network companies are not allowed to engage in 
competitive activities under European law) and also 
commercially to evolve into energy service compa-
nies. The experience with EEOS in Europe confirmed 
that this is a cost-effective way to reduce energy use 
(IEA, 2017; Rosenow & Bayer, 2017).

To “shift” and “shed”

As noted above, the way consumers use energy in 
terms of quantity and pattern of use over time has 
important ramification to the necessary level of gen-
eration and electricity network infrastructure. Any 
incentives altering consumer behaviour towards a 
pattern that limits the capacity expansion need for 
upstream infrastructure has a system level benefit to 
all consumers in the form of lower network tariffs and 
lower wholesale prices at peak periods. Price — as 
a key trigger of consumer behaviour — hence needs 
to reflect the marginal cost and thus scarcity of both 
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of energy supply and network operation. In principle, 
prices must be low when there is abundant electricity 
supply and network capacity and high in tight periods.

Tariffs, both retail and network, need to be 
designed in a way that make the choices customers 
make to optimise their own bill consistent with the 
choices they would make to minimise system costs 
(Lazar & Gonzalez, 2015). The energy component 
should reflect the changes in the scarcity or abun-
dancy of electricity supply over time by moving away 
from a flat rate to time-differentiated tariffs (IRENA, 
2019; Paterakis et al., 2017).5 Such tariff designs are 
gaining foot in Europe, not independently from the 
fact consumers possessing smart meters are entitled 
to have at least one dynamic price contract offer, and 
every supplier with more than 200,000 consumers 
must have a time of use tariff offer for final consum-
ers (European Union 2019a, Art 11(1)).6

Whilst time of use (ToU) and real-time pricing is 
mainly used to “shift” load, remote control and criti-
cal peak pricing target “shedding” of load in those 
few hours when the system gets critically tight. The 

latest survey of ACER shows the variety of energy 
pricing designs in Europe (Fig. 2).

Distribution network tariff design has been the 
subject of growing interest amongst regulators and 
academic experts recently as well (ACER, 2021; 
Brown & Sappington, 2018; Pollitt, 2018; Schit-
tekatte, 2020). Key design questions relate to the 
format (energy, capacity, fixed, or any combination), 
the temporal variability (flat or time of use with dif-
ferent granularity), and locational specificity (uni-
form or locational). Applying the scarcity argument 
to network charges implies that consumers pay for 
the network in proportion to their actual use and the 
associated costs they cause. Both flat volumetric 
and fixed charges (beyond the fixed charge of meter-
ing and billing) that are most often non-coincidental 
demand charges are economically inefficient and 
promote consumption at times of stress on the grid 
and neutralise energy efficiency efforts (LeBel et al., 
2020). As a result, growing (peak) demand drives 
excessive investment in underutilised grid infrastruc-
ture. A uniform fixed tariff tends to shift costs from 
the high-usage customers in a customer class to the 
low-usage ones (Kolokathis et al., 2018).

ACER (2021) reports a variety of design across 
Member States: three Member States (MS) apply an 
energy-based only charge for all network users and 
eight Member States apply a combination of energy-
based and power-based charges for users. Other MS 
apply a combination of volumetric and fixed charges 
or differentiate between consumer groups in their 
tariff design. In most Member States, energy-based 
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Fig. 2   Types of electricity products enabled by smart meters available in EU Member States and Norway, 2020.  Source: ACER/
CEER (2021)

5  Time-differentiated tariff has many designs (Faruqui et  al., 
2017). In practice it mostly means time-of-use tariffs.
6  Some further provisions strengthen the position of active 
consumers. It also contains an expedited supplier switching 
requirement (Directive Art 12(1)) and the entitlement of indi-
vidual consumers to a smart meter even in the absence of a 
national rollout (Art 22).
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charges have a larger weight than power-based 
charges in the recovery of distribution costs. In eight 
Member States, time differentiation is applied for 
both the power and energy-based component of the 
network charge.

The EU legislation is much less straightforward in 
its requirements on network tariff design than on elec-
tricity tariffs. It refers to the fixed cost for networks 
and even though fixed costs are not equal to fixed 
charges, this reference is easily interpreted as justifi-
cation for a (higher) fixed tariff element. It does not 
align with the general requirement for network tariffs 
that “shall neutrally support overall system efficiency 
in the long run through price signals to consumers 
and producers” and “shall not create disincentives for 
… participation in demand response” amongst others 
(European Union 2019b, Art 18(7)). Regulators shall 
only consider but not enforce “time-differentiated net-
work tariffs when fixing or approving transmission 
tariffs and distribution tariffs or their methodologies” 
(European Union 2019b, Art 18(7)).

There are some examples for dynamic network 
charging. Radius, a Danish DSO serving about a mil-
lion customers, recently has extended its ToU tar-
iff to residential consumers as well. It aims at shift-
ing demand away from the winter peak period and 
avoid or limit expensive grid reinforcements. The 
ToU tariffs apply to consumers with smart meters 
who are connected to the low-voltage and parts of the 
medium-voltage network.7 Spain introduced manda-
tory ToU network tariffs in June 2021 for all network 
users. The number of households on a two-period 
tariff increased from 0 to 43% in 2021. The default 
energy tariff is a pass-through of wholesale prices 
(i.e., real-time tariff) and this, couples with the ToU 
network tariff, sends a strong price signal to consum-
ers. Early evidence suggests that consumers have 
reacted to the price signal and have moved consump-
tion from peak and flat/shoulder hours to off-peak 
hours (González Bravo, 2021).

Consumers need to be informed and educated on 
ToU tariffs as they are new to them. The Califor-
nia Public Utilities Commission has, for example, 
ordered two customer guarantees as part of the roll-
out: customers receive a comparison of their ToU bill 
and what they would have paid on their old tariff and 

a 1-year bill guarantee that credits the difference if 
the bill increased.8

To “shimmy”

Large-scale deployment of variable renewable gen-
erators changes the power system’s ability to respond 
to imbalances in frequency.9 Following a contingency 
event, the rotating masses of synchronous genera-
tors normally determine the immediate response to 
frequency imbalances. However, wind and PV are 
considered non-synchronous, as they have a power 
electronic interface with the grid, rather than a rotat-
ing mass (Dreidy et al., 2017; Tielens & van Hertem, 
2016). This means that they cannot generate electric-
ity such that the frequency of the generated voltage, 
the generator speed, and the frequency of the network 
voltage are in synchronism (IRENA, 2017b). Fre-
quency control as an ancillary service thus becomes 
increasingly valuable in the power system.

Demand response can serve as an alternative 
option to thermal generators for providing frequency 
stability services. Thermostatically based controllable 
loads such as refrigerators, air conditioners, and ceil-
ing heaters are suitable for such a service due to the 
short-term modulation of their aggregate power con-
sumption. The thermostat modulates the power for 
cooling/heating to maintain the temperature nearly to 
the desired level. EVs as well can provide frequency 
response by the control of charging and discharging 
rates of vehicle-to-grid (Obaid et  al., 2019). Batter-
ies, as well, present a fast dynamic response to com-
pensate the load variations in distribution networks 
(IRENA, 2017a).

Several EU countries already allow for the use 
of load, alongside with batteries and pumped hydro 
storage in their balancing markets (Oureilidis et  al., 
2020). Water heaters, for example, can be easily con-
verted to a system resource for frequency stability. 

7  https://​radiu​selnet.​dk/​Elkun​der/​Priser-​og-​vilka​ar/​Tarif​fer-​og-​
netab​onnem​ent/

8  https://​www.​utili​tydive.​com/​news/​calif​ornia-​utili​ties-​prep-​
natio​ns-​bigge​st-​time-​of-​use-​rate-​roll-​out/​543402/
9  Frequency is the parameter of a power system that indicates 
whether there is an imbalance between active power genera-
tion and consumption. Sudden system failures or contingency 
events, such as the loss of a large generator, can cause fre-
quency to go beyond accepted limits. These imbalances are 
addressed by activating power reserves, which are traded as 
ancillary services (IRENA 2017b; Pöller 2015).

https://radiuselnet.dk/Elkunder/Priser-og-vilkaar/Tariffer-og-netabonnement/
https://radiuselnet.dk/Elkunder/Priser-og-vilkaar/Tariffer-og-netabonnement/
https://www.utilitydive.com/news/california-utilities-prep-nations-biggest-time-of-use-rate-roll-out/543402/
https://www.utilitydive.com/news/california-utilities-prep-nations-biggest-time-of-use-rate-roll-out/543402/
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The magnitude of this relatively untapped resource 
is significant: in 2019, water heating accounted for 
12% or 86 Terawatt-hours of the EU’s electricity use 
in households (Eurostat, 2021). They are traditionally 
used as thermal storage devices by delinking the time 
of demand for and generation of hot water: heating 
up water in the tank in periods of low overall power 
demand (e.g., at night). Water heaters, if equipped 
with modern control devices, can participate in fre-
quency regulation and grid balancing services for the 
power system as well (Fig. 3). These grid interactive 
water heaters can be controlled with near-instanta-
neous response from the operator, an option increas-
ingly valuable in markets with rapid fluctuations in 
supply due to the large share of renewable sources.

In the framework of Fig.  1, water heaters do not 
only shift but also “shimmy”: not only to move energy 
consumption from peak times to times of day when 
there is a surplus of renewable generation, but also 
to use loads to provide near-instantaneous frequency 
control (Alstone et  al., 2017). The net benefits of a 
conventional grid interactive tank (considering the 
extra cost of upgrading the heater) triple compared to 
when it is only used as thermal storage for peak shav-
ing, mainly due to the benefit provided for frequency 
control (Hledik et  al., 2016). This, however, can 
only materialise if market rules allow demand-side 
resources to participate in ancillary service markets.

Hawaii is a nice illustration of how a traditional 
utility demand response programme can be upscaled 
to provide a much larger rollout and more services 

with the involvement of third-party actors. As a 
response to the request of the regulator, Hawaiian 
Electric launched a competitive tender to procure 
approximately 16 MW of demand response, including 
2.5  MW provided by grid-interactive water heating. 
A software-as-a-service platform called Grid Maes-
tro monitors analyses 5-min, revenue-grade data and 
optimises smart water heaters through machine learn-
ing. Grid Maestro aggregates each heater’s forecasts 
and load shift potential into a virtual power plant of 
grid interactive water heaters. Automated reporting 
and integrated ticketing simplify performance meas-
urement and verification.10

Incentivising the DSOs

It is not enough that consumers are incentivised to 
make use of their flexibility for the benefit of the 
power system, unless other actors make use of them. 
Once aggregated demand can participate in power 
markets on a level playing field, it becomes a direct 
competitor to generation, with markets coordinating 
the use of all these resources. Demand is an impor-
tant resource to solve local network congestion as 
well. Distribution network companies traditionally 
forecast load changes and employ the “fit-and-for-
get” approach to develop their network for serving 
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10  http://​www.​shift​edene​rgy.​com/​techn​ololgy/​gridm​aestro/

http://www.shiftedenergy.com/technololgy/gridmaestro/
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peak load securely. It means that they forecast the 
peak load at various sections of the grid and invest 
into capacity upgrades (EURELECTRIC, 2013). The 
regulator defines and covers the eligible cost of DSOs 
for maintaining network operations, at the same time 
incentivises them to provide this service at the low-
est possible cost whilst maintaining service quality by 
leaving the savings from the maximum eligible cost 
at the DSOs (revenue cap regulation).

Congestion management of the distribution net-
work is a fundamentally new addition to the activ-
ity portfolio of DSOs. The use of demand flexibil-
ity is novel and (perceived to be) of higher delivery 
risk (Brown & Zhou, 2019). Why would DSOs use 
demand resources instead of building more cables as 
in the past? If they would operate on a market, they 
would try any new cheaper option to gain on competi-
tors. For network companies it is the regulator that 
needs to mimic the market and trigger change to save 
on consumers’ bill. The regulators have two key tools 
at disposal: the way DSOs are remunerated and net-
work planning requirements to make sure that DSOs 
do consider demand-side resources in providing for 
an efficient network.

By remuneration

National regulators set the rules by which the DSOs 
are remunerated. The dominant remuneration scheme 
used for electricity DSOs in Europe is the so-called 
revenue-cap regulation (CEER, 2020). Under this 
regime, DSOs are motivated to reduce costs as the 
regulation decouples those costs from the revenue 
they are able to earn.11 The regulator will assume an 
operational efficiency gain when setting a revenue 
cap and DSOs can increase their profits by achieving 
greater productive efficiency than this baseline over 
the price control period (Pató et al., 2019a; Rious and 
Rosetto 2018a).

A key barrier to use demand flexibility and energy 
efficiency in congestion management is that DSOs, 
in most remuneration regimes, have a direct incentive 
to relieve congestion with network capacity invest-
ment: they only earn a return on capital expenditures 

(CAPEX). At the same time, in the revenue cap regu-
lation they are incentivised to reduce their operational 
expenditure (OPEX). Consequently, there is a disincen-
tive for DSOs to engage in demand flexibility and end-
use energy efficiency as they mainly involve OPEX 
and hence do not generate a return on investment 
(Rious and Rosetto 2018b). To incentivise the uptake 
of demand-side resources in the provision of network 
services, remuneration schemes should make DSOs 
indifferent to the cost type, and hence the solution 
they apply and place remuneration on total expendi-
ture (TOTEX) rather than just on capital investments. 
As an addition, the regulation could reward DSOs with 
increased revenues for specified performance or, con-
versely, penalizing them with reduced revenues for 
failure to perform (cf. Performance Based Regulations 
(PBRs)) (Littell et al., 2018; Pató et al., 2019a).

In regulatory practice, the RIIO12 scheme intro-
duced in the UK in 2015 represents an important 
reference for PBR design for electricity DSOs in 
Europe. The preceding RPI-X framework, which was 
based on the retail price index (RPI) minus expected 
efficiency improvements (X) and hence focused on 
operational efficiency, resulted in risk and innova-
tion averse DSOs that were judged unfit for efficiently 
serving the consumers in the changing energy land-
scape (Jamasb, 2021; Mandel, 2014). The fundamen-
tal novelty of RIIO is that it recognises OPEX in a 
similar fashion to CAPEX, referred to as TOTEX 
incentive mechanism. This creates a powerful driver 
for DSOs to consider the deployment of demand-side 
resources alongside supply-side assets in providing 
network services. Moreover, RIIO applies a suite of 
incentives from the onset of the regulatory period to 
improve six outputs that are deemed to be relevant by 
the regulator (customer satisfaction, safety, reliabil-
ity, conditions for connection, environmental impact, 
and social obligations). Performance brings finan-
cial rewards or penalty. The new framework, coined 
as RIIO-2, started in April 2021 and will run until 
2026 for electricity DNOs. It introduces some novel 
features but keeps both the TOTEX approach and the 

12  RIIO stands for ‘Revenue = Incentives + Innovation + Out-
put’, meaning that revenues of regulated network companies 
should be set to deliver Incentives for cost reduction, Innova-
tion in order to provide new services to the benefit of network 
users, and Outputs to improve services to network users (Rious 
and Rosetto 2018b).

11  Decoupling is the term used in the USA to describe a rev-
enue cap that breaks the link between sales volume and rev-
enues (e.g. Sullivan et al., 2011).
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performance incentives in place (Ofgem, 2020). As 
such, RIIO regulation is viewed with much interest 
by regulators and network operators since it demon-
strates new regulatory approaches (Rious and Rosetto 
2018b).

By network planning requirements

Incorporating the EE1st principle in DSO planning 
and operation practices means to include demand-side 
resources on an equal footing with infrastructure options 
and, more specifically, to acknowledge that energy effi-
ciency and demand response can possibly substitute for 
capital-intensive infrastructure assets. Planning is aimed 
at identifying investment needed for the reliable operation 
of the system for 15 to 20 years. The European legisla-
tion requires DSOs to publish their network development 
plans biannually (European Union 2019a, Art 32(3)).

The planning and operation of power distribution 
networks is a cornerstone of decarbonisation. Elec-
trification of heat supply and transport and the grow-
ing number of DERs such as PVs, demand response, 
and storage connected to the distribution grid raises 
the question of how to integrate these DERs to the 
grid at the lowest cost. These changes in network 
use require the reconsideration of network planning. 
Demand-side resources, and DERs in general, need 
to be incorporated as viable, granular, and probabil-
istic resources to be able to assess properly not only 
their impact on grids but also their capability to con-
tribute to the efficient grid operation by the flexibility 
they are able to provide (ENEFIRST, 2020).13 Smart 
grids14 or Active Distribution Systems (ADSs) opti-
mise the uses and flexibilities of the grid instead of 
passively operating it in order to limit the investment 
needed to serve the more volatile load (Fig. 4).

Traditional planning is based on the concept of a pas-
sive consumer and focuses where new loads will appear 

in the radial medium-voltage and low-voltage grid that 
is designed to distribute energy with a mono-directional 
flow of power from a substation to end-use customers. 
In distribution system planning, demand is exogenous 
and dominantly based on consumer/market information 
that is corrected statistically (Pilo et al., 2014). Assess-
ment methods used are deterministic: the feasibility of 
connecting new customers requires the assessment of 
existing line capacity to incorporate them, referred to 
as hosting capacity analysis. These methods are mainly 
hourly power flow calculations for worst-case scenarios, 
in order to minimise risks (Silva, 2017).15 Once the 
planning study is defined, different planning alternatives 
are assessed against the load conditions in the planning 
time horizon. If there is no feasible planning alterna-
tive, then the network gets reinforced. Otherwise, the 
least-cost planning alternative is selected. When these 
studies include distributed generation, the same fit-and-
forget approach is applied: the relevant technical aspects 
of DER are considered but based on maximum gen-
eration/minimum demand scenarios that seldom occur. 
Demand-side integration and active distribution network 
options are not considered in general as alternatives to 
network capacity investments in the planning process.

ADS planning uses stochastic assessment, from 
steady state to probability and risk, and from invisible 
to visible and controllable DERs. First, the alterna-
tives are planned based on real, granular, and verified 
consumer data that aggregates consumption, produc-
tion, and storage on a temporal basis resulting in “net 
demand” profiles that approximate the future operation 
of the network more precisely than simply consider-
ing historical peak load. Flow analysis is not aimed at 
answering the binary question whether the network can 
integrate the forecasted load in the worst-case network 
state scenario but runs probability-based calculation to 
check if the predefined non-performance risk, i.e. the 
reliability level targeted, is exceeded or not.16 In case 
of foreseen operational problems, first ADS (or in other 

13  For a good summary of the impact of DERs on distribution 
grids see (AEMO 2020).
14  A smart grid is an electricity network that integrates the 
behaviour and actions of all users connected to it (generators 
and/or consumers) while ensuring an economically efficient, 
sustainable power system with high levels of quality and secu-
rity of supply and safety (CENELEC 2020). Beyond the USA 
and Europe, for instance the Jeju Smart Grid demonstration 
project in South Korea has provided ample evidence on the 
practicability of the smart grid concept (Kang et al., 2018; Kim 
et al., 2016).

15  Power flow analysis is also used to give insights into the 
expected operation of a distribution grid by calculating the 
currents and losses in all the branches (lines, cables, and trans-
formers), the voltage in load buses, the reactive power in gen-
erator buses, and the active and reactive power in the primary 
substation in a distribution grid for a given instance.
16  Quite similarly to generation adequacy, the level of accept-
able risk should be based on the willingness of consumers/net-
work users to pay for it.
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words non-wire) solutions are to be examined and only 
if they cannot solve the problems cost-efficiently then 
network investment are to be considered.

New general rules to network planning have 
been adopted in the European legislation in 2019 
(Pató et  al., 2019b). The Electricity Directive 
(European Union 2019a) requires that Member 
States must “provide the necessary regulatory 
framework to allow and provide incentives to 
DSOs to procure flexibility services, (…) in par-
ticular, from providers of distributed generation, 
demand response or energy storage and promote 
the uptake of energy efficiency measures, where 
such services cost-effectively alleviate the need 
to upgrade or replace electricity capacity” (Art 

32). DSOs, on the other hand, are required to pro-
cure these resources in a non-discriminatory and 
competitive way. As far as planning is concerned, 
distribution network development plans (pub-
lished every 2  years) must provide transparency 
on the medium- and long-term flexibility ser-
vices needed, and on the planned investments for 
the next 5 to 10  years (Art. 32).17 Every 2  years 
national regulators need to monitor and assess 
the performance of network companies in rela-
tion to the development of a smart grid that pro-
motes energy efficiency and the integration of 
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17  Art. 40 and 51 (European Union 2019a) set similar require-
ments for TSOs.
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renewable energy (Art. 59). The current European 
requirements set a solid framework both for inte-
grating flexibility in operation and planning and 
hence a major step towards the implementation 
of the EE1st principle. The success of integrating 
demand in network planning rests in the national 
regulators that shall develop (1) detailed rules 
for appraising alternatives, (2) transparency rules 
compatible with data confidentiality (especially 
with location specific data), and (3) they have to 
enforce the least-cost principle and make network 
companies to scrutinise all alternatives in a sys-
tematic fashion and provide compelling evidence 
for the necessity of network reinforcement.

In the USA, the California Public Utilities Com-
mission (CPUC) introduced in 2018 the Distribution 
Investment Deferral Framework (DIDF) that is the 
process for identifying opportunities for DER to defer 
or avoid traditional distribution infrastructure invest-
ments (CPUC, 2018a) and report annually. In addition, 
utilities need to provide a 10-year vision for their grid 
modernization plans that not only justified the pro-
posed investments based on lowest cost and highest 
benefits but also would describe whether any invest-
ments could be met instead by DER. It broadened the 
scope of technologies including, e.g. system analysis 
software and grid management systems, or sensors and 
controllers essential to maintain circuit stability and 
system reliability (CPUC, 2018b). Solicitation for non-
wire solutions in California was only partly successful. 
So far only 15  MW has been contracted in the three 
request-for-offer rounds launched (January 2019, 2020, 
and 2021), all ending up with in-front-the-meter stor-
age solutions exclusively (Peterson & Golestani, 2021).

Conclusions

EE1st is an important concept to minimise the cost 
of the energy transition by exploiting the end-use 
energy efficiency and demand response potential 
of end users. The simplicity of the concept, how-
ever, does not lend itself to simple implementation 
in the various energy sectors. The power sector is 
particularly relevant for the application of the EE1st 
principle for three reasons. First, the sector requires 
early decarbonisation by 2035–2040 to reach net-
zero emissions for the whole economy by 2050. 
Second, electricity demand is to grow due to the 

electrification of heat and transport, which creates 
vast opportunities for applying the principle. Third, 
there is a constant need for equalling load and gen-
eration in the power system that places an increas-
ing value on demand flexibility.

Demand-side resources can offer many sys-
tem services with the advent of automation. As 
described in this paper through the “shape-shift-
shed-shimmy” framework, demand response is not 
confined to emergency load shedding in a few tight 
situations annually but a multiple resource that can 
be used 24/7 at various timescales. For one thing, 
implementing the EE1st principle in the power 
sector means that consumers need to able to offer 
their flexibility: to have flexible assets that are 
automated plus they have the right price incentives 
to sell them. Dynamic pricing of electricity — as 
requested by the EU legislation — is not enough 
if energy only makes up one third of an average 
residential bill. Network tariffs, as well, have to 
communicate grid conditions through dynamic 
price signals so that in tight periods the use of 
the network cost more. DSOs will not use demand 
flexibility if they are not required or incentivised. 
It is the role of the national regulators to require 
the consideration of demand-side resources in net-
work planning and to incentivise them to integrate 
consumers in network operation. This requires the 
modernisation of network company remunera-
tion schemes in almost all EU Member States. An 
“EE1st-compliant” regulation guarantees that con-
sumers can offer their flexibility and get compen-
sated at market value and requires that DSOs use 
them whenever they provide more net benefit that 
network investment.
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