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Network biology finds application in interpreting molecular interaction networks and providing insightful
inferences using graph theoretical analysis of biological systems. The integration of computational bio-
modelling approaches with different hybrid network-based techniques provides additional information about
the behaviour of complex systems. With increasing advances in high-throughput technologies in biological
research, attempts have been made to incorporate this information into network structures, which has led to a
continuous update of network biology approaches over time. The newly minted centrality measures accom-
modate the details of omics data and regulatory network structure information. The unification of graph
network properties with classical mathematical and computational modelling approaches and technologically
advanced approaches like machine-learning- and artificial intelligence-based algorithms leverages the potential
application of these techniques. These computational advances prove beneficial and serve various applications
such as essential gene prediction, identification of drug–disease interaction and gene prioritization. Hence, in
this review, we have provided a comprehensive overview of the emerging landscape of molecular interaction
networks using graph theoretical approaches. With the aim to provide information on the wide range of
applications of network biology approaches in understanding the interaction and regulation of genes, proteins,
enzymes and metabolites at different molecular levels, we have reviewed the methods that utilize network
topological properties, emerging hybrid network-based approaches and applications that integrate machine
learning techniques to analyse molecular interaction networks. Further, we have discussed the applications of
these approaches in biomedical research with a note on future prospects.
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1. Introduction

Molecular entities of biological systems interact with
each other at various levels and cooperatively function
together to exhibit specific cellular phenotypes.
Essentially, every biological entity interacts with other
biological entities, forming a network of interactions

that maintains the proper functioning of biological
systems. The network properties of these biological
interactions provide us the opportunity to model bio-
logical systems as different types of networks such as
protein–protein interactions (Kumar et al. 2020a, b;
Tomkins and Manzoni 2021), gene regulatory (Grimes
et al. 2019; Sinha et al. 2020a, b) and metabolic net-
works (Bidkhori et al. 2018; Toubiana et al. 2019). The
availability of a vast expanse of molecular information
with the increase in omics analyses has created avenuesThis article is part of the Topical Collection: Emergent

dynamics of biological networks.
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to better understand these molecular interactions (Hawe
et al. 2019). In this context, systems biology aims to
understand biological entities at the system level by
studying them not only as discrete components but also
as interacting systems with emergent properties. Net-
work biology allows the representation and analysis of
biological systems using tools derived from graph
theory (Barabási and Oltvai 2004).
Different types of information of biological systems

can be represented as networks of mutually interacting
entities, where each entity has an effect on the overall
function of these networks. The definition of the nodes
and edges used in a network representation depends on
the type of data used to build the network. In a
molecular interaction network, the nodes can be rep-
resented by genes, proteins, enzymes, metabolites,
transcription factors, etc., and the edges can be repre-
sented as the interaction between these nodes. Different
types of data produce different network characteristics
in terms of structure, connectivity, and complexity,
where edges and nodes potentially mediate multiple
layers of information (Grennan et al. 2014). The inte-
gration of constantly evolving complex high-through-
put data, such as whole genome sequencing data,
single-cell ribonucleic acid (RNA) sequencing, and
clustered regularly interspaced short palindromic
repeats (CRISPR-cas9) technology, and their ease of
availability have further led to improvements and
advances in newer techniques and approaches as well
as upgradation of the traditional network biology
approaches to carry out systems-level studies (Charitou
et al. 2016; Koh et al. 2019; Ma and Zhang 2019).
Due to incomplete information, variability in data

resources, and heterogeneity, multiple challenges have
been consistently observed while carrying out systems-
level studies. Prospects created by molecular interac-
tion networks are instrumental in addressing these
challenges (Imam et al. 2015). One of the prevalent
challenges that limit the applicability of network
models is the difficulty in identifying appropriate cen-
trality measures due to variability in the type of
molecular network. Universal acceptance of the cen-
trality–lethality hypothesis remains inconsistent owing
to the changing network structure and topology of the
molecular interaction networks. The centrality measure
that defines the central or the most influential nodes in
the network changes with changing network structure.
The challenge is to identify proper centrality measures
that appropriately identify these central nodes (Oldham
et al. 2019). Furthermore, uncertainty in model struc-
ture and parameters that affect the network inferences
is an additional challenge in the case of gene regulatory

networks (GRNs) (Saint-Antoine et al. 2020). One
promising avenue is created by hybrid network-based
modelling approaches in the analysis of these molec-
ular interaction networks. These approaches are an
improvement over the systems modelling methods as
they integrate and use network topological properties
and also implement advanced computational tech-
niques, such as machine learning-based algorithms, to
tackle the aforementioned challenges (Chowdhury
et al. 2013; Chowdhury and Sarkar 2019; Kang et al.
2020; Nandi et al. 2020). These, in turn, provide an
opportunity to scale up the dynamic genome-scale
models for incorporation with network biology and are
currently being explored (Stéphanou and Volpert 2016;
Bardini et al. 2017). The emerging landscape of these
molecular interaction networks has enabled better
understanding of molecular systems and their prospects
(Charitou et al. 2016). A comprehensive review that
discusses this emerging landscape of molecular inter-
action networks in the light of the challenges faced and
the new approaches and techniques developed in this
area is missing.
Hence, in this review, we aim to thoroughly assess

available network biology approaches and the progress
made in them to decipher the understanding of the
molecular interaction networks over the last two dec-
ades, with the advancement in biological and compu-
tational research. We begin with a brief introduction of
the different types of molecular interaction networks,
and their structural and topological properties, so as to
provide a basic understanding of the molecular inter-
action networks. In section 3, we discuss several net-
work topology-based methods and their progress in
effectively drawing various types of inferences from
different types of molecular interaction networks. In
each of the following subsections, we briefly highlight
how these methodological advances have helped to
overcome different limitations and also introduce some
recently developed methods that can be useful in future
research. Next, we introduce the hybrid network-based
approaches that combine traditional systems biology
methods with graph theoretical techniques and briefly
discuss their applications. We also explain how
advanced statistical methods and machine learning
(ML)-based computational frameworks help to over-
come the limitations of these hybrid approaches. We
briefly state a few applications where these recently
developed methodologies successfully contribute to
advance the molecular network analyses. In section 6,
we discuss a few disease-specific studies where these
network-based approaches have successfully con-
tributed. We aim to highlight the increasing forte of
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network topology-based techniques to analyse molec-
ular-interaction networks with methodological
advancements. Finally, we conclude this review by
providing suggestions to the readers for possible future
prospects in areas that hold scope for advanced
molecular network analyses to improve biological and
biomedical research. This review will be beneficial to
systems biologists who can use emerging graph theo-
retical approaches, hybrid network-based models, and
ML-based applications to study molecular interactions.
Network biologists can also gain a holistic view of
applications of these emerging approaches, such as
deciphering drug–disease interactions, analysing per-
turbation patterns, characterizing regulatory genes,
predicting gene essentiality, etc.

2. Types of molecular interaction networks

Various types of molecular interaction networks
emerge from the combination of different interactions
among molecular entities that determine the systems-
scale behaviour of the cell (Barabási and Oltvai 2004;
Han 2008). Some of the most common molecular
interaction networks are: (i) protein–protein interaction
networks, (ii) metabolic networks, (iii) gene regulatory
networks, and (iv) signal transduction networks. In the
graph G (V, E) representation of molecular interaction
networks, nodes v [ V represents biological entities,
i.e., genes, proteins, transcription factors, or miRNAs,
and edges e [ E represents interactions among these
biological entities. Due to their importance in biologi-
cal research, these molecular interaction networks are
continuously revisited and updated with time. We
provide a brief introduction of the different types of
molecular interaction networks in the following
subsections.

2.1 Protein–protein interaction networks

These are mathematical representations of the molec-
ular contacts between the proteins in a cell. These
contacts are specific, occur between defined binding
regions in the proteins, and have a particular biological
meaning (i.e., they serve a specific function) (Schreiber
2021). Protein–protein interactions (PPIs) are essential
to almost every process in a cell and play an important
role in drug development (Mabonga and Kappo 2019).
The interactome is the totality of PPIs that occur in a
cell, an organism, or a specific biological context
(Safari-Alighiarloo et al. 2014).

Knowledge of PPIs can be extended to a wide range
of applications, such as understanding complex disease
disorders, assigning putative roles to uncharacterized
proteins (Lv et al. 2015; da Costa et al. 2018), and
adding fine-grained details about the steps within a
signalling pathway (Navlakha et al. 2012; Mei and Zhu
2015). Identifying active signalling pathways (Kabir
et al. 2018), and characterizing the relationships
between proteins that form multi-molecular complexes,
such as the proteasome (Di Paola et al. 2015), are some
additional areas where PPI networks find application.
Some of the widely popular protein–protein interaction
network (PPIN) resources actively used for mining PPI
information include the Biological General Repository
for Interaction Datasets (BioGRID) (Oughtred et al.
2019) and Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) (Szklarczyk et al. 2021)
Database.

2.2 Metabolic networks

These consist of chemical reactions that involve the
catalytic conversion of small biomolecules known as
metabolites aided by enzymatic reactions. Construction
of the network depends on several factors, most
importantly the type of analysis to be performed on the
network. The most common graph theoretical repre-
sentation of metabolic networks is considering the
metabolites as nodes and the reactions catalysing the
conversion of one metabolite to another as edges.
Another way is to represent the metabolic network as a
reaction adjacency graph, where the nodes are formed
by reactions and the connection/edges between the
reactions is established if the product of one reaction is
the substrate of the second reaction (Kim et al. 2019).
Metabolite concentration and reaction fluxes are mea-
surable quantities that have been used to infer the
properties of the metabolic graph networks at the
structural, kinetic, and regulatory levels (Beguerisse-
Dı́az et al. 2018).

2.3 Gene regulatory networks

A gene regulatory network (GRN) represents the
complex mechanisms that regulate the expression of
genes. Regulatory mechanisms occur at different stages
of protein production from DNA, such as during the
transcription, translation, and splicing phases. Proteins
act as both the product and the controller of gene
expression in these networks (Junker and Schreiber
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2007). In GRNs, each node represents a gene, and a
directed link between two genes implies that one gene
directly regulates the expression of the other without
intervention by any other genes. GRNs are very
important in understanding the mechanistic regulation
of gene expression and the sequence of events that
result in a phenotype. The graphical representation of
these networks provide a visualization and intuitive
explanation of these complex and interconnected
mechanisms.

2.4 Signal transduction networks

These are essentially protein interaction networks, but
the interaction between the proteins and flow of
information is directional. Like the PPI network, the
nodes in the signal transduction network are repre-
sented by proteins that usually belong to the phos-
phatase or kinase or similar protein family, e.g., protein
tyrosine phosphatases (PTPs), protein serine phos-
phatases (PSPs), and mitogen-activated protein kinases
(MAPKs) (Nguyen et al. 2013). The edges are deter-
mined by the interaction between two proteins where
the first protein interacts to activate the second one, and
hence the directionality. Signal transduction networks
form the core of information flow for most of the sig-
nalling networks. These form the bridge between the
receptor-mediated activation of protein complexes
whose information is passed down for the activation of
transcription factors via these signal transduction net-
works (Soyer et al. 2006).

3. Network topology-based approaches
in the study of molecular interaction networks

Representation of molecular interaction data in the
form of an interconnected network of biomolecules
forms the topology of the information in these net-
works. This topology is created from the representative
graphs, where nodes represent singular entities or the
individual biomolecules of the process under study, and
the edges represent the relation between them. Eluci-
dation of the topology of these networks is effectively
applied to gain a systems-level understanding of the
interactive exchange between the entities of the bio-
logical system under study (Janjić and Pržulj 2012;
Koutrouli et al. 2020; Masoomy et al. 2021). For
example, a recent study used topological analysis on a
systems-level curcumin-rewired PPI based on central-
ities like betweenness and degree, to identify key

regulatory proteins that govern the molecular mecha-
nisms, thereby aiding in understanding the anti-
cancerous and anti-inflammatory properties of cur-
cumin (Dhasmana et al. 2020).
Network topology-based approaches have also

helped understand host–pathogen interplay during
infection processes (Mulder et al. 2014; Saha et al.
2018). Recently, Panditrao et al. (2021) used
betweenness centrality combined with shortest-path
analysis to analyse phenotype-specific protein subnet-
works of Leishmania donovani secretory proteins to
delineate infection mechanisms and identify regulatory
host proteins that could potentially act as
immunomodulatory candidates. Also, the study of
molecular networks of SARS-CoV2 during the
COVID-10 pandemic has been instrumental in deci-
phering its viral pathogenesis through virus-host PPI
networks (Dı́az 2020; Gordon et al. 2020; Messina
et al. 2020). The topological properties of virus–host
protein interaction networks have aided in under-
standing the mechanisms of its pathogenesis. Centrality
measures like PageRank, betweenness, eigenvector
centrality along with weighted k-shell decomposition
analysis have helped identify the most influential nodes
of the viral proteins that interfere with the host nucle-
ocytoplasmic trafficking, immune system, and cell
cycle which facilitates pathogenesis (Kumar et al.
2020a, b). It has also been possible to identify candi-
date target viral genes for repurposing drugs for treat-
ing the COVID-19 infection through the analysis of the
fused viral interaction network (VIN) and the drug–
target interaction network (DTI) (Zambrana et al.
2021). In this analysis, the network structure topolog-
ical information was utilized for data fusion and the
graphlet degree vector (GDV) was used for capturing
the local rewiring patterns for functional assessment of
gene–drug interactions. Graph theoretical approaches
reveal hidden properties and features in molecular
interaction networks (Pavlopoulos et al. 2011). Thus,
such topological network analyses enable several
applications such as discovery of drug targets, evalu-
ation of disease genes, and prediction of essential
nodes. In this section, we discuss several emerging
methodological advances that utilize topology-based
approaches to draw various insightful inferences from
molecular interaction networks.

3.1 Centrality measures

In the past two decades, the use of centrality measures in
molecular interaction networks has gained momentum.
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Centrality measures depend on the topology-centric
parameter of the nodes in the network which would
influence the structural properties of the graph. They are
instrumental in deducing meaningful interpretations of
molecular interaction networks that include PPINs (Ash-
tiani et al. 2018), GRNs (Liseron-Monfils and Ware
2015), signal transduction networks (Alvarez-Ponce et al.
2017), and metabolic networks (Resendis-Antonio et al.
2012). The commonly used centrality measures include
degree, betweenness centrality, closeness centrality,
eccentricity, and eigenvector centrality, often referred to as
the classical centrality measures (figure 1A). The basic
definition and mathematical formulation of the classical
centrality measures are provided in table 1.
The past two decades saw a surge in various newly

minted concepts of calculating centralities (Jalili et al.
2015, 2016). Previous studies show that integration of
omics data with topological features can develop
improved centrality measures (Li et al. 2012, 2010).
These centralities are developed through a combination
of the classical centralities, utilizing topological features
based on connectivity as well as integrating known
biological information from experimental outputs. We
provide an overview of these newly developed centrality
measures in table 2. Figure 1B provides a pictorial rep-
resentation of how these centralities have evolved from
the classical centralities by including additional molec-
ular information. Based on the methods used to derive
these new centralities, they can be broadly classified.
PageRank, marginal essentiality, subgraph centrality,
motif-based centrality, bridging centrality, pairwise dis-
connectivity index, flux centrality, leverage centrality,
perturbation centrality and SSC (source/sink centrality)
use solely topological features of the nodes in the net-
work that are based on their connectivity patterns.
Annotation transcriptional centrality, neighbourhood
functional centrality, game theoretic centrality, DiffSLC
and SCNrank (spectral clustering for network-based
ranking) additionally integrate biological information in
the form of omics data. Perturbation centrality and game
centrality are the centrality measures that can be applied
to dynamic networks.
Depending on the problem of interest, a certain type

of centrality measure may be more important than
another. For example, the highest betweenness cen-
trality node in the network has a more pronounced
influence on control than the highest closeness cen-
trality node in the network if one wants to control a
chaotic metapopulation to the steady states (Meena
et al. 2017), to protect the resilience of the dynamical
networks (Rungta et al. 2018), irrespective of the
dynamics on the nodes (Meena et al. 2020a, b).

Limitations in using these centralities exist in terms
of the biological inferences in molecular interaction
networks. For example, the universality of the cen-
trality–lethality hypothesis becomes questionable if the
measures to identify central nodes in the network are
not chosen wisely. In 2005, Hahn and Kern showed
that hub proteins in a PPIN were highly essential (Hahn
and Kern 2005); however, shortly thereafter Mahade-
van and Palsson showed that essentiality was not cor-
related to the connectivity of the node in GRNs
(Mahadevan and Palsson 2005). This idea was further
supported by studies which showed that in PPINs, low
connectivity could also be considered essential (Tew
et al. 2007). Hence, the centrality–lethality paradox
still exists.
These above-mentioned new centrality measures are

derived and continuously added to address the limitations
previously faced by the classical centralitymeasures and to
improve our ability to extractmore useful information from
complex molecular networks (Roy 2012). For example,
leverage centrality is observed to be highly useful in ana-
lysing hierarchical networks, such as brain networks,
which harbour assortative behaviour, as it helps to identify
nodes which are critical for the function of the global net-
work as well as local communities (modules) in that net-
work (Joyce et al. 2010). This helps capture the assortative
or disassortative behaviour of the network since it captures
the nodeswhich control the quality of information received
by its neighbours. Classical centralities like degree,
betweenness, and eigenvector centrality fail to analyse this
assortative behaviour.This is possible as leverage centrality
relies on the principle that a node in the network is central if
its immediate neighbours rely on that node for information.
Game centrality is another example that effectively con-
tributes to the identification of functionally and dynami-
cally important network nodes, which has previously been
a difficult task (Simko and Csermely 2013). It significantly
outperforms the classical centrality measures in predicting
genetic buffering of evolutionary changes, i.e., the contri-
bution of a protein to the overall robustness of the cell. This
was possible due to the ability of game centrality to pre-
cisely discriminate hubs with different dynamic parame-
ters. Degree centrality, although able to capture essential
proteins, is highly dependent on the degree-sorted nodes
list and thus misses out on a few other known essential
proteins that have fewer interactions. DiffSLC promotes
potentially essential proteins with low node degree by
elevating eigenvector centrality values with additional
weights from co-expression data (Mistry et al. 2017). The
source/sink centrality is a useful measure if one wishes to
clearly distinguish and identify a priori important genes
from pathways, as it accounts for the importance of
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pathway elements with respect to the upstream and
downstream positions (Naderi Yeganeh et al. 2020).
Thus, advancements in these centrality measures

continue to prove to be valuable tools that can tackle
the complexities and limitations in the emerging
molecular networks and help to gain meaningful
inferences.

3.2 Methods for integrating large-scale genomic
screen data in PPINs

Large-scale genomic screens involve functional geno-
mic approaches employing diverse experimental tech-
niques such as transcriptome profiling, loss-of-function
screening, RNA interference screens, and CRISPR

Figure 1. Centrality measures in molecular interaction networks. (A) A schematic representation of the commonly used
centrality measures, where the colour gradient and the size of the nodes correspond to the respective centrality value for that
node in the representative network. Highest centrality in the network is the largest size and darkest colour of the node. (B) A
Sankey plot representation of some of the new centrality measures (shown in the right side of the plot) developed in the recent
past which are derived from the traditionally used basic centrality measures (shown in the left side of the plot) by
incorporating various types of OMICs and network data (shown in the centre of the plot).
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libraries to investigate gene functions. Molecular
interaction networks potentiate the identification of
functionally related biological components from large-
scale genomic screen datasets. Genomic information is
incorporated into network topology using the principle
of guilt-by-association to develop network-based
scoring methods that allow detection of false-positive
and false-negative screens (Wang et al. 2009). These
genome-scale interaction networks that harbour co-
localized genes or proteins having similar topological
roles are more likely to be functionally correlated.
Thus, the ‘guilt-by-association’ process allows infer-
ring properties of unknown proteins or genes by
transferring knowledge from these similar co-localized
genes or proteins. This principle can be effectively used
for identification of drug–target interaction (Li et al.
2016), integrating gene regulatory pathways (Grimes
et al. 2019). Furthermore, incorporation of network
neighbour information improves the quality of func-
tional genomic screens (Jiang et al. 2015), and the
selection of an optimally functionally enriched network
allows easier identification and interpretation of diag-
nostic or predictive gene signatures for diseases
(Kairov et al. 2012). These strategies enable better

utilization of genomic screening data in conjunction
with more topological properties to associate the
information with phenotypes. For example, recently,
Rubanova and co-workers developed a new method
called MasterPATH, which utilizes the results from
functional screening data such as loss-of-function data
and uses shortest path-based subnetwork extraction to
elucidate members of molecular pathways that influ-
ence the studied phenotypes (Rubanova et al. 2020).
In an attempt to address the challenges of accurately

integrating cell-line and CRISPR-Cas9 data within the
network structure, a method called SCNrank has been
developed. This method prioritizes potential drug tar-
gets in tumour cell-line screens by combining expres-
sion profiles from tumour tissues, normal tissues and
cell-lines, PPI network and CRISPR-cas9 data to con-
struct tissue-specific networks that are aligned based on
graph structure similarity (Liu et al. 2020). The Net-
work-augmented Gene Set Enrichment Analysis
(NGSEA) method has been developed to utilize the
information from Gene Set Enrichment Analysis
(GSEA) of functional networks by calculating the
enrichment score for gene sets using expression dif-
ference not only for individual genes but also from

Table 1. Definition and mathematical representation of classical network centrality measures

Centrality Definition Mathematical representation References

Betweenness
Centrality
(BC)

Ratio of the number of shortest paths passing through
a node v out of all the shortest paths existing between
all node pairs in a network

BC vð Þ ¼
P

i6¼j 6¼v2V
rij vð Þ
rij

rij= number of shortest paths between
node i and j

rij vð Þ = number of shortest paths in rij
that pass through the node v

Freeman
(1977)

Closeness
Centrality
(CC)

A measure of the average farness of a node v from all
other nodes belonging to V

CC vð Þ ¼ 1P
t2V_fvgd v;tð Þ

d v; tð Þ ¼ distance between the node v
from t and i 2 V

Freeman
(1978)

Degree
Centrality
(DC)

The most classical centrality measure that represents
the number of connected neighbours of a node v

DC vð Þ ¼ N vð Þ
N vð Þ ¼ number of nodes connected to
the node v 2 V

Proctor and
Loomis
(1951)

Eccentricity
(Ecc)

A measure of proximity of node v to all other nodes
belonging to V in G. A node v with high eccentricity
means all other nodes are in proximity to node v

Ecc vð Þ ¼ 1
maxfdist v;ið Þ_v;i2Vg

dist v; ið Þ= distance between the node
v and node i, where v, i [ V

Hage and
Harary
(1995)

Eigenvector
Centrality
(EC)

A measure of the influence of a node. EC of a node v
is defined as the weighted sum of the centralities of all
the nodes that are connected to v by an edge in an
adjacency matrix Av;i

EC vð Þ ¼ 1
k

P
i2VAv;i:EC ið Þ

Av;i ¼ av;i
� �

= adjacency matrix; if
node v and i are connected, then
av;i ¼ 1; otherwise 0

EC(v) = eigenvector value of node
v associated with the eigenvalue k of
A

Ruhnau
(2000)
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their neighbours. This method facilitates the repur-
posing of approved drugs with pathway interpretation
of gene expression phenotypes (Han et al. 2019).

3.3 Methods for analysing metabolic networks

The inferences of graph theoretical analyses of
metabolic systems are highly dependent on graph
construction, which includes multiple options to
define the nodes and edges of the network. Generally,
in metabolic networks, nodes are represented as
metabolites and edges as reactions, or vice versa, in
reaction adjacency graphs. In bipartite networks,
nodes can be metabolites or can also represent reac-
tions. Metabolic graph networks are essentially
directional. However, it was observed that direction-
ality information, which was considered the sole
defining factor of metabolic graph networks, might
not be the only defining factor for the metabolic
function (Wagner and Fell 2001). Previously, meta-
bolic reaction graphs had limitations in analysing
context-specific metabolic events under different
growth conditions of the cell (Sauer et al. 1999).
In conjunction with this limitation is the challenge

that arises from the reversibility of these metabolic
graphs. The prior approaches do not ensure justice by
generalizing the direction of reaction based on one
condition and also do not take into consideration
varying physiological conditions (Wagner and Fell
2001). Beguerisse-Dı́az’s group addressed this com-
plexity by emphasizing the inclusion of directionality
information, as well as capturing environment-specific
metabolic connectivity (Beguerisse-Dı́az et al. 2018).
This approach accounts for the utilization of metabolic
directionality for representing the natural flow of
chemical mass from reactants to products. It provides a
flux-based strategy using Flux Balance Analysis
(FBA)-based solutions to build different metabolic
graphs under different growth conditions, creating
opportunities to convert genome-scale metabolic
models into directed graphs. Further, to improve upon
the above-discussed challenges, several tools that
employ network science to improve FBA pipelines
have been consistently explored (Lewis et al. 2012).
The integration of graph theory with FBA by con-
structing flux-weighted graphs is recently being pro-
posed as a promising solution to overcome these
previous shortcomings (Dusad et al. 2021) and holds
application in several areas of industrial biotechnology
such as maximizing production from metabolic cell
factories and dynamic control of gene expression

(Brockman and Prather 2015; de Lorenzo et al. 2018;
Liu et al. 2018).
Several tools have been developed in the recent past

in an effort to improve and provide a seamless expe-
rience in developing and executing pipelines for sim-
ulation of metabolic networks and also to integrate
several other optimizing functions which include FBA-
based solutions (Ebert et al. 2012; Rowe et al. 2018). A
useful tool which can assist in carrying out FBA and
several other network analysis for metabolic networks
is MetaNET (Narang et al. 2014). Along with simu-
lation studies, it also provides an option to conduct
topological analysis.
Recent studies implement global centrality measures

such as in-degree, out-degree, closeness centrality, and
modularity for directed networks rather than a cen-
tralized focus on only the high-degree nodes, to iden-
tify targets in metabolic pathways (Newman 2006; Kim
et al. 2019). For topological analyses, reaction-centric
bipartite graphs that use centrality metrics independent
of a node’s degree are being explored (Kim et al.
2019). These studies focus on calculating the influence
of a node on the downstream flow of information in the
network by calculating the bridging centrality and
cascade number (Kim et al. 2019) (figure 2A). These
newly developed approaches help in the analyses of
directed reaction graphs to prioritize the nodes and their
associated genes, which are essential for global and
local connectivity and can help identify crucial targets
in metabolic engineering. Development of network-
based approaches for understanding the evolution of
metabolic genes at different evolutionary timescales
that tackle the challenge of procuring the gene’s like-
lihood to be under adaptive selection is another
emerging application of network biology in under-
standing metabolic networks (Dobon et al. 2019).

3.4 Methods for integration of gene co-expression
networks

The incorporation of omics datasets in computational
networks using correlational analysis is gaining
momentum. The development of the Weighted Gene
Co-expression Network Analysis (WGCNA) (Lang-
felder and Horvath 2008) to identify highly correlated
genes, or eigengene-based highly correlating gene
clusters, has paved the way for transcriptomic data
integration and analysis for relating modules to one
another and for measuring module membership (Niu
et al. 2019). The co-expression network analyses have
garnered applications in uncovering various disease
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mechanisms, from identification of rheumatoid arthri-
tis-related diagnostic genes, potential disease genes,
and vital microRNAs (Ren et al. 2021) to biomarkers
and prognostic signatures in multiple cancers

(Kadkhoda et al. 2020; Terkelsen et al. 2020). The
previously used co-expression network analyses
methods could not distinguish between the regulatory
and regulated genes or provide information on

Figure 2. Schematic representations of recent methodological developments in molecular network analyses techniques.
(A) Cascade number representing local controllability of the node demonstrated on a schematic metabolic network model
which measures the influence of a node on its downstream flow of information and identifies the highest influencing reaction
node. (B) Graphical workflow representation of the netImpute algorithm which employs diffusion of co-expression network
to improvise the dropout issue in single-cell data. (C) Backbone extraction: A schematic representation through a toy
transcription factor regulatory bipartite graph demonstrating the working of the backbone extraction technique to extract a
subset of important regulatory transcription factors.
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causality. Improvements have been made in these net-
work studies by including differential co-expression
analysis performed under different regulatory condi-
tions (Chowdhury et al. 2020). Gene Sets Net Corre-
lation Analysis (GSNCA) is another method that has
enabled analysis of differentially co-expressed path-
ways by inferring differences in co-expression net-
works (Rahmatallah et al. 2014). Algorithm for the
Reconstruction of Accurate Cellular Networks (ARA-
CNE) (Margolin et al. 2006) and Gene Network
Inference with Ensemble of trees (GENIE3) (Huynh-
Thu et al. 2010) are popular tools used to construct
regulatory networks from co-expression data. The
Generalised Single Value Decomposition (GSVD) is
another approach that relies on spectral decomposition
to identify modules of co-regulated genes (van Dam
et al. 2018). Furthermore, Higher-Order GSVD (HO-
GSVD) (Ponnapalli et al. 2011) helps in multi-tissue
analysis (Xiao et al. 2014).
Single-cell RNA sequencing technology plays an

influential role in obtaining transcriptomes at single-
cell resolution. One drawback of this technique is that
only a small fraction of the transcript gets sequenced,
resulting in dropout events (excess zero counts). Zand
and Ruan (2020) have recently developed a gene co-
expression network-based method called ‘netImpute’ to
alleviate this dropout issue (figure 2B). A similar effort
was made using a Bayesian factor model (Sekula et al.
2020). In the case of single-cell RNA-seq experiments
where the dataset consists of several biologically dis-
tinct unknown sample groups, identifying differentially
expressed clusters with similar expression patterns is
challenging. An alternative method is biclustering,
which can identify such patterns without prior sample
classification (Cheng and Church 2000). Several new
tools have also been recently developed for improving
the analyses of co-expression networks, which inclu-
de CoExp (Garcı́a-Ruiz et al. 2021), Gene Whole Co-
Expression Network Analysis (GWENA) (Lemoine
et al. 2021), Translational Bioinformatics Tool Suite
for Network Analysis and Mining (TSUNAMI) (Huang
et al. 2021) and Conserved and Comparative Co-ex-
pression Network (CococoNet) (Lee et al. 2020a, b).

3.5 Prediction of perturbation patterns

The unavailability or lack of information about kinetic
parameters while studying interactions between bio-
chemical entities leads to loss of information. The
consequences often reflect in the perturbation patterns.
Collective perturbations affect disease states. The

patterns of these perturbations help to understand dif-
ferential expression patterns. The study of perturbation
patterns in biochemical networks provides the oppor-
tunity for drug development, better understanding of
drug combinations, and improved therapies (Santolini
and Barabási 2018). Increasingly accurate topological
models have provided us with improved confidence to
approximate the impact of perturbation patterns (San-
tolini and Barabási 2018). Santolini and Barabási have
proved that the topology-based linear response matrix
or correlation matrix alone provides more than 65%
accuracy in predicting these perturbation and bio-
chemical influence patterns (Santolini and Barabási
2018). Their proposed method predicts perturbation
patterns with higher accuracy for the networks that,
upon link removal, can be decoupled into sparse net-
works (i.e., nodes with a low degree and link density).
Additionally, the topology-based method, along with
the integration and inference from experimental per-
turbation data, plays a key role in predicting physio-
logical and phenotypic perturbations. However, the
interplay between network topology and inherent
dynamics predicts the emergent patterns in biochemical
networks (Meena et al. 2020a, b).
The impact of the perturbations can be effectively

studied by characterizing transient cell states that
reflect in the cellular responses. Dynamic gene inter-
actions and pathway behaviour are of central impor-
tance to characterize these transient populations.
Dynamic modelling techniques are being developed
that utilize the RNA velocity from single-cell RNA
sequencing data that help observe dynamics of single
genes and thus assist in interpreting the impact of
perturbations (La Manno et al. 2018; Bergen et al.
2020). Network representations of this dynamic gene
interaction data hold potential to improve the predic-
tion of perturbation impact through dynamic network
analysis.

3.6 Identification of clustering patterns in dynamic
networks

Clustering patterns in molecular interaction networks
find applications in several analyses, such as identify-
ing similar gene expression patterns (Oyelade et al.
2016) and classifying cellular subtypes. Several algo-
rithms have been developed that identify such cluster-
ing patterns in the form of community detection
methods to analyse large biological datasets (Oyelade
et al. 2016; Sharma and Ali 2017; Kanter et al. 2021).
The concept behind network clustering is to partition
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networks into clusters or groups of ‘topologically
related’ nodes expected to ‘correlate’ well in terms of
their function or phenotype. Clustering in dynamic
networks is considered to be challenging and complex
due to the additional factor of timescales. In the case of
dynamic networks, where the data essentially consist of
a series of snapshots of networks through time, two
popular approaches, snapshot clustering (Chi et al.
2007) and consensus clustering (Lancichinetti and
Fortunato 2012), are used. Dynamic network clustering
(DNC) approaches like Louvain and Infomap (Held
et al. 2016) assume that topological similarity naturally
implies dense interconnectedness. This disparity of
assumption is being addressed by a newly developed
approach called ‘ClueNet’ (Crawford and Milenković
2018), which evaluates the need for some dynamic
networks to be partitioned based on topological simi-
larity. Another method uses a combined approach of
partitioning based on topological similarity combined
with denseness (Crawford and Milenković 2018).
Other clustering methods have also been developed
where the metadata of the nodes in network are con-
sidered prior to forming clusters and not just used in
post-clustering module segregation steps (Newman and
Clauset 2016; Peel et al. 2017). Timely improvements
in these heuristic methods would further remove cur-
rent limitations such as the incorporation of overlap-
ping clustering that are evident in real-world networks
where one node can belong to multiple functional
modules.

3.7 Gene prioritization methods

Identifying causal genes and refining candidate genes
for experimental verification is an important step in
high-throughput analyses, specifically in studying dis-
eases. One of the most widely used prediction servers
is GeneMANIA (Warde-Farley et al. 2010). The pri-
oritization of genes in this server is highly dependent
on network topological properties and the likeliness of
shared phenotypes. New approaches like Hybrid-Ran-
ker exploit topological properties to prioritize genes
based on their proximity to the causal genes of a par-
ticular disease of interest and information on its cor-
responding co-morbid disease (Razaghi-Moghadam
and Nikoloski 2020). Arete is a similar tool incorpo-
rated as an app in the Cytoscape graph analysis suite
(Lysenko et al. 2017). Novel gene prioritization tools
like GenePANDA (Yin et al. 2017) and TopControl
(Nazarieh and Helms 2019) use additional features like
the relative distance of the candidate disease gene to

the known disease genes and dominating sets on co-
regulatory networks instead of high-degree nodes.
Target gene prioritization has also been demonstrated
through the identification of the important regulatory
modules within large GRNs, such as transcription
factors regulating the downstream target genes in reg-
ulatory pathways usually represented as bipartite
graphs. A recent methodological development to
identify these regulatory target modules in such
bipartite graphs is being explored through the tech-
nique of backbone extraction (Pavlopoulos et al. 2018).
Backbone extraction delivers a subgraph composed of
the most significant nodes and edges in a network. It
has been used in projected graph networks obtained
from the bipartite projection of regulatory and target
nodes, which helps to identify important regulatory
modules within the large regulatory network
(figure 2C).

3.8 Methods for analysing amino acid networks

Amino acid networks (AANs) or protein topological
networks (PTNs) are used for the graphical represen-
tation of functional domains of proteins. The edges
represent interactions based on the amino acid distance
cut-off set at their primary, secondary, or tertiary
structural arrangement levels. Topological parameters
effectively represent the structural and functional
properties of protein networks (Bagler and Sinha
2007). The structural organization of these networks
shows small-world network properties (Bagler and
Sinha 2005). These networks are assortative and have a
hierarchy and are limited to the subnetwork of
hydrophobic amino acids (Yan et al. 2014). These
networks are helpful in distinguishing the folding states
of the protein structures from the decoys (Zhou et al.
2014), predicting protein fold (Bhavani et al. 2011) and
understanding disease mutational landscapes such as
identifying the epitopes of topological importance for
rational immunogen design (Yan et al. 2014). The
Protein Topological Graph Library (PTGL) was
developed to provide a fast search for secondary
structure classification and characterization of proteins
by abstracting the structure in the form of undirected
labelled graphs (May et al. 2004). Network Analysis of
Protein Structures (NAPS) (Chakrabarty and Parekh
2016; Chakrabarty et al. 2019) and Amino acid Net-
work Construction and Analysis (ANCA) (Yan et al.
2020) are web servers developed that facilitate the
qualitative and quantitative topological analyses and
visualization to study residue–residue relationships and
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help gain insights into structure–function relationships.
A protocol developed by Sinha et al. effectively
determined the allosteric residues regulating drug
binding activities by constructing a protein-contact
network (PCN) and subsequently employed the net-
work propagation theory based on a heat diffusion
model (Sinha et al. 2020a, b) (figure 3). Additional
applications of AANs include studying mutation pat-
terns to effectively design HIV vaccine target T-cell
epitopes (Gaiha et al. 2019) and to study allosteric
changes leading to protein stability (Srivastava and
Sinha 2014), designing of thermostable mutants
(Kandhari and Sinha 2017), and understanding the
molecular basis for resistivity and specificity of pro-
teins in drug resistance (Sinha et al. 2020a, b).

4. Emerging hybrid network-based approaches

Mathematical models based on interaction graphs allow
the investigation of complex biological systems (Sinha
1997). However, with increasing size of these systems,
their dynamics and complexity grows exponentially,
consequently making the screening of possible inter-
ventions infeasible (Cohen and Harel 2007). Static net-
work topology-based analysis of large biological
systems allows the identification of dynamically relevant
components of the whole network. Systems biology
approaches unravel different intracellular and intercel-
lular signalling mechanisms and metabolisms to study
emerging molecular systems. Hybrid network-based
models are designed by combining graph theoretical
analysis with two or more systems biology modelling
methods such as Boolean modelling (Chowdhury and
Sarkar 2019), FBA-based metabolic modelling (Dusad
et al. 2021), ODE (ordinary differential equation) (Kang
et al. 2020) and PDE (partial differential equation)-based
models (Bardini et al. 2017). Integration of high-
throughput data into these hybrid models has helped to
overcome previous limitations and challenges, such as
identification of system-level continuous and discrete
dynamic functional modules, timescale integration,
handling data heterogeneity, and elucidation of complete
pathway topology. In this section, we briefly explain
some recent hybrid network-based modelling approa-
ches developed to understand the temporal dynamics of
regulatory molecular mechanisms, identification of
tumour heterogeneity, and elucidation of pathway
topological modules.

(i) Regulatory mechanisms: Integrative measures to
identify dynamically relevant modules from large-

scale systems-level molecular interaction networks
have been employed. A sequential evaluation of
the hedgehog signalling pathway in different types
of cancer using network topology-based approach
followed by Boolean analysis of the important
regulatory modules provided a promising measure
to predict the dynamic behaviour of biological
networks (Chowdhury et al. 2013). Boolean
models account for genes as either specific
activators or repressors of the target genes, due
to which the analysis of gene regulatory behaviour
at the subfunction level is compromised. This
limitation has been recently addressed by the data-
driven Fundamental Boolean Model (FBM),
which facilitates subfunction-level analysis over
a period of time by generating dynamic trajecto-
ries. This model is implemented in R for use as a
package, ‘FBNNet’, and can be effectively used to
study dynamic gene regulatory behaviour (Chen
et al. 2018).

(ii) Tumour heterogeneity: Mechanistic models with
prior knowledge derived from topological mea-
sures have contributed to improved understanding
of intra-tumour heterogeneity and dynamic regu-
lations behind the emergence of tumorigenic
phenotype lineages and regulation of plasticity
in cancer (Chowdhury and Sarkar 2019). The
protocol provides a platform for personalized and
target-based glioblastoma tumour therapy (fig-
ure 3). Dynamic graphical model frameworks are
developed for comprehensive analyses of tumour
heterogeneity by integrating different genome-
level datasets. These frameworks are useful to
understand the role of mutations in conferring
heterogeneity at different stages of cancer pro-
gression and additional complexities in tumour
evolution (Lysenko et al. 2017).

(iii) Pathway topology: In the current era of precision
medicine, a system-wide pathway-level under-
standing plays a crucial role. Elucidation of the
entire pathway topology has been a challenge in
systems biology for quite some time. In this
context, a recent approach developed by Liang
and co-workers handles the property of mutual
exclusivity in the pathway perturbation of
tumours by applying an OR-gated network that
infers modules of patient-specific dysregulated
pathways (Liang et al. 2021). The Boolean
variables for generating OR-gate functions in
this model are obtained from mutation and gene
expression data, which are then converted to a
OR-gated network and thus it effectively handles
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co-occurrence of genes, mutual exclusivity, and
other properties that effectively contribute to
elucidate patient-specific pathway modules.

Hence, we observe that the hybrid network-based
approaches contribute to the understanding of complex
system behaviour and generate testable hypotheses for
experimental validation. However, these hybrid net-
work-based approaches face issues in obtaining phe-
notype-specific data as well as incorporating disparate
variable types in the networks (Walker et al. 2014).
Although the hybrid modelling techniques ameliorate
the classical methods, their extensive application is
limited by complexities during in silico implementa-
tion. The scope and scalability of each modelling
approach, like the Boolean, constraint-based, ordinary
and partial differential equation-based, or network-
based approaches, are different. Assimilating the
information generated by one into another approach is

often challenged by loss of information. Furthermore,
the availability of appropriate data and parameteriza-
tion of the model are factors adding to the challenges.
Since the hybrid models concatenate the information
generated by tools and techniques with different scal-
ability, the integration, calibration, and evaluation of
the model outcomes using appropriate experimental
evidence is more challenging than in the classical
techniques. For example, paramterizing all variables
obtained from a subnetwork of hub protein interactions
for an ordinary differential model is challenged by the
availability of adequate information. Although the
parameter estimation techniques can be helpful to
deduce unknown parameters, their reliability depends
on the preciseness of the experimental data used for
calibrating the biological context to be studied. In the
case of a hybrid network-based approach for metabolic
modelling, the connectivity between the metabolic
components in the network method is defined solely by
the metabolic stoichiometry, whereas in the FBA

Figure 3. Schematic workflows of emerging hybrid network models. Overview of emerging integrative approaches where
network biology is combined with different molecular interaction data resources such as gene regulatory interactions,
signalling and metabolic networks, and amino acid interaction in proteins. The implementation of different systems biology
techniques such as Boolean formalism, flux balance analysis, heat diffusion, and integration of ML is demonstrated as various
applications in deciphering molecular mechanisms.
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model, it depends on the choice of objective functions
(Dusad et al. 2021). As a result, while translating the
FBA model into a network, it can be constructed as
various types of graphs, such as bipartite graphs,
graphs where nodes represent metabolites, or graphs
where nodes represent a reaction. This creates a lack of
consensus on the type of graph that can be built for that
metabolic model and strongly influences the conclu-
sions drawn from their network analyses (Beguerisse-
Dı́az et al. 2018). Another challenge arises while
constructing networks that consider the direction of
reaction fluxes in the metabolic models. However,
these limitations are increasingly being addressed by
recent developments of flux-weighted graphs and
mass-flow graphs (Beguerisse-Dı́az et al. 2018). In the
case of a hybrid network-based approach that integrates
Boolean modelling, the Boolean equations can often
incorporate timescale-dependent behaviour, but this
information might not be translated to the model’s
graph representation, as, at one time point, the network
can only represent a static interaction for one specific
condition. These limitations and challenges further
press the need for advanced statistical tools to augment
non-continuous data and variables. With the surge in
the approaches that automatically learn to encode net-
work structure into low-dimensional representations,
the use of transformation techniques with ML-based
approaches and their hybridization with other first-
principle modelling techniques have gained momentum
(Lee et al. 2020a, b). In the next section, we will dis-
cuss some of the areas where network topology-inte-
grated ML-based approaches find extensive application
in analysing molecular interactions.

5. Applications of emergent machine learning-
based approaches in molecular networks analysis

The above discussions provide a brief overview of the
hybrid network-based approaches that are being con-
stantly updated to incorporate network topological
information with different systems biology approaches.
With avenues of dimensionality reduction of the vast
genome-wide association data for automated extraction
of information, the ML-based techniques have revolu-
tionized the prospects of network biology in under-
standing molecular interaction networks (Mochida
et al. 2018). ML techniques, such as semi-supervised
algorithms, effectively contribute to the classification
problems with limited availability of data and param-
eters, which often remains as a limitation of the hybrid
network-based approaches, as discussed in the previous

section. They also enable easy automation of integra-
tion of multi-level heterogenous data with network
models, thus enabling the use of a vast spectrum of
information in an automated fashion. The use of net-
work topological features in semi-supervised ML
algorithms has enabled automation even with limited
availability of relevant information (Nandi et al. 2020).
In this section, we briefly state areas where these
emerging ML techniques that amalgamate molecular
network information find applications.

5.1 Gene essentiality prediction

Predicting essential genes through the analysis of
molecular networks has significantly contributed to
drug development and understanding of synthetic
biology (Hwang et al. 2009). Single-gene knockout
studies and genome-wide RNAi screens have unveiled
the multifaceted nature of gene essentiality that is
context-dependent and evolvable rather than just binary
and static (Rancati et al. 2018). This provides scope for
developing predictive models for identifying essential
genes using genome-wide data by applying advanced
computational techniques such as machine learning on
genome-wide association studies (GWAS), e.g., Ess-
Rank (Xu et al. 2019). Integration of gene expression
data and network topological features has been
employed for predicting gene essentiality (Zhong et al.
2021).
ML algorithms use gene expression, functional

annotation, sequence, and network topology as fea-
tures to identify gene essentiality (Zhang et al. 2016).
Along with PPINs, transcriptional and metabolic net-
work features have also been increasingly incorpo-
rated into the ML models (da Silva et al. 2008;
Plaimas et al. 2010). Nandi et al. (2020) have recently
addressed the shortcomings of limited availability of
experimental data and, thus, the lack of labelled data
by developing a semi-supervised ML strategy. This
Laplacian support vector machine (SVM)-based
strategy revealed topological measures of reaction
networks as one of the important determining features
for classifying essential and non-essential genes in
prokaryotes and eukaryotes (figure 3). These ML
strategies contribute to identifying the deterministic
features that help distinguish class labels (e.g.,
essential and non-essential gene), which was previ-
ously challenging due to limited availability of data.
DEEPLYESSENTIAL is another method that uses
deep neural network architecture to predict essential
microbial genes using sequence information (Hasan
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and Lonardi 2020). Campos and co-workers’ ML-
based workflow to predict essential genes in
Caenorhabditis elegans has shown that essential
genes are positively correlated with low single nuclear
polymorphism (SNP) densities and epigenetic markers
in promoter regions (Campos et al. 2020).

5.2 Prediction of drug–disease interactions

Drug repurposing is known to accelerate drug dis-
covery research and development processes (Novac
2013). Identification of drug–disease interactions
plays an important role in drug repurposing and thus
accelerates de novo drug discovery. The advantage of
using network-based models for identifying drug–
disease interactions is that it utilizes complete large-
scale high-throughout data to build complex biologi-
cal interaction networks. Several network-based
models to identify these drug–disease interactions
have been developed in the recent past (Wang et al.
2014; Martı́nez et al. 2015; Luo et al. 2016). The
prediction of potential drug–disease interactions by
integrating multiple layers of network data has been
helpful in assessing molecular actions and studying
disease implications (Oh et al. 2014). Recent devel-
opments using ML-based prediction models designed
for drug–disease association studies employ a number
of methods ranging from logistic regression-based
methods (Gottlieb et al. 2011) to Laplacian regular-
ized sparse subspace learning (LRSSL)-based methods
(Liang et al. 2021). Wu et al. (2017) proposed a semi-
supervised graph cut (SSGC) algorithm to predict
drug–disease pairs by integrating the information on
drug substructures, disease phenotypes, and gene–
gene interactions with known drug–disease interaction
treatment relationships in a hierarchical framework.
This proposed algorithm enabled the integration of
three different layers of disease phenotype, treatment
and gene mechanism data, and optimally identified
drug–disease similarity associations. Network simi-
larities have also shown to contribute to drug–disease
associations and can be effectively used in ML-based
training algorithms to improve predictions. A novel
method was recently developed that combines net-
work similarities of drugs and diseases with their
chemical and semantic similarities to predict novel
drug–disease interactions and effectively handles the
unwanted disease interaction pairs, which have been a
challenge in some previously developed methods (Cui
et al. 2019). Integration of similarity measures in
heterogenous networks and deep learning models to

predict drug–disease interactions can further signifi-
cantly benefit drug repurposing. A novel framework
was recently proposed by Jarada and co-workers that
uses similarity selection and similarity network fusion
combined with neural network deep learning model to
efficiently predict drug–disease interactions (Jarada
et al. 2021). This method resolves the challenge of
limited availability of known interactions by inte-
grating similarity information along with tackling data
noise and redundancy issues which were previously
faced by other methods, and thus has improved pre-
diction accuracy. Another recently developed
methodology of ensemble-based strategy uses weigh-
ted K-nearest known neighbours to construct drug and
disease similarity networks (Wang et al. 2021). Such
statistically improved methods are increasingly being
proposed to improve accurate drug–disease interaction
predictions by developing novel strategies using
molecular network information, which will advance
the development towards precision medicine (Zhu
et al. 2018; Yu et al. 2019).

5.3 Characterization of regulatory genes

ML methods contribute significantly in predicting and
inferring GRNs using transcriptomic data (Mochida
et al. 2018). GRN inferences face limitations due to
noise, low sample size and incomplete characterization
of regulatory dynamics, leading to networks with
missing and anomalous links (Banf and Rhee 2017). A
semi-supervised network reconstruction algorithm has
been developed that enables the synthesis of informa-
tion from partially known GRNs with time course gene
expression data (Nguyen and Braun 2018). This
method successfully identifies novel and anomalous
connections. A recent advancement addresses the
problem of two potential regulators in GRNs having
high correlation or matching expression patterns,
making it challenging to differentiate between them. A
novel method called linear profile likelihood (LiPLike)
predicts gene-to-gene regulation with high accuracy by
selecting interactions that are uniquely inferred by
measured data (Magnusson and Gustafsson 2020). A
recent supervised-learning-based method, GRADIS,
incorporates graph distance profiles from transcrip-
tomic data to reconstruct GRNs (Razaghi-Moghadam
and Nikoloski 2020). This approach offers the possi-
bility to use network representations of large-scale data
that help characterize cellular networks and analyse
GRNs effectively.
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5.4 Prediction of protein abundance and protein
complexes from PPINs

ML models are being implemented to predict protein
abundance from single-cell RNA-Seq data using PPI
and prior knowledge embedded into neural graph net-
works (Niu et al. 2020; Dai et al. 2021). The PIKE-
R2P (PPIN-based knowledge embedding with graph
neural network for single-cell RNA to protein predic-
tion) model proposed by Dai and co-workers uses
graph neural networks (GNN) which enable multi-label
modelling. The information from PPIs in these GNNs
thus help in the cross-modality prediction of protein
abundances at the single-cell level. DeepHE, a network
embedding method, automatically learns features from
PPINs and additionally uses sequence features. These
two types of feature data are used to train multi-layer
neural networks and address the imbalanced learning
problem using a cost-sensitive technique (Zhang et al.
2020). New algorithms have been proposed for mining
the best topological features to predict protein com-
plexes from PPINs. The Sequential Forward Feature
Selection (SFFS) algorithm, recently proposed by
Younis and co-workers, uses random forest-based
Boruta feature selection to integrate a wide variety of
topological and biological features as well as protein
interaction information (Younis et al. 2021).

6. Understanding disease mechanisms
and identification of potential therapeutic targets

Network topology-based approaches have contributed
to the development of advanced therapeutic applica-
tions to curb metastasis-driven cancer progression.
Topology-based approaches have been applied to
classifying breast cancer subtypes by searching for
significant sub-networks (Chuang et al. 2007). Their
application has expanded to a broader pan-analysis
perspective with experimental and theoretical
advancements in cancer diagnosis. Multi-layer frame-
works combining network topology and spectral graph
theory have enabled the study of the cancer complex-
ome to identify important proteins across multiple
cancers (Ramadan et al. 2016; Rai et al. 2017; Hari
et al. 2020; Buffard et al. 2021). WGCNA on the PPI
networks has been used to identify gene co-expression
modules between the differentially expressed genes
(DEGs) through hierarchical clustering to identify gene
expression signatures associated with acquired gefitinib
resistance (Lee et al. 2015). The potential network
analysis techniques applied explicitly for developing

precision cancer medicine have been thoroughly
reviewed by Ozturk et al. (2018).
Evaluation of the inter-species heterogeneity in

molecular interaction networks has contributed signifi-
cantly towards delineating infection mechanisms by
analysing cause–effect relationships in treatment strate-
gies. For example, Singh et al. (2020) applied exhaustive
topological analysis using the parameters in-degree, out-
degree, and directed and undirected average path lengths
to study the comprehensive transcriptional regulatory
network of Mycobacterium tuberculosis (MTB) H37rv.
Furthermore, global proteomic datasets analysis of
virus-infected patients with human immunodeficiency
virus (HIV) and hepatitis C virus (HCV) demonstrated
that using degree and betweenness for identifying
pathogen interactions was more effective and accurate
than using differential regulation alone (McDermott
et al. 2012; Soto-Girón and Garcı́a-Vallejo 2012). Ack-
erman and co-workers proposed a new method of com-
bining host PPI networks with virus–host PPI data to
identify host target proteins and demonstrated the
method in influenza infection by extracting virus-speci-
fic subnetworks (Ackerman et al. 2018). This study
revealed that network position within the virus–host
subnetwork offers an advantage in prioritization of drug
targets. Controllability analysis using virus–host net-
works captured the dynamic properties without the
knowledge of experimentally derived concentration
parameters and helped identification of antiretroviral
targets with higher potential (Ackerman et al. 2019).
The current global COVID pandemic has led to a

surge in research techniques that can rapidly process
the information generated for the newly identified
SARS coronavirus 2. The immediate requirement to
identify potent remedial solutions and understand the
virulence mechanism of rapidly evolving strains to
development of vaccines has led researchers towards
network biology approaches. Construction and analysis
of biomolecular networks in the form of PPINs, tran-
scriptional, and gene co-expression networks have led
to rapid assessment of concurrent effects (Nashiry et al.
2021), analysing viral host associations (Das et al.
2021; Terracciano et al. 2021) and predicting miRNAs
associated with viral pathogenesis, elucidating neuro-
logical manifestations (Prasad et al. 2021).

7. Concluding remarks and future prospects

The present review thoroughly evaluates the insightful
inferences that can be drawn using graphical networks
of biological systems and their integration into different
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hybrid network-based modelling techniques to provide
additional details about complex system behaviour.
With increasing advances in high-throughput tech-
nologies in biological research, attempts have been
made to incorporate this information into network
structures, leading to a continuous update of network
biology approaches in the last two decades. New cen-
trality measures like pairwise disconnectivity index,
leverage centrality, bottleneckness, bipartivity, etc.,
along with classical centrality measures like between-
ness, Katz centrality, and eigenvector centrality, can be
used to predict the influence of genomic regulators on
target gene networks and the impact of their deletion on
target genes. Advances in topology-based approaches
have paved the way to successfully identify perturba-
tion patterns, gene prioritization, and clustering of
dynamic networks. The computational advances in
terms of amalgamation of machine learning (ML) and
artificial intelligence (AI) in using network graph
properties have proved beneficial with several appli-
cations such as essential gene prediction, drug–disease
interaction identification, and prediction of protein
abundance from single-cell data. Pertaining to the
current knowledge of the available methodological
advances in studying these molecular interaction net-
works, we suggest certain areas where advanced
computational approaches incorporating network
properties can be developed and applied in future:
Development of a testable hypothesis for disease

diagnostics: With a demonstrated application of graph
networks in deriving useful inferences about different
disease conditions including both infectious disease
and cancer, network biology approaches provide the
opportunity to elucidate condition-specific network
structures depending on the details of the specific dis-
ease systems under study. Empirical analysis of the
network structure and topology of disease case-specific
conditional differences and comparison with the net-
work structure of the normal physiological conditions
can help identify prognostic targets and modules for
therapeutic benefits.
Identification of gene regulatory targets: Computa-

tional analysis of omics and high-throughput data on
the translational and post-transcriptional regulators of
gene expression has been successful in establishing a
cause-and-effect relationship between differential
expression of the gene expression regulators and target
genes (figure 3C). Graph network analysis is a suit-
able choice to study these regulatory networks as these
approaches can provide conclusions based on holistic
analysis of large-scale information. Regulatory targets
can be predicted from the analyses that can be further

tested through in vivo and in vitro studies to test their
feasibility as therapeutic targets under diseased
conditions.
Automated identification of essential genes and pri-

oritized molecular targets: Hybrid network-based
models, which that make use of network inferences
have paved the way for the development of automated
ML and artificial network-based (Bayesian, neural)
tools with the ability to predict and identify essential
genes and prioritize molecular targets even with limited
experimental data availability. These integrative
approaches can be continuously updated to improve the
quality of prediction with corroboration of additional
heterogeneous data. Semi-supervised algorithms can
further be improved to increase the prediction accuracy
when limited essential gene information as well as
GRN data are available.
Continuous improvement in statistical methodolo-

gies in the area of deep learning and recurrent neural
networks can be effectively applied to improve the use
of molecular network data in the context of personal-
ized medicine development. Advances in classification
algorithms and improved sensitivity to phenotype-
specific classification utilizing network topological
information can accelerate research in personalized
medicine development and improve our understanding
of causal mechanisms in diseases.
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